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1 Sample space and events

Sample space is the set of all possible outcomes from a random process.

• 𝑆 = {dropout, graduate}, simplified high school outcome
• 𝑆 = {0, 1, 2, 3, …}, number of workplace injuries
• 𝑆 = [0, 130], age… or collision speed
• 𝑆 = {nothing, restrain, strike, baton/taser/OC spray, firearm}, ordered use-of-force

An event is a subset of the sample space

• 𝐴 = {graduate}
• 𝐴 = {0, 1, 2}
• 𝐴 = [16, 25]
• 𝐴 = {nothing, restrain}

2 What is probability?

Frequentist definition: The probability of an event is the fraction of times it is expected to
happen when the basic process is done over and over under the same conditions.

Subjectivist definition: Probability is an individual’s belief expressed as a measure of uncer-
tainty.

What is the probability that the Phillies win next year’s World Series? The frequentist would
have to think about next year’s World Series as being part of a larger sequence of games,
perhaps depending on a complex set of factors (e.g. weather, injuries, opponents). Subjectivists
are comfortable simply expressing their belief as a probability.

Example: Let 𝑋 be the number of cities in the world with more than 1 million people that
start with the letter M. What is the probability that 𝑋 ≥ 20? Frequentists will say that this
has to be 0 or 1 since this is not a repeatable experiment. However, after reading this question
you probably are already formulating an estimate of how sure you are that there are more than
20 such cities. You might be so certain that you would be willing to bet someone real money
on whether 𝑋 ≥ 20 or not. de Finetti in 1937 defined subjective probability as essentially the
price that you are willing to pay for a lottery ticket that yields 1 unit of money if the event
occurs and nothing otherwise.
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2.1 Axioms of probability

Let 𝐴 be an event in a sample space 𝑆.

1. 𝑃(𝐴) ≥ 0, probability cannot be negative
2. 𝑃(𝑆) = 1, some event in the sample space will happen
3. If 𝐴1 ∩ 𝐴2 = ∅, then 𝑃(𝐴1 ∪ 𝐴2) = 𝑃(𝐴1) + 𝑃(𝐴2), probabilities for mutual exclusive

events are additive

Note: ∪ is like “or”, ∩ is like “and”

2.2 Additional useful properties

1. 𝑃(𝐴1 ∪ 𝐴2) = 𝑃(𝐴1) + 𝑃(𝐴2) − 𝑃(𝐴1 ∩ 𝐴2)
2. 𝑃( ̄𝐴) = 1 − 𝑃 (𝐴), where ̄𝐴 means “not 𝐴”
3. If 𝐴 and 𝐵 are independent, then 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵)

Two events are independent if the chances for the second event are the same regardless of
how the first event turns out. Otherwise, the two events are dependent.

3 Conditional probability

Conditional probability

𝑃(𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵) (1)

The conditional probability 𝑃(𝐴|𝐵) is the probability that the event 𝐴 occurs given that 𝐵
occurs. Often we will be interested in computing conditional probabilities like

𝑃(𝑌 = 1|𝑥1, 𝑥2, … , 𝑥𝑑)

the probability that 𝑌 = 1 given a set of case features, x.

Sometimes, for example when we study the naïve Bayes classifier, we will be interested in
𝑃(𝑥𝑗|𝑌 = 1). Pay attention to which events are on which side of the vertical bar.

It is common (possibly intentional at times) to flip conditional probabilities when making
arguments. The “prosecutor’s fallacy” is to give 𝑃(evidence|innocence) but interpret it as
𝑃(innocence|evidence).
Example 1: Shooters and illegal weapons possession. In Philadelphia the District
Attorney correctly claimed that of those arrested for illegal gun possession, very few of them
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go on to shoot someone (𝑃(shoot|VUFA arrest) is small, about 0.01), but the police department
argued that almost all the shooters have been previously arrested for illegal gun possession
(𝑃(VUFA arrest|shooter) is large, about 0.40). Both are correct statements, but essentially
they are arguing about which probability is more important for public safety.

Example 2: Murdered by batterer. Famously, Alan Dershowitz defended OJ Simpson
claiming that one in 2500 men who beat their intimate partners eventually kill them. We want
to know

𝑃(murdered by batterer|murdered)
but Dershowitz gave

𝑃(murdered by batterer|battered) = 1
2500

The useful probability, 𝑃(murdered by batterer|murdered), turns out to be 0.29.

Example 3: Calls that are frauds or frauds that are calls?. On March 12, 2025, the
Social Security Administration noted: “Approximately 40 percent of Social Security direct
deposit fraud is associated with someone calling SSA to change direct deposit bank informa-
tion.”

𝑃 (initiated by someone calling SSA|direct deposit fraud) = 0.40

Figure 1: SSA post screenshot

March 27, 2025, DOGE engineer says: “We learned 40 percent of the calls that they get are
from fraudsters.”

𝑃(fraudster|call to SSA) = 0.40
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Figure 2: Fox Business SSA report

April 1, 2025 SSA staff draft a clarification with updated analysis, “…between 25% and 30%
of direct deposit allegations are for direct deposit changes initiated over the phone.”

𝑃(fraud initiated over the phone|direct deposit fraud allegation) = [0.25, 0.30]

April 3, 2025, Vice President Vance says: “40 percent of the people who are calling in are
actually committing fraud.”

𝑃(fraudster|call to SSA) = 0.40

3.1 Exercises

Table 1: Probability of cheating on taxes and mom’s birthday month

Mom's birthday
Jan-Mar Apr-Dec

tax cheat 0.025 0.075
not tax cheat 0.225 0.675

𝑆 = {(Jan-Mar, cheat), (Jan-Mar, no cheat), (Apr-Dec, cheat), (Apr-Dec, no cheat)}.

Let 𝐴 = tax cheat and 𝐵 = Jan-Mar birthday. Compute the following

1. 𝑃(𝑆)
2. 𝑃(𝐴)
3. 𝑃( ̄𝐴)
4. 𝑃(𝐵)
5. 𝑃(𝐴)

1−𝑃(𝐴) (odds of A)
6. 𝑃(𝐴|𝐵)
7. 𝑃(𝐴|𝐵̄)
8. 𝑃(𝐴|𝐵)

𝑃(𝐴|𝐵̄) (risk ratio)
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9.
𝑃(𝐴|𝐵)

1−𝑃(𝐴|𝐵)
𝑃(𝐴|𝐵̄)

1−𝑃(𝐴|𝐵̄)
(odds ratio)

10. log
𝑃(𝐴|𝐵)

1−𝑃(𝐴|𝐵)
𝑃(𝐴|𝐵̄)

1−𝑃(𝐴|𝐵̄)
(log odds ratio)

3.2 Randomized response design

Assume we do not know the probability that a randomly selected person cheats on their taxes.
Let 𝑝 = 𝑃(tax cheat).

Table 2: Probability of cheating on taxes and mom’s birthday month

Mom's birthday
Jan-Mar Apr-Dec

tax cheat 0.25𝑝 0.75𝑝
not tax cheat 0.25(1 − 𝑝) 0.75(1 − 𝑝)

If we ask a large number of people “Say ‘yes’ if you cheat on your taxes or your mom’s birthday
in January, February, or March,” what fraction would say “yes”?

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)
= (0.25𝑝 + 0.75𝑝) + (0.25𝑝 + 0.25(1 − 𝑝)) − 0.25𝑝
= 𝑝 + 0.25𝑝 + 0.25 − 0.25𝑝 − 0.25𝑝
= 0.25 + 0.75𝑝

If you surveyed 10,000 people with this question and 34% said “yes,” what would be your best
guess for 𝑝, the probability that someone cheats on their taxes?

4 Bayes’ Theorem

Bayes’ Theorem

𝑃 (𝐵|𝐴) = 𝑃(𝐴|𝐵)𝑃(𝐵)
𝑃(𝐴) (2)

Note that in order to compute 𝑃(𝐴) we often have to sum over all the options for 𝐵, for
example
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𝑃(𝐴) = 𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∩ 𝐵̄)
= 𝑃(𝐴|𝐵)𝑃(𝐵) + 𝑃(𝐴|𝐵̄)𝑃 (𝐵̄)

4.1 Example 1. ELISA test

The ELISA test was introduced in the mid-1980s to screen blood for the AIDS virus. It detects
antibodies, substances that the body produces when the virus is present.

• When antibodies are present, ELISA is positive with probability 0.98 and negative with
probability 0.02

• When blood is not contaminated with antibodies, ELISA gives a positive result with
probability about 0.07 and a negative result with probability 0.93

• Suppose that 1% of a large population carry the AIDS antibody in their blood

What is the probability that someone who tests positive actually has antibodies?

𝑃 (AB|ELISA+)

= 𝑃(ELISA+|AB)𝑃 (AB)
𝑃 (ELISA+)

= 0.98 × 0.01
𝑃(ELISA+|AB)𝑃 (AB) + 𝑃(ELISA+|no AB)𝑃 (no AB)

= 0.98 × 0.01
0.98 × 0.01 + 0.07 × 0.99

= 0.124

4.2 Exercise 1: Are older parolees risky?

A report noted that in 2002, 0.8% of those rearrested within one year of release on parole were
50 years or older. Advocates of sentencing reform suggested that this statistic indicates that
releasing prisoners age 50 and older could alleviate prison overcrowding without risking harm
to the public.

50% of parolees released in 2002 were rearrested within one year.

1% of those released on parole in 2002 were 50 or older

Compute the probability of rearrest within one year for a parolee aged 50 or older who was
released in 2002. What do you think of the proposed prisoner release program given the 0.8%
statistic?
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4.3 Exercise 2: How did Uncle Basil die?

Bart is trying to kill Uncle Basil for money. Knowing Uncle Basil likes dessert, Bart puts

• rat poison in the cherries flambé (fatal 60% of the time)
• cyanide in the chocolate mousse (fatal 90% of the time)

Uncle Basil eats cherries 50% of the time, chocolate mousse 40% of the time, and something
else 10% of the time.

If Uncle Basil dies, what’s the probability that it was the mousse that killed him?

4.4 Exercise 3: Beyond a reasonable doubt?

Police recover a knife at the murder scene on the Orient Express. There are 13 passengers
on the train suspected of the murder and police believe that each of these 13 have the same
chance of being the murderer.

A bloody fingerprint lifted from the knife used as the murder weapon best matches Mrs. Hub-
bard. However, forensic examiners note that the match is not perfect and calculate that there
is a 0.008 probability of a fingerprint match even if Mrs. Hubbard was innocent.

What is the probability that Mrs. Hubbard is the murderer?

In 1769, William Blackstone said “It is better that ten guilty escape than one innocent suffer.”
Blackstone’s Ratio convicts those with probability of guilt greater than or equal to 10/(10+1) =
0.909. Would you convict Mrs. Hubbard based on the evidence?

Ben Franklin in 1785 said, “It is better 100 guilty Persons should escape than that one in-
nocent Person should suffer,” equivalent to convicting when the probability of guilt exceeds
100/(100+1). Using Franklin’s Ratio, would you still convict Mrs. Hubbard?

4.5 Exercise 4: Vampires, ghosts, and lies

In a small village in Transylvania 15% of the population are vampires, 20% are ghosts, and
65% are ordinary people.

Vampires never tell the truth, ghosts tell the truth 37% of the time, and ordinary people tell
the truth 95% of the time.

It is impossible to tell apart vampires, ghosts and ordinary people by the way they look
(between 6:00am and 11:59:59pm).

You are introduced to a gentleman from the village. What is the probability that he did not
give you his real name?
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Just at 11:59:59pm you realize that the gentleman lied about his name. What is the probability
that your companion is a vampire or ghost?

5 Prediction

We are almost always interested in the probability of some outcome 𝑌 conditional on observing
some features 𝑋1, 𝑋2, … , 𝑋𝑑, written as the conditional probability 𝑃(𝑌 |x).

• 𝑌 ∈ 0, 1, binary classification
• 𝑌 is a discrete variable with more than two possible values, multiclass classification
• 𝑌 is a continuous variable, regression

We will focus on the binary classification problem for now.

What if you need to make a classification decision based on 𝑃(𝑌 |x)? Perhaps predict that
𝑌 = 1 whenever 𝑃(𝑌 = 1|x) > 0.5. But what if, the cost of a false negative (failing to
identify a case where 𝑌 = 1) is different from the cost of a false positive (incorrectly predicting
𝑌 = 1).

Let’s say a false positive costs 𝑐 units while a false negative costs 1 units.

What is our expected cost if we label the case as a 0?

0 × 𝑃(𝑌 = 0|x) + 1 × 𝑃(𝑌 = 1|x) = 𝑃(𝑌 = 1|x)

What is our expected cost if we label the case as a 1?

𝑐 × 𝑃(𝑌 = 0|x) + 0 × 𝑃(𝑌 = 1|x) = 𝑐𝑃(𝑌 = 0|x)

We should classify as a 1 if

𝑐𝑃 (𝑌 = 0|x) < 𝑃(𝑌 = 1|x)
𝑐(1 − 𝑃(𝑌 = 1|x)) < 𝑃(𝑌 = 1|x)

𝑐 − 𝑐𝑃(𝑌 = 1|x) < 𝑃(𝑌 = 1|x)
𝑐 < 𝑃(𝑌 = 1|x) + 𝑐𝑃(𝑌 = 1|x)
𝑐 < (𝑐 + 1)𝑃(𝑌 = 1|x)

𝑃 (𝑌 = 1|x) > 𝑐
𝑐 + 1

If false positives cost nothing, then 𝑐 = 0 and we would classify everyone as a 1. If false
positives cost 1 (equal to false negatives), then classify as a 1 if 𝑃(𝑌 = 1|x) > 1

2 . Whenever
you see examples in which the decision boundary is 1

2 , the analysts are assuming equal false
positive and false negative costs. If false positives are infinitely expensive, then 𝑐 → ∞ and
we classify as a 1 only when 𝑃(𝑌 = 1|x) = 1 and all other classifications should be 𝑌 = 0.
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6 Random variables, expected value, variance

A random variable is a numerical summary of the outcome of a random event.

• 𝑋 = 1 if the student graduates, 𝑋 = 0 if the student does not graduate
• 𝑇 is the time until a parolee reoffends
• 𝑌 is total earnings within 5 years of college graduation

We often summarize a random variable by its average or expected value. A random variable
is discrete if it takes on a finite or countable number of values, like 0/1 outcomes, the number
of times something happens, or the count of a number of items.

Expected value of discrete random variables

𝔼(𝑌 ) =
∞

∑
𝑦=0

𝑦𝑃(𝑌 = 𝑦) (3)

Equation (3) says that the expected value is the sum over all the possible values 𝑌 can have
times the probability that that value of 𝑌 occurs.

6.1 Examples:

• Starting with the classic coin flip, if 𝑌 counts the number of tails that occurs in a single
coin flip, then we have 𝔼(𝑌 ) = 0 × 0.5 + 1 × 0.5 = 0.5. Note that the expected value
does not necessarily have to equal one of the possible values of 𝑌

• In the US, of mothers over age 40, assume that the distribution of the number of children
is

# children (𝑦) 0 1 2 3 4
𝑃(𝑌 = 𝑦) 0.18 0.19 0.32 0.20 0.11

The expected value of 𝑌 is

𝔼(𝑌 ) = 0 × 0.18 + 1 × 0.19 + 2 × 0.32 + 3 × 0.20 + 4 × 0.11 = 1.87

For a physical understanding of the expected value, imagine a (weightless) rod of length 4 cm.
Place an 18g weight at the left end, a 19g weight at the 1cm mark, a 32g weight at the 2cm
mark, a 20g weight at the 3cm mark, and an 11g weight at the 4cm mark (the right end of
the rod). The expected value is the point at which this rod would balance.

For continuous random variables, we replace the sum with an integral.
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Expected value of continuous random variables

𝔼(𝑌 ) = ∫
∞

−∞
𝑦𝑝(𝑦) 𝑑𝑦 (4)

(4) replaces the sum with an integral and the probability function 𝑃(𝑌 = 𝑦) with a probability
density function, 𝑝(𝑦). Physically, 𝔼(𝑌 ) is the place where the shape 𝑝(𝑦) would balance.

Example:

• Let 𝑇 be the time to reoffense with an exponential distribution of the form

𝑝(𝑡) = 𝜆𝑒−𝜆𝑡, 𝑡 ≥ 0

The expected value is

𝔼(𝑇 ) = ∫
∞

0
𝑡𝜆𝑒−𝜆𝑡 𝑑𝑡 = 1

𝜆

For this class, feel free to use Wolfram Alpha or Integral Calculator or similar sites to help
you solve any problems in this class.

6.2 Properties of expected value

Since the expected value is a sum or an integral, it has all the same properties of sums and
integrals.

• 𝔼(𝑎𝑌 ) = 𝑎𝔼(𝑌 )
• 𝔼(𝑌1 + 𝑌2) = 𝔼(𝑌1) + 𝔼(𝑌2)

Example:

• You have two randomly selected 40-year-old mothers. What is the expected total number
of children that they have?

𝔼(𝑌1 + 𝑌2) = 𝔼(𝑌1) + 𝔼(𝑌2) = 1.87 + 1.87 = 3.74

6.3 Monte Carlo estimation of integrals

Some (most?) integrals we will encounter in machine learning are too complicated to compute
in a convenient closed-form solution. Fortunately, the Law of Large Numbers tells us that we
can use sample averages to approximate integrals.
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Law of Large Numbers

If 𝑦1, … , 𝑦𝑛 is a random sample from 𝑝(𝑦), then as 𝑛 → ∞

1
𝑛

𝑛
∑
𝑖=1

𝑔(𝑦𝑖) → ∫
∞

−∞
𝑔(𝑦)𝑝(𝑦) 𝑑𝑦 = 𝔼[𝑔(𝑌 )]. (5)

Example:

• Returning to the example with the number of children, we can write an R script to
estimate the expected value.

nChildren <- sample(0:4, 10000,
prob=c(0.18,0.19,0.32,0.20,0.11),
replace=TRUE)

mean(nChildren)

[1] 1.872

6.4 Variance

The variance of a random variable describes its variability, specifically how far away from its
mean it is on average as measured by squared distance.

Variance

Var(𝑌 ) = 𝔼[(𝑌 − 𝔼(𝑌 ))2] (6)

In the coming weeks we will be looking at terms like the following where 𝐷 represents an entire
dataset, 𝑌 is an outcome, and x0 is a set of specific case features. 𝑓(x) is the best possible
predictive model equal to 𝔼𝐷(𝑌 |x0) and ̂𝑓(x0) is our machine learning method attempting to
best predict 𝑦.

𝔼𝐷,𝑌 |X=x0
(𝑌 − 𝑓(x0))2 (7)

Equation (7) represents noise. It is the variance of 𝑌 and is the part of the outcome that is
simply random noise, which no possible machine learning method could hope to capture.

𝔼𝐷,𝑌 |X=x0
[(𝑓(x0) − 𝔼𝐷 ̂𝑓(x0|𝐷))

2
] (8)
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Equation (8) represents bias, on average how far away our model, ̂𝑓(x|𝐷), is from the best
model, 𝑓(x).

𝔼𝐷,𝑌 |X=x0
( ̂𝑓(x0|𝐷) − 𝔼𝐷 ̂𝑓(x0|𝐷))2 (9)

Lastly, (9) represents variance, how much our predictions change from dataset to dataset. It
is the variability of our machine learning approach and how sensitive it is to changes in the
dataset that we use to train the machine learning method.

7 Final notes

Twenty-four cities start with the letter M and have more than 1 million people: Moscow
(Russia), Mumbai (India), Mexico City (Mexico), Madrid (Spain), Manila (Philippines), Mel-
bourne (Australia), Mashhad (Iran), Medellin (Columbia), Mogadishu (Somalia), Managua
(Nicaragua), Manaus (Brazil), Multan (Pakistan), Medan (Indonesia), Maracaibo (Venezuela),
Minsk (Belarus), Maiduguri (Nigeria), Montreal (Canada), Mecca (Saudi Arabia), Makassar
(Indonesia), Munich (Germany), Milan (Italy), Montevideo (Uruguay), Maputo (Mozambique),
and Monterrey (Mexico)
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