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Abstract 

Renewable Portfolio Standards (RPS) are one of the most important state-level policies to 
drive decarbonization and clean energy transition in the U.S. Despite their widespread 
implementation, RPS policies vary widely in policy design, leading to heterogeneous levels of 
policy stringency across states. This study offers new insights into how these design variations 
create significant gaps in environmental outcomes. We compile a new database covering every 
RPS policy passed between 1990 and 2018, documenting their design discrepancies in four 
aspects: credit multipliers, exemptions, permitted technologies, and voluntary targets. Using this 
database, we empirically estimate the causal effects of RPS policies and their design stringency 
on economic and environmental outcomes using a difference-in-differences design. Our results 
suggest that while stringent RPS policies generate sizeable environmental co-benefits, 
discrepancies within RPS policy design attenuate those co-benefits: 5-9 years after enacting an 
RPS policy, the average state under clean RPS policies sees SO2 emission decrease by 57.6% 
and NOx emission decrease by 33.7%; the average state under discrepant RPS policies sees a 
25.1% decrease in SO2 emissions and no NOx emission reductions. These environmental 
performance gaps can be explained by discrepancies' impacts on the power generation fuel mix 
— smaller cuts in coal and oil, slower growth in natural gas, and less generation from 
hydropower and nuclear. Using the EPA’s CO-Benefits Risk Assessment model, our analysis 
indicates that RPS design discrepancies caused forgone health co-benefits of between $12-22 
billion from SO2 and NOx emissions annually. 
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1. Introduction 

With a lack of federal-level renewable energy mandates before the Inflation Reduction Act 

of 2022, Renewable Portfolio Standards (RPSs) have been one of the most important state-level 

policies in driving power sector decarbonization and fostering renewable energy adoptions in the 

United States for the past 20 years. RPSs typically mandate a specific percentage of a state’s 

retail electricity sales to come from renewable sources. As of 2021, 36 states and the District of 

Columbia have implemented RPSs or Clean Energy Standards (CESs), making these policies 

critical tools at the state level.1  

Despite their pivotal role in the clean energy transition, the effectiveness of RPSs in carbon 

mitigation, renewable energy uptake, and their impact on electricity prices remains a subject of 

ongoing debate. Recent causal evidence suggests that while RPSs decrease carbon emissions by 

10-25%, they also increase electricity prices by 2-11% and have limited effects in encouraging 

renewable energy deployment (Feldman & Levinson, 2023; Fullerton & Ta, 2024; Greenstone & 

Nath, 2021; Upton & Snyder, 2017; Wolverton et al., 2022). This debate is further complicated 

by the diverse RPS designs adopted by different states, resulting in variations in policy 

stringency from percentage requirements to design features like credit multipliers, exemptions, 

permitted technologies, and voluntary targets (Bernstein & Hoffmann, 2018; Carley et al., 2018; 

Carley & Miller, 2012; Fischlein & Smith, 2013). Studies have found that stringency of RPS 

policies can affect renewable energy adoption (e.g., Carley et al. 2018), but their effect on other 

outcomes remains unclear. 

Beyond the central aim of decarbonization, increasing renewable adoption potentially offers 

significant air pollution co-benefits by transitioning the power generation from dirtier to cleaner 

energy sources (Fell et al., 2021; Millstein et al., 2017; Rivera et al., 2024; Sergi et al., 2020). 

However, empirical evidence is scarce regarding how RPS policies allocate these co-benefits 

heterogeneously across states and rely heavily on projection and simulation models (Barbose et 

al., 2016; Johnson & Novacheck, 2015; Wiser et al., 2017). One notable exception is 

 

1 Amongst other differences, CES mainly differs from RPS in that they include nuclear generation as part of the 
portfolio. For the purpose of this study, we treat CES and RPS as the same policy and will use RPS to represent both 
whenever appropriate. 
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Hollingsworth & Rudik (2019), who empirically estimated the effects of Renewable Energy 

Credits (RECs)  demands on air quality and health benefits through changing plant-level power 

generation portfolios. Their results show that a 1% increase in renewable generation target 

creates air pollution co-benefits from $100,000 to over $100 million depending on the size of the 

state. Yet while previous literature demonstrates the influence of RPS policy stringency on 

renewable energy adoption (Carley et al., 2018), the broader impacts of these design variations, 

particularly on environmental outcomes and the corresponding co-benefits, remain less 

understood. 

This paper aims to fill these gaps by empirically estimating the air pollution co-benefits of 

RPS policies and their heterogeneity across varied RPS policy designs. Following definitions in 

previous literature (Carley et al., 2018; Carley & Miller, 2012), we examine four RPS policy 

characteristics that cause discrepancy and reduce enforcement stringency: qualified exemptions, 

credit multipliers, permitted carbon-emitting technologies, and voluntary targets. We constructed 

a unique database covering all RPS and CES laws from 1990 to 2018, meticulously documenting 

the statutory language in state legislations concerning the assessed policy designs. We quantified 

the degree of RPS discrepancy caused by a policy design in terms of the difference it creates 

between nominal and binding minimum renewable generation targets. A larger difference 

signifies a less stringent policy. According to this measure, we defined a dummy variable 

Discrepancy that categorized RPS policies into two groups: "clean" RPS, which lack these 

discrepancies, and “discrepant” RPS, which contain at least one discrepancy.2 

Utilizing this database, we empirically examine the dynamic effect of RPS policies and their 

design stringency on economic and environmental outcomes. Identification leverages the 

staggered timing of RPS adoption across states over time, resulting in a staggered adoption 

difference-in-differences (DID) design. Estimation relies on both fixed-effect estimators and 

imputation-based robust DID estimators (Sun & Abraham, 2021), and our results remain 

consistent across estimator choices. To estimate the heterogeneous policy effects between clean 

and discrepant RPS policies, we modify the event-study specification by intersecting the 

 

2 The value of the Discrepancy dummy variable varies by state and year, indicating the discrepant feature of the 
legislation which can be revised when a new RPS policy was passed. Its value is set to zero before the state passed 
its first RPS policy bill.  
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Discrepancy dummy variable with the timing of the RPS treatment. This gives us a measure of 

the average performance gaps caused by having discrepant RPS policies, i.e., the difference 

between clean and discrepant RPS policies, across the timing of RPS implementation. Since 

most RPS policies have gradual phase-in features, we summarize the average treatment effects 

into the short-run (0-4 years post RPS), medium-run (5-9 years post RPS), and long-run (>=10 

years post RPS) effects following the practice in Greenstone and Nath (2021) and Deschenes et 

al. (2023). 

The validity of our study design relies on the parallel trend assumption conditional on 

covariates such as political control, weather, and other state and regional environmental and 

clean energy policies (e.g., net metering, NOx trading). While a straightforward check for pre-

trend is difficult because a number of states switched between clean and discrepant law designs 

over our study period, we provide suggestive checks by excluding those switcher states and 

examining the parallel trend assumption using Roth (2022)’s procedure. With the exception of 

ambient PM2.5 concentration, the Roth (2022) procedure suggests that observed performance 

gaps between clean and discrepant RPS are more likely to occur under parallel trends rather than 

under hypothetical pre-trends. 

We find that when evaluated as an aggregate, on average, RPS adoption reduces carbon 

dioxide and sulfur dioxide emissions by 14.1% and 37.3%, aligning with previous studies 

(Greenstone & Nath, 2021; Upton & Snyder, 2017). The novelty of our results lies in revealing 

the differences in environmental outcomes between “clean” and “discrepant” RPS policies, 

which are most pronounced in non-carbon emissions. In the medium run, the average state under 

clean RPS policies sees SO2 emission decrease by 57.6% and NOx emission decrease by 33.7%. 

In contrast, the average state under discrepant RPS policies sees a 25.1% decrease in SO2 

emissions and almost zero effects on NOx emissions. Clean and discrepant RPSs do not differ 

much in their impacts on carbon emission reduction or electricity prices. Between the four 

sources of design discrepancy, the observed environmental performance gap is mostly driven by 

exemptions within RPS policies, aligning with evidence suggesting that exempted municipal 

producers see less change in their generation portfolios or financial health compared to non-

exempt producers (Hong et al., 2023).   
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Taking our estimates into EPA’s CO-Benefits Risk Assessment (COBRA) model, our 

analysis indicates that RPS design discrepancy caused forgone health co-benefits of between $12 

billion and $22 billion from SO2 and NOx emissions in 2016. This is around 38% of the total 

health co-benefits of RPS policies if all states had adopted clean RPSs, or 40%-70% of the 

additional electricity costs according to Greenstone and Nath (2021)'s estimate. Our estimates are 

close in magnitude to that of results from simulation and computational equilibrium models, e.g., 

in Wiser et al. (2017) and Dimanchev (2019). 

We then explore mechanisms through which clean and discrepant RPS policies differ in 

their environmental performance. We find that the wedge is not driven by differential adoption 

of renewable energy. In fact, states under discrepant RPS generate 2.9 percentage points more 

power from wind and solar energy in the medium run, while states under clean RPS do not see 

changes in wind and solar generation shares. Rather, the gap in environmental co-benefits is 

mainly attributed to the faster transition in generations from coal and oil to natural gas under 

clean RPS policies. 5-9 years after RPSs passed into law, states under clean RPS policies see an 

11.4 percentage point reduction in coal and oil generation and a 7.4 percentage point increase in 

natural gas generation. States under discrepant RPS policies, on the other hand, see only a 4.9 

percentage point reduction in coal and gas and a 1.24 percentage point increase in natural gas 

generation. 

Our study makes several contributions to the literature. First, we contribute to a growing 

literature on causally identifying the effect of RPS policies on economic and environmental 

outcomes (Barbose et al., 2016; Deschenes et al., 2023; Feldman & Levinson, 2023; Fullerton & 

Ta, 2024; Greenstone & Nath, 2021; Upton & Snyder, 2017; Wiser et al., 2017; Wolverton et al., 

2022), as well as a broader literature on the environmental effects of renewables in the electricity 

sector (Fell et al., 2021; Holland et al., 2020; Novan, 2015). While prior literature mainly focuses 

on the effect of decarbonization, adoption of renewable energy, and electricity prices, we 

document economically sizeable health co-benefits that are heterogeneous across RPS policy 

design. Our study complements Hollingsworth & Rudik (2019), which quantifies air quality co-

benefits through the channel of Renewable Energy Credits (RECs) markets.  

Second, we contribute to the literature on the effect of policy stringency across jurisdictions. 

Prior studies have documented performance gaps in RPS design and implementation on 
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decarbonization and renewable energy adoption (Carley et al., 2018; Carley & Miller, 2012; 

Fullerton & Ta, 2024; Lyon & Yin, 2010) as well as the financial health of exempted vs. non-

exempted power producers (Hong et al., 2023). We extend this literature by providing the first 

quantification of RPS enforcement stringency affected by policy design, i.e., legal conditions that 

can reduce the binding renewable share required by a state’s RPS policy. Moreover, we 

systematically analyze the environmental effects of these non-binding components in RPS 

policies. We also complement the broader literature on the heterogeneous environmental and 

economic impact of federalism, for example on electric vehicles (Holland et al., 2016), 

hazardous wastes (Blundell et al., 2021), wetlands (Aronoff & Rafey, 2023), or pollution 

monitoring and enforcement (He et al., 2020). 

Third, we contribute to the literature on the co-benefits and unintended consequences of 

environmental policy. We empirically document large non-climate-change co-benefits generated 

by a renewable energy policy and how variations in the co-benefits are driven by policy design. 

This complements studies on the co-benefits of the clean energy transition (Burney, 2020; Fell et 

al., 2021; Rivera et al., 2024; Sergi et al., 2020), as well as other environmental policies such as 

the SO2 and NOx program (Deschênes et al., 2017; Muller et al., 2011; Schmalensee & Stavins, 

2013), agro-climate policy (Zuidema et al., 2023), and water pollution (Weng et al., 2023).   

This paper proceeds as follows: Section 2 provides an overview of the existing research 

examining the effect of RPS adoption and policy stringency. Section 3 describes the method of 

quantifying RPS policy stringency and details other data sources for the empirical analysis. 

Section 4 describes our empirical strategy to identify the overall and heterogeneous RPS effects 

across the policy design. Section 5 presents the results. Section 6 concludes.   

2. Renewable Portfolio Standards: Policy Design and Stringency 

2.1. RPS policies and economic outcomes 

RPS policies generally require a certain percentage of a state’s retail electricity load to be 

generated from qualified renewable energy sources. This study utilizes a data set containing 34 

states that have adopted a Renewable Portfolio Standards (RPS) or Clean Energy Standards 

(CES) policy by year 2018, and 12 “never treated” control states that never adopted RPS or CES 
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during our study period.3 Table 1 provides a list of states’ first RPS legislative bills and their 

enactment dates. For the past decades, RPSs have been one of the most important instruments in 

achieving energy sector decarbonization in the United States with the long absence of federal-

level renewable energy policies.4 With the federal government’s 100% clean energy goal by 

2035, RPSs become an increasingly important policy and scholarly topic. The key question is 

whether RPS policies can effectively contribute to this ambitious goal. 

A growing body of literature examined the effects of RPS policy on observable outcomes, 

with most studies focusing on the efficacy and cost-effectiveness of RPS to achieve its policy 

intent: reduce carbon emissions and foster renewable energy adoption. However, these studies 

presented a mixed, sometimes conflicting, message about the efficacy of RPS policies. Studies 

have found that RPS policies are associated with moderate reductions in carbon emissions, but 

the size of the estimated effect varies by study design, ranging from 3.5% to 10-25% (Feldman & 

Levinson, 2023; Greenstone & Nath, 2021; Upton & Snyder, 2017).5 At the same time, studies 

also documented that RPS policies increase electricity prices and suppress electricity demand, 

with effect sizes also varying by study design. Upton and Snyder (2017) and Greenstone and 

Nath (2021) both find that electricity prices increase by 11% after states adopt RPS, while 

Wolverton, Shadbegian, and Gray (2022) found a 2% increase in electricity prices in a utility-

level analysis. Greenstone and Nath (2021) concluded that the equivalent abatement cost of 

greenhouse gas emission ranges between $60-300 per ton of CO2, putting it at the higher end of 

options to mitigate greenhouse gas emissions. 

In theory, encouraging renewable energy generation creates both climate benefits through 

reducing carbon emissions and environmental co-benefits through reducing air pollutants such as 

sulfur dioxide, nitrous oxides, and particulate matter. Yet studies that document the air pollution 

 

3 Four states are excluded from our analysis: Iowa, Texas (capacity goals rather than sales targets), Kansas (peak 
electricity demand goals) and West Virginia (RPS repealed in 2015) are excluded from the analysis. 
4 Federal level policies are available from the 2022 Inflation Reduction Act (P.R. 117-169), which provides 
production and investment tax credits for renewable energy production and development. Our study (ending 2018) 
predates the IRA. 
5 Upton and Snyder (2017) found a statistically insignificant reduction of 3.7% using a standard difference-in-
differences design. Greenstone and Nath (2021) found a medium-run reduction of 10%-25% after taking into 
consideration the dynamic progression of RPS requirements and thus its impacts. Feldman and Levinson (2023) 
expands the analysis to include the impact of cross-state REC markets and found a 30-40% elasticity of REC 
demand on carbon emission reduction. 
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co-benefits are relatively scant compared to those studying the effects of carbon emission or 

renewable energy adoption, and those studies rely heavily on projection and simulations rather 

than statistical evidence. For example, Johnson and Novacheck (2015) integrated an economic 

dispatch model with a renewable project selection model and found that CO2, SO2, and NOx 

emissions will decrease by 13%, 13%, and 12% respectively if the state of Michigan increases 

renewable penetration by 10%. Wiser et al. (2017) simulated the effect of carbon and air 

pollutant abatements generated from RPS policies across the nation using ReEDS, an electric 

generation capacity expansion model. They find that existing RPS policies will yield $97 billion 

in air pollution benefits and $161 billion in climate change benefits over 2015-2050 by linking 

emission reduction with an air pollution dispersion model (Muller, 2014; Muller et al., 2011).  

On the contrary, existing statistical analysis suggests that on average, there is weak evidence 

that RPS policies actually create significant air pollution co-benefits. For example, Eastin (2014) 

found weak evidence that RPS adoption decreases particulate matter. Using a difference-in-

differences framework, Nath and Greenstone (2021) found that RPS adoption has no effect on 

NOx emission and PM2.5 concentration, and weak-to-no-effects on SO2 depending on modeling 

specifications. An exception is Hollingsworth and Rudik (2019), who empirically estimated the 

effects of REC demands on plant-level power generation portfolios. They then translated the 

marginal change in power mix to emission reductions and health benefits by using plant-specific 

emission factors and an air pollutant dispersion model. Their results show that a 1% increase in 

renewable generation target creates air pollution co-benefits from $100,000 to over $100 million 

depending on the size of the state.  

One potential reason why previous studies found no average effect of air pollutant co-

benefits could be that the direct benefits and co-benefits of RPS depend on their policy design, 

such that the heterogeneity is masked when analyzing the average treatment effect of RPS 

adoption. In Section 2.2 below, we provide an overview of existing studies regarding RPS policy 

stringency, which leads to our creation of a unified metric for the presence of discrepant policy 

design in RPS policies. 

2.2. Design stringency of RPS policies 
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One major difficulty in understanding the efficacy and cost-effectiveness of RPS policies is 

that they can differ in multiple ways between states and over time. RPS policies typically have a 

mandated nominal goal of percentage renewable sales to be achieved by a target year, with 

interim annual goals that gradually increase over time.6 The timelines and magnitudes of these 

interim RPS goals vary between states. Moreover, RPS policies can differ in multiple other 

aspects of their designs, such as qualified energy sources, exemptions, or multipliers for certain 

technologies, thus creating variations in the binding renewable energy share required in the RPS 

policies (Fischlein & Smith, 2013). These systematic differences in law design could potentially 

explain the mixed evidence on RPS’s policy impacts. As noted by Bernstein and Hoffman 

(2018), RPSs yield significant value towards decarbonizing the power sector in some cases while 

incentivizing more efficient fossil-fired generation and yielding unintentional carbon lock-in in 

other cases. This variability stems from the individual characteristics of the policy and the area to 

which it is applied (Bernstein & Hoffmann, 2018).  

A number of previous studies have attempted to develop a score for the ‘stringency’ of RPS 

policies, usually measured as the difference between pre-existing and target levels of renewable 

energy divided by the number of years between the initial and target years, with some studies 

accounting for the percentage of the total load covered by the policy (Barbose, 2021; Carley & 

Miller, 2012; Feldman & Levinson, 2023; Fullerton & Ta, 2024; Yin & Powers, 2010; Zhou & 

Solomon, 2020). While such stringency measures account for time constraints and the total 

coverage of RPS, many of them do not factor in many of the nuanced differences in RPS design 

features that affect policy enforcement, such as the existence of credit multiplier7, eligible 

technology, or exemptions and carve-outs, that also quantitatively affects the actual binding 

target of an RPS policy.8 A notable exception is Carley et al. (2018), which uses a stringency 

metric identical to the one described above but also includes categorical variables capturing the 

 

6 The exceptions are Iowa and Texas which have capacity goals, and Kansas which has goals for peak electricity 
demand. We exclude these three states from our analysis. 
7 Fullerton and Ta (2024) constructed a continuous policy stringency variable to measure electricity sales covered by 
RPS, which does not account for enforcement stringency. Dummy variables indicating the presence of credit 
multipliers and carve-out requirements in the state’s RPS policy are included as control variables in their empirical 
analysis.   
8 In addition, as Feldman and Levinson (2023) noted, the difference between pre-existing and target levels of 
renewable energy is in itself endogenous to electricity price: cheaper electricity price automatically increases 
stringency through demand effect. 
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policy design heterogeneity in RPS policies, including credit multipliers, qualified energy 

sources, exemptions, and voluntary targets. Using these variables, Carley et al. (2018) found that 

both the stringency level and the level of planning of an RPS have significant effects on 

renewable energy adoption. Yet Carley et al. (2018) still lacks a measure that integrates all 

relevant policy aspects, making cross-discrepancy comparisons difficult. In this paper, we extend 

these previous attempts by taking a purely quantitative approach, compiling a comprehensive 

database of current and historical RPS legislation bills in the U.S. before 2018. Included in this 

database is a unified metric accounting for four distinct policy stringency designs affecting the 

enforcement of the state’s RPS requirement. We describe our method of quantifying different 

RPS policy design features and constructing a unified stringency metric for our empirical 

analysis in the next section.  

3. Data 

3.1. Constructing a unified RPS stringency metric 

Our identification of the policy effect of clean against discrepant RPS policies depends on a 

novel measure of policy discrepancy we are presenting. We put together a database to 

quantitatively document, for each U.S. state, both the nominal commitments that are presented in 

RPS and CES statutes and the binding commitments, i.e., the minimum percentage of renewable 

energy sales needed to comply with the nominal commitment.9 The gap between the nominal and 

the binding commitment is what we refer to as the nonbinding commitment, or discrepancy. 

Table 1 presents a list of nominal versus binding commitments in the states’ first RPS legislation. 

For each RPS legislative bill, we identified the voluntary, expired, carbon-emitting, and 

otherwise misrepresented contributions permitted within the statute. These characteristics 

potentially lead to less actual renewable energy deployment than the law’s nominal targets. We 

computed a state’s binding commitment by excluding these misrepresented contributions from 

its nominal commitment. Part of our proposed design entails the standardized mapping of all 

technology types mentioned in standards to specific RPS and CES commitment classes. We 

propose an examination of the historical evolution of binding commitments to reveal long-term 

 

9 A database documenting the RPS stringency metric will be published with the paper as part of the replication 
package. 
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trends in the relative aggressiveness of targets made. We also compare binding portions to 

observed levels of renewable development across states to assess the empirical effects that 

various standards have had. The database also allows us to track differences between nominal 

and binding commitments, thereby highlighting likely areas where states’ commitments may be 

misinterpreted or misrepresented.  

The process of documenting RPS policy discrepancy started from acquiring the universe of 

RPS statutes ever passed from North Carolina State University’s DSIRE database and the 

National Conference of State Legislatures (NCSL) database and historic commitments from state 

databases.10, 11 Once the initial list was confirmed, the respective bills and laws representing the 

commitments were found and listed individually. Only commitments that entered state 

legislature and changed renewable target percentages or dates were tracked. For each legislative 

bill, RPS and CES commitments were recorded along with the respective target dates. The 

majority of commitments are made up of sub-targets based on generation technology. In order to 

reflect this, commitments were split into several classes, each with a unique set of eligible 

technologies. The goal of this database was to calculate the minimum amount of renewable and 

clean energy required to meet the commitment as a percentage of total state sales, i.e., the 

“binding commitment”. We separately coded statutes with generation capacity goals and 

excluded them from our main analysis.12 We also coded statutes that require different targets for 

different utility types (e.g., North Carolina’s 2008 RPS), separately documented each type of 

targeted utility and aggregated them back into one state-level commitment. 

We then record policy characteristics, i.e., source of discrepancies, that could potentially 

allow the nominal commitment to be met without renewable or carbon-neutral electricity sales. 

We identify four such characteristics and quantify their effects on each class. The effects are then 

integrated to the class-level, and further aggregated to utility and state levels as weighted 

averages. The four types of discrepancies are:  

 

10 DSIRE is available at https://www.dsireusa.org/. 
11 NCSL is available at https://www.ncsl.org/technology-and-communication/ncsl-50-state-searchable-bill-tracking-
databases. 
12 Texas Utilities Code Ann. §39.904 (1999) and Iowa Code 476.41 et seq (1983). 

https://www.dsireusa.org/
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1) Voluntary Shares: Many commitments contained language that explicitly rendered some 

(or all) classes completely or partially voluntary. Voluntary shares of the commitment 

do not count towards the binding minimum as utilities are under no legal obligation to procure it.  

2)  Carbon-Emitting Shares:  RPS commitments vary widely in the set of technologies that 

are eligible to fulfill the commitment target. Here we standardize what qualifies as an RPS/CES 

technology based on a system of classification based on emissions at the point of generation 

(which we term tailpipe emissions). We split technologies into four mutually exclusive and 

exhaustive categories: 

A. No Tailpipe Emissions, Non-Fossil-Fuel, Non-Mineral-Based: Technologies that do 

not emit carbon at the point of generation and do not derive energy from fossil or mineral fuels 

fall under this category. Some examples include solar and wind energy. Technologies qualifying 

under this category are considered RPS technologies. 

B. Tailpipe Emissions, Non-Fossil-Fuel, Non-Mineral-Based: This category includes 

technologies that release carbon at the point of generation but do not derive energy from fossil or 

mineral fuels. This category is made up of biomass, biogas, and liquid biofuels derived from 

plant growth.  Technologies qualifying under this category are considered RPS technologies. 

C. No Tailpipe Emissions, Fossil-Fuel or Mineral-Based: This category includes 

technologies that do not emit carbon into the atmosphere but are not renewable as they are based 

on fossil fuel or mineral sources of energy. A common example of this category is nuclear 

energy. Technologies qualifying under this category are considered CES technologies. 

D. Tailpipe Emissions, Fossil-Fuel or Mineral-based: This category includes traditional 

energy sources that release carbon in the atmosphere and are based on fossil fuel or mineral 

sources. Fossil fuel generation that does not include carbon capture technology falls under this 

category. Technologies qualifying under this category were considered CO2 technologies. 

3) Double-Counted Shares (Credit Multipliers): Many states provide credit bonuses to 

specific generation technologies or facilities. A credit bonus means that the generation facility 

gets more than one Renewable Energy Credit (REC) for each megawatt-hour of electricity 

generated. When computing the effect of a credit multiplier on the binding commitment, the 

maximum potential double counting was calculated and subtracted from the nominal 

commitment subsequently. 
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4)  Adjustment for Excluded Consumption: Some RPSs only target a subset of electricity 

companies (e.g., Investor-Owned Utilities) and exempt others (e.g., Municipal Utilities), such 

that the percentage target reflects only a percentage of utility sales rather than total state sales. To 

adjust these commitments to percentages of total state sales, the sales made by targeted entities 

are divided by total sales made in the state.  

After organizing the categories, we calculated the total energy generation capacity for each 

state. This allowed us to convert commitments and classes from megawatts (MW) into 

percentages. Each filter applied to the nominal commitment produces a numerical factor, 

adjusting the original commitment to reflect the binding commitment. These filters, which can be 

calculated at the same time, are applied simultaneously. After that, commitment classes 

expressed as percentages are adjusted in the order of voluntary contributions, expired 

commitments, carbon-emitting shares, double counting, and excluded consumption. Classes in 

MW terms are adjusted by the same filters except that the adjustment for excluded consumption 

is replaced by a conversion step. After filtering all classes, they are combined to determine the 

total binding percentage of CES and RPS commitments for each original commitment, i.e., the 

minimum amount of actual renewable generation required to fulfill the goals. Additionally, the 

impact of each filter is aggregated to measure their overall effect on the binding minimum 

commitment.  

Figure 1 depicts the final unified metric of RPS policy stringency. All RPS policies are 

listed by their nominal commitment (in hollow, black-bordered bars) and nonbinding shares of 

commitments separated by their respective sources of discrepancies. Note that for some RPS 

legislations, the total amount of discrepancy can exceed the total amount of nominal commitment 

when multiple discrepancy categories are built into the law. Effectively, this means that the 

binding commitment is zero since utilities can, in theory, utilize a combination of these 

discrepancies to comply with the commitment. Panel C of Table 2 summarizes the policy design 

variables affecting law stringency for time periods post RPS implementation.  

3.2. Other data sources for empirical analysis 

In this section, we describe the additional sets of data compiled to enable the empirical 

analysis of RPS policy effect and heterogeneity associated with the policy stringency. To 
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facilitate our analysis, we organize the data set to form state-by-year panel spanning 1990-

2018.13 Table 2 presents summary statistics for states, categorized by whether they have ever 

adopted RPS before 2018.14  

Data on electricity generation and emissions are sourced from the Energy Information 

Administration (EIA) Form 860 and Form 923. These forms provide information on generation 

and capacity by fuel type, as well as the associated CO2, SO2, and NOx emissions for power 

plants with a nameplate capacity above 1 Megawatt (MW). Data on electricity retail price is 

obtained from EIA’s Form 861 (previously Form 826). PM2.5 concentration annual average is 

derived from Van Donkelaar (2019) reanalysis product, available at the 1km resolution. Air 

Quality Index (AQI) data is obtained from the Environmental Protection Agency, available at the 

county-year level. The PM2.5 and AQI measures are aggregated to the state level using 

population-weighted averaging to approximate the average exposure across each state. Panel B 

of Table 2 summarizes the time-varying covariates used to control for confounders that might 

bias the treatment effect of RPS. Gross state product is acquired from the U.S. Bureau of 

Economic Analysis (BEA). Political data on the control of state gubernatorial and legislative 

parties are obtained from Klarner politics.15 Availability of net metering program is collected 

from North Carolina State University’s DSIRE program.16 Participation in the NOx trading 

program is compiled from the EPA public information website.17 Percentage of energy exported 

is obtained from the EIA. Heating degree days (above 65°F) and cooling degree days (below 

65°F) are acquired via National Weather Service’s Climate Prediction Center, which provide 

population-weighted degree day metrics.18 

4. Empirical Strategy 

4.1. Generalized difference-in-differences  

 

13 Many of the underlying data could be disaggregated into finer spatial and/or temporal scales, for example 
generation by source (down to the facility level) or ambient PM2.5 concentration (down to 1km x 1km grids). 
14 West Virginia repealed its RPS policy in 2015. Montana repealed its RPS policy in 2021. Our analyses excluded 
West Virginia but included Montana in the panel data spanning years 1990-2018. 
15 Available via https://www.klarnerpolitics.org/datasets-1. 
16 Available via https://www.dsireusa.org/ 
17 Available via https://www.epa.gov/power-sector/nox-budget-trading-program 
18 Available via https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/ 
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To identify the policy effect of Renewable Portfolio Standards (RPS) ignoring diversity in 

the policy design stringency, we use variations in the enact time of RPS policies, suggesting a 

difference-in-differences (DID) empirical strategy. RPS policies are considered as an absorbing 

treatment with staggered timing which is taken as the first year a state passed its RPS. We focus 

on the dynamic effects of RPS and estimate the event-study specification in equation (111): 

!!,# = # $$%{' − )*+! = ,} + /!,# + 0! + 1# + 2!#
$%&'

, (1) 

where !!,# is an environmental outcome of interest for state 4 in year ' (e.g., natural 

logarithm of CO2 emission), and )*+! is the year when state 4 passed its first RPS legislation. 

Hence, , is the number of years post RPS treatment, which is set to infinity for “never treated” 

states. 0! and 1# are the state and year fixed effects added to control for unobserved state 

attributes and for any national trends in the outcome variable. /!,# is a set of time-varying 

covariates including state-level political indicators, gross state product per capita, natural gas 

price, population, share of exported energy, annual heating degree-days (HDDs), annual cooling 

degree-days (CDDs), and binary indicators for net metering programs and NOx trading 

programs. We estimate equation (1) using a panel data set of 46 states over 29 years (1990-

2018), including 34 treated states that adopted RPS during our study period, and 12 “never 

treated” control states.19 We cluster standard errors at the state level to allow for correlation of 

errors within states over time.  

We omit period , = −1 so that $$’s are the dynamic treatment effects of RPS on the 

outcome after , years relative to the year immediately prior to RPS passage. The event-study 

estimates are useful in two important ways. First, they provide estimates for the longer-term 

patterns of RPS policy effects after passage. Second, the $$’s reveal the temporal profile of 

impacts to the RPS states in the pre-treatment periods, allowing us to validate the parallel trend 

assumption to ensure internal validity of the DID model. With the presence of a “never treated” 

group in our data, i.e., states never implemented RPS by 2018, identification in our setting relies 

 

19 The state of West Virginia repealed its Alternative and Renewable Energy Portfolio Standard in 2015 after its 
establishment in 2009. West Virginia is excluded from our empirical analysis. We also exclude three other RPS 
states due to unique designs in their RPS policies — Iowa and Texas set RPS targets in terms of renewable capacity 
levels rather than percentages of retail electricity sales, and Kansas requires a percentage of peak electricity demand. 
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on the weakest parallel trend assumption that states that have adopted RPS would have behaved 

the same as states that never adopted RPS if not for RPS adoption (Marcus & Sant’Anna, 2021). 

We present the event-study plots and perform pre-trend tests in Section 4.3 to show that there are 

no insignificant differences found in the pre-existing trends of the RPS states and control states. 

4.2. Identify the impact of discrepant policy designs 

We construct a Discrepancy dummy variable, such that a non-stringent RPS legislation is 

indicated by the presence of a positive nonbinding portion of the state’s nominal RPS 

commitment in that year. We explore the differentiated dynamic effects of RPS policy stringency 

on the environmental outcomes by intersecting the post-treatment indicators in equation (1) with 

the 67489:;<=8> dummy. The modified event-study specification is defined in equation (2): 

!!,# = # ($$ + @$ × 67489:;<=8>!#) ⋅ %{' − )*+! = ,}
$%&'

+ /!,# + 0! + 1# + 2!# . (2) 

67489:;<=8>!# = 1 if state 4 has a discrepant RPS policy design in year '.20 The @$ 
coefficients assess variations in the dynamic treatment effects of RPS resulting from discrepant 

policy designs, while $$’s are the effects of a discrepancy-free policy. Hence, opposite signs of $ 

and @ imply that a discrepant policy design could diminish the RPS treatment effect on emission 

and air quality outcomes.  

The effects of RPS policies tend to ramp up slowly over time. For example, Deschenes et al. 

(2023) found a 5-year lag in renewable deployment after RPS implementation. We summarize 

the event-study estimates in equation (2) with three structural breaks in the post-RPS period. The 

7-year pre-RPS period (−7 ≤ , ≤ −1) is used as reference.  

!!,# = $'%{0 ≤ , ≤ 4} + $(%{5 ≤ , ≤ 9} + $)%{, ≥ 10} +	
@'%{0 ≤ , ≤ 4} × 67489:;<=8>!# +	
@(%{5 ≤ , ≤ 9} × 67489:;<=8>!# +	
@)%{, ≥ 10} × 67489:;<=8>!# + M%{, < −7} + /!,# + 0! + 1# + 2!# . 

(3) 

 

20 We allow the discrepancy dummy to vary by year, as states may amend the RPS/CES legislation, which lead to 
changes in the nominal targets and/or the degree of policy discrepancy. !"#$%&'()$* = 0 for control/“never-
treated” states and the pre-RPS time periods of RPS states. 
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For discrepant-free RPS policies, $' summarizes the short-run average treatment effect of 

the treated (ATT) in the first 5 years, i.e., 0 ≤ , ≤ 4, which is the period covered by all RPS 

states in our balanced panel. $( is the medium-run ATT (5-9 years). And $) is the long-run ATT, 

i.e., 10 years or more post RPS implementation. The @ coefficients identify the average 

differences in RPS treatment effects induced by discrepant policy designs in the short-, medium-, 

and long-run. The $( and @( estimates are used to derive the environmental co-benefit 

counterfactuals between clean versus discrepant RPS policies. 

To further investigate the differentiated effects across RPS policy characteristics, we 

decompose the effect of discrepancy to four policy designs21 in equation (4). 

!!,# = $'%{0 ≤ , ≤ 4} + $(%{5 ≤ , ≤ 9} + $)%{, ≥ 10} + M%{, < −7} +	
%{0 ≤ , ≤ 4} × O!#,1"&' + !(,1$&' + !),1%&' + !*,1&&'P +	

%{5 ≤ , ≤ 9} × O!#,2"&' + !(,2$&' + !),2%&' + !*,2&&'P +	

%{, ≥ 10} × O!#,3"&' + !(,3$&' + !),3%&' + !*,3&&'P + /!,# + 0! + 1# + 2!# . 

(4) 

The @ coefficients report the decomposed effects of four discrepant policy designs: Q = 1 if 

the RPS statute includes adjusted or excluded electricity sales; (2) R = 1 if a positive share of 

the RPS commitment is voluntary; (3) S = 1 if the RPS commitment double counts certain 

technologies with credit multipliers; (4) T = 1 if the RPS commitment includes carbon-emitting 

technologies as eligible generation sources. 

4.3. Examine parallel trends 

Before we dive into results, we first examine the assumptions underscoring our generalized 

DID estimates. We find limited evidence of violations in two conditional parallel trend 

assumptions. First, states with RPS would have behaved similarly to states without RPS if not for 

the passage of RPS. Second, states under discrepant RPS would have behaved the same as states 

under clean RPS should they passed clean RPS policies. Testing the first parallel trend 

assumption is straightforward since it pertains to the standard DID setting with staggered 

 

21 Definitions of the discrepant policy designs are described in Section 3.1. The policy designs are not mutually 
exclusive, i.e., an RPS policy can have one or multiple discrepant characteristics that lead to less stringent policy 
enforcement.  
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treatment adoption. The event-study plots in Figure 2 provide an intuitive visual validation of the 

first parallel trend assumption for identifying the dynamic effects of RPS on environmental 

outcomes regardless of variations in policy stringency.22 However, recent literature suggests that 

the pre-trend tests may have low power and could introduce statistical bias to estimates 

conditioned on passing the pre-trend tests (Roth 2022). We assess the power of the pre-trend test, 

utilizing the dynamic ATT estimates from equation (1), examining how likely a hypothesized 

linear trend is detected to violate the parallel trend assumption. Test results are presented in 

Appendix Table A.1, showing that only ambient PM2.5 and electricity price failing the pre-trend 

tests, both outcomes have insignificant treatment effects in the break model (which we will 

present in the next section and in Table 4). 

The second parallel trend assumption, which ensures the validity of our estimated 

environmental performance gap due to discrepant policy designs, requires more attention. 

Because some states switched from a clean RPS to a discrepant one, or vice versa, we are unable 

to define a time-invariant discrepancy status associated with each state. As such, standard 

parallel trend tests in quasi triple-difference settings do not readily apply here. We provide a 

suggestive test by removing those “switcher” states and only keep states that have “always” 

implemented clean RPS policies and those that never passed discrepancy-free RPS policies in the 

sample.23 By doing so, we can construct consistent clean and discrepant groups of states, 

enabling the estimation of event-study coefficients before RPS adoption mimicking a triple 

difference design. The event study estimate is given by equation (5):  

!!,# = # ($$ + @$ × 6!) ⋅ %{' − )*+! = ,}
$%&'

+ /!,# + 0! + 1# + 2!# , (5) 

where the dummy variable 6! = 1 for state 4 if 67489:;<=8>!# = 1 for all post-RPS time 

periods. The pre-treatment coefficients @&*+$+&( and post-treatment coefficients @,+$+- are 

utilized to perform the pre-trend test. The event study estimands in equation (5) are obtained 

 

22 Appendix Figure A.1 presents the event-study plots for the power sector outcomes.  
23 Clean RPS states are states with discrepancies identified in none or at most 2 post-RPS years. Discrepant RPS 
states are states that have never passed a clean RPS. States that had their RPS discrepancy status switched overtime 
are removed in estimating equation (5). 
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using two-way fixed effects (TWFE), which ensures unbiased examination of the parallel trend 

assumption.24 

We present a variety of metrics for pre-trends beyond the traditional “eyeballing” procedure 

in Appendix Figure A.3. Results are presented in Table 3. We start by estimating the level and 

slope of the pre-trends, presented in columns (2) and (3). While models on most outcome 

variables having pre-trend coefficients statistically different from zero in joint significance tests, 

only three of them have a statistically significant linear trend pre-treatment. This is reassuring 

since significance in trends, rather than differences in raw levels (which can be demeaned), 

indicate non-parallel pre-trends.  

Additionally, in columns (4)-(7) of Table 3, we present power analysis following Roth 

(2022)’s procedure, which calculates linear pre-trends using event study coefficients in equation 

(5), and project hypothetical post-treatment trends under non-parallel pre-trends. The test 

generates two Bayesian test statistics: a Bayes factor (BF), with smaller BF indicating the model 

is more likely to pass the test; and a likelihood ratio of the observed coefficients under the 

hypothesized linear trend relative to under parallel trends. Smaller likelihood ratio (less than 1) 

means observed coefficients are more likely to be observed under parallel trend. We note here 

that the standard power analysis will be excessively sensitive since most RPS policies exhibit a 

“phase-in” period where initial commitment levels are low but gradually increase over time. This 

means that the phase-in years will be used to estimate treatment effects, rending the treatment 

effects closer to zero; and any pre-trends will be amplified when we are interested in the 

medium-run treatment effects rather than treatment effects immediately after the treatment.25 We 

find that with the exception of log(PM2.5), all other outcome variables have a likelihood ratio 

smaller than 1, meaning the observed treatment effects are more likely to be observed under 

parallel trends rather than the hypothesized pre-trend. Overall, these tests suggest that the pre-

trend is unlikely to drive the observed environmental performance gap between clean and 

discrepant RPS policies.  

 

24 Imputation-based methods, for example in Sun and Abraham (2021) or Callaway and Sant’Anna (2021), are not 
preferred to be used to check for parallel trends because the pre-trend coefficients are potentially biased. 
25 The average pre-trend will be twice as large for treatment years 5-9 compared to years 0-4.  
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5. Results 

5.1. RPS policy in general improves environmental outcomes 

We start by presenting results estimating the dynamic treatment effects of RPS adoption. 

Figure 2 plots the event-study estimates of the generalized DID model, i.e., the $$ coefficients in 

equation (1), along with pointwise 95% confidence intervals. We find that, without 

distinguishing variation in RSP policy stringency, states after adopting RPS see increasing 

reductions in their power-sector CO2 and SO2 emissions. Figure 2 shows a slow effect in 

emission reductions, with more significant reductions starting around 5 years after the state 

implemented RPS. This result about lagged effects aligns with the findings in Deschenes et al. 

(2023). For annual NOx emission, PM2.5 concentration, and the 90th percentile of AQI, we see 

almost no changes with statistical significance, even though the event-study coefficients seem to 

suggest declining trends post RPS implementation. The event-study estimates illustrate 

consistent patterns in the dynamic treatment effects between two staggered adoption design 

estimators — the two-way fixed effects (TWFE) estimator and the robust DID estimator 

proposed by Sun and Abraham (2021).26, 27 This confirms the robustness of our results against 

potential bias due to heterogeneous treatment effects across adoption cohorts.  

We summarize the dynamic effects of RPS policy in 5-year time intervals in Table 4. 

Consistent with the findings from the event study, we see an overall decrease in emissions and 

air quality outcomes, suggested by negative coefficients in Panel A of Table 4. In order to 

examine factors driving the emission declines, we investigate the break-model ATT on the power 

sector outcomes in Panel B of Table 4.28 We see a decrease in the share of coal and oil 

generation after a state adopted RPS, while its natural gas generation share mildly grows. We 

also find an increased share of generation from clean energy sources. Examining the absolute 

values of the ATT estimates across different generation fuel groups, our results suggest that coal 

 

26 Recent literature suggests using traditional fixed-effect estimators (TWFE) could lead to biases in the presence of 
treatment effect heterogeneity under a staggered adoption setting because of issues related to negative unit weights 
(Callaway & Sant’Anna, 2021; de Chaisemartin & D’Haultfœuille, 2020; Goodman-Bacon, 2021; Sun & Abraham, 
2021). That said, we also recognize that estimating the differential effects from RPS policy discrepancy requires us 
to rely on a fixed-effect estimator since imputation-based methods have not yet been extended to even quasi-triple-
difference settings, let alone our setting with potential switches into and out of discrepancy. 
27 We checked for other robust DID estimators and the dynamic effects are similar to that presented here. 
28 Event studies of the power sector outcomes are presented in Appendix Figure A.1. 



 

21 

 

and oil generation reductions after states adopted RPS/CES policies are likely compensated by 

increased generations from clean energy sources, i.e., wind, solar, hydro, and nuclear, as well as 

from the natural gas generation units. We do not see strong empirical evidence on the cost of 

RPS in terms of electricity price hikes. This, as explained by Lee (2023), is potentially due to the 

short-run decrease in the marginal cost of “brown” electricity and the long-run decrease in the 

average cost as less “brown” electricity is produced, which counteracts the increases in REC 

costs.   

5.2. Policy stringency affects RPS’s effect on emissions 

We first examine the heterogeneity in RPS’s dynamic effects associated with the presence of 

the characterized discrepancies in the RPS policies. We find that, compared to discrepancy-free  

“clean” RPS, discrepant policy designs significantly weaken the impact of RPS on emission 

reductions and air quality improvements (Figure 3). These weakened effects are most 

pronounced for non-carbon air pollution emissions, i.e., SO2 and NOx. We also see less 

improvement in air quality, measured by the 90th percentile of AQI, when states’ nominal 

commitments in RPS policies are not stringently enforced.   

The 5-year average ATT estimates in Table 5 corroborate our findings from the event-study 

plot. In the medium term (5-9 years post RPS implementation), power-sector emissions decrease 

by 16.9% for CO2, 57.6% for SO2, and 33.7% for NOx under clean RPS. However, discrepancies 

in RPS nearly negate the policy’s impact on NOx (to 0.1%) and reduce the impact on SO2 by 

almost half (to -25.1%). Correspondingly, we observe a significant gap in RPS’s effect on the 

AQI 90th percentile, with a 12.1% drop under clean RPS versus a 1.7% drop under discrepant 

RPS. Although the empirical evidence for PM2.5 is not significant (Table 5, Panel A column 4), 

the opposite signs of the “5-9 year” coefficients imply the same finding — discrepant policy 

designs prevent the full realization of RPS’s potential to mitigate pollution. 29 Our results 

highlight the critical role that policy enforcement stringency plays in determining the efficacy of 

RPSs. The minimal impact of policy discrepancies on CO2 reduction after RPS implementation 

 

29 The ATT differences in emission are primarily driven by “excluded sales” type of discrepancy (Table 5 Panel B). 
The complete estimates are detailed in Appendix Table A.2.  
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suggests that the resulting welfare losses will be concentrated on foregone health co-benefits 

rather than climate benefits.  

Estimates in Table 6 explain the potential mechanisms that lead to heterogeneous 

environmental outcomes under clean against discrepant RPS policies. We focus on changes in 

the generation fuel mix and the differentiations associated with policy discrepancies.30 Less 

stringent RPS policies hinder the transition from coal and oil to less polluted natural gas. We see 

a diminished RPS treatment effect by approximately 6 percentage points in the reduction of coal 

and oil generation share (Table 6, Panel A column 1) as well as in the increase of natural gas 

generation share (Table 6, column 2) in the medium term. Additionally, we find that clean RPS 

policies tend to introduce less wind and solar but more clean generations from hydropower and 

nuclear. This may be due to the interplay between different types of policy discrepancies, with 

the combined effect depending on the significance of counteracting forces.  

Panel B of Table 6 presents the estimates of equation (4) and highlights the variation of RPS 

effects associated to four sources of policy discrepancies, focusing on the medium-term effects 

(5-9 years post RPS implementation). The complete estimates of equation (4) are detailed in 

Appendix Table A.3. We find the aggregated effect is primarily driven by the “Excluded Sales” 

condition, where some states exempt a subset of electric utilities, such as municipal producers, 

from the RPS requirements. When this type of exemption is present, the estimates in Table 6 

show a 7.8 percentage point smaller reduction in coal and oil generation and an 8.5 percentage 

point less increase in natural gas generation.  

Mixed effects are observed for the wind and solar generation percentage. The “Multiplier 

Credit” condition generally allows utilities to receive double or more credit towards meeting the 

RPS requirement by wind and solar energy. This results in 4.7 percent less generation from these 

clean energy sources compared to scenarios without the multiplier credit. Our finding implies 

that utilities can comply with the standard with lower levels of renewable deployment and 

reduced integration costs, as evidenced by the negative estimate for electricity price (Table 6, 

Panel B column 6). The “Excluded Sales” and “Carbon emitting” conditions, which exempt 

 

30 Event studies of the power sector outcomes with discrepancy intersections are presented in Appendix Figure A.2.  
Appendix Table A.3 summarizes the event studies to break model ATT estimates.  
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certain utilities or non-renewable technologies from RPS regulations, tend to increase the wind 

and solar generation share. The “Excluded Sales” conditions usually exempt municipal producers 

from meeting the RPS targets of the state. Hong et al., (2023) found that municipally owned 

utilities are significantly less affected by RPS than investor-owned utilities (IOUs). Different 

from IOUs, municipal producers have smaller generation capacities and a larger share of their 

capacities from flexible generation technologies, such as natural gas combustion turbine, which 

can ramp quickly to respond to load changes.31 The exemptions of municipal producers and/or 

carbon-emitting technologies, while allowing more flexible fossil-fuel generation (or less 

reduction in it), could help reduce the costs of integrating intermittent wind and solar energy into 

the grid.  

5.3. Environmental co-benefits are diminished due to non-stringent RPS policies 

One key debate in the efficacy of RPS is whether the monetized benefits of such policies 

exceed its costs. Previous studies have focused largely on decarbonization-related benefits from 

transiting to renewable sources of generation (Barbose et al., 2016; Greenstone & Nath, 2021; 

Wiser et al., 2017), with estimates ranging from $5-50 billion per year depending on scenarios 

projected and choices of the social cost of carbon. At the same time, studies have documented 

large monetary costs associated with implementing RPS policies, specifically related to the 

elevated energy prices that consumers face. Estimates suggest that consumers face price hikes 

ranging from 2% to 11% (Barbose et al., 2016; Greenstone & Nath, 2021; Wiser et al., 2017; 

Wolverton et al., 2022). As argued by Greenstone and Nath (2021), this would put the economic 

cost of using RPS as a decarbonization tool between $60-300, exceeding the cost of many other 

decarbonization policies and technologies.  

One potential reason that previous studies found RPS to be cost-ineffective in achieving 

decarbonization is that important air quality co-benefits are excluded from the analysis, 

especially when the air pollution benefits are masked without distinctive identifications of clean 

and discrepant RPS policies. Here we attempt to fill this gap by directly monetizing the estimated 

 

31 We compare generation capacities from different fuel and technologies between the investor-owned utilities 
(IOUs) and the municipally owned utilities (Muni). Appendix Figure A.4 shows that, compared to IOUs, a larger 
percentage of generation capacities of Muni is from flexible sources, such as pumped storage hydropower and 
natural gas generators.  
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environmental gap between clean and discrepant RPS from observation-driven, reduced-form 

causal estimates to shed light on the potential economic impact of RPS policy designs.  

Two challenges remain. First, while emission reductions occur from point sources within a 

state’s jurisdictions, air pollutants like SO2 and NOx mixed nonuniformly in the atmosphere and 

can form secondary air pollutants. Furthermore, emitted pollutants can be transported across 

space and over state boundaries secondary through atmospheric processes, leading to non-local 

exposures. Second, pollution exposures have spatially heterogeneous impacts on avoided health 

damages because depending on population density, the number of people affected by the 

exposure will be heterogenous across space. This prevents us from getting a monetized value of 

avoided damages by simply multiplying the reduced-form coefficients with the social cost of 

pollution (e.g., estimates from Deschênes et al. (2017)), as is in the case of monetizing damages 

from reduced carbon emissions. 

To address these two challenges, an integrated assessment model (IAM) is needed to link 

reduced-form estimates on state-level percentage reduction of pollutants to power-sector 

emissions to a pollutant transport model, then to population-level exposure, and finally to 

marginal damages for each pollutant. Prior literature in monetizing pollution damages (Abman et 

al., 2024; Colmer et al., 2020; Hollingsworth & Rudik, 2019; Tessum et al., 2019) have used 

different models, including the APEEP model (Mendelsohn & Muller, 2013), the HYSPLIT 

model (Draxler & Hess, 1998), the CMAQ model (Binkowski & Roselle, 2003), or the InMAP 

model (Tessum et al., 2017). Here we rely on EPA’s Co-Benefits Risk Assessment Health 

Impacts Screening and Mapping Tool (COBRA), an integrated screening model to estimate the 

health and economic impacts of changes in air pollutant emissions (USEPA, 2024). COBRA 

starts with emission inventories by sector and user-input scenario of emissions. Changes in 

pollution emissions are translated into changes in ambient air pollutant concentrations using a 

simplified source-receptor (S-R) matrix (Baker et al., 2023).32 Specifically, SO2 and NOx 

emissions are converted into fine particulate matters (PM2.5) by multiplying emissions with the 

transfer coefficients associated with PM sulfate ion and PM nitrate ion. NOx is converted into O3 

 

32 As Baker et al. (2023) documented, the S-R approach performs similarly to more complicated pollutant transport 
models like CMAQ. 
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via a transfer coefficient.33 PM2.5 and O3 exposure is then linked to population health impacts 

identified by the epidemiology literature, including impacts on mortality and morbidity 

outcomes.34 Since mortality outcomes capture the majority of monetized PM2.5 damages, 

COBRA provides two sets of monetized estimates, one based on Wu et al. (2020)’s lower 

estimate, and the other based on Pope et al. (2019)’s higher estimate to reflect the scientific 

uncertainty related to the PM2.5 – mortality relationship. 

We monetize the foregone benefits from RPS design discrepancy by injecting the medium-

run reduced-form estimates of emissions between clean and discrepant RPSs from Table 5, 

55.4% for SO2 and 33.2% for NOx, into COBRA version 5.0.35 We use COBRA’s 2016 baseline 

emission scenario for the power sector, with the list of RPS policies taken from 2010, 6 years 

before evaluation. 31 states had active RPS policies in place in 2010, with 21 discrepant and 10 

clean ones.36 As the mortality outcome involves both short-term and long-term death after 

exposure, we use a 2% discount rate following the Office of Management and Budget (OMB)’s 

guidance laid out in Circular A-4.37  

Results suggest that the foregone benefit caused by RPS design discrepancies ranges from 

$12 billion to $22 billion annually (in 2016 dollars). Elevated levels of PM2.5 causes 650-1500 

foregone statistical lives saved, which monetize to $7.2-16 billion. Elevated levels of O3 caused 

400 foregone statistical lives saved, which monetized to $4.3 billion. Other estimated foregone 

damages account for less than 10% of the total monetized value. A detailed breakdown of 

monetized value by category is presented in Appendix Table A.4.  

 

33 NOx and VOC (volatile organic compounds) form O3 via photochemical reactions. SO2 does not form O3. 
34 The full sets of health and occupational impacts considered in COBRA include health impacts related to mortality 
(general population and infant), nonfatal heart attacks, asthma, emergency room visits, hospitalization, stroke, lung 
cancer, and work and school losses (USEPA 2024). 
35 The reduced-form estimates from Table 5 are in a log-linear form. Converting them back into percentage terms 
yield 1-e-0.570 = 43.4%, and 1-e0.412 =  33.8%. 
36 The 22 states with discrepant RPSs are Arizona, California, Colorado, Connecticut, Maine, Michigan, Minnesota, 
Missouri, Montana, Nevada, New Mexico, North Carolina, North Dakota, Oklahoma, Oregon, Pennsylvania, South 
Dakota, Utah, Vermont, Virginia, and Washington. The 10 states with clean RPSs are Delaware, Illinois, 
Massachusetts, Maryland, New Hampshire, New Jersey, New York, Ohio, Rhode Island, and Wisconsin. Hawaii is 
excluded from the analysis because COBRA only covers the continental US. 
37 Available at https://www.whitehouse.gov/wp-content/uploads/2023/11/CircularA-4.pdf. 
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We find that only 43% of the foregone benefits accrue in states with discrepant RPS 

policies. 57% of the foregone benefits come from states that did not implement a discrepant 

RPS.38 This highlights the recent debates on the transboundary effects of point source pollution, 

for example in Ohio v. EPA (2024), where the Supreme Court struck down EPA’s “Good 

Neighbor Rule”, requiring upwind power plants and other point sources to consider effects for 

downwind states. We also find that the largest foregone benefits occur in the Great Lakes and the 

Northeast region (see geographical distribution of foregone benefits in Figure 4), similar to that 

of Hollingsworth and Rudik (2019). Of the top 20 counties with the largest foregone benefits, 5 

are in Pennsylvania, 5 are in New York, 3 are in Maryland, 3 are in Michigan, and 2 are in 

Ohio.39 Of which, Maryland, New York, and Ohio had clean RPS policies in 2010, again 

highlighting the transboundary nature of point source pollution reduction. 

We also calculated the actual benefits (avoided damages) generated by RPS policies using 

the reduced-form estimates from Table 5, by separately calculating the counterfactual 

environmental outcomes for clean and discrepant RPS policies had they not been adopted by 

2010.40 The total health benefits from RPS policies range from $17 billion to $34 billion, with 

PM2.5 causing $13-30 billion and O3 causing $4 billion.41 The impact from ozone is much 

smaller than the impact from particulate matter because we find zero impacts of discrepant RPS 

on NOx emission reductions, a precursor for O3. We again find that the benefits are concentrated 

 

38 Our calculation is conservative in that states with discrepant RPSs also would have received benefits from other 
states that has discrepant RPSs. 
39 The top 20 counties ranked by the largest foregone benefits are: Cook County, Illinois; Wayne County, Michigan; 
Allegheny County, Pennsylvania; St Louis County, Missouri; Cuyahoga County, Ohio; Philadelphia County, 
Pennsylvania; Oakland County, Michigan; Macomb County, Michigan; Erie County, New York; Kings County, New 
York; Baltimore County, Maryland; Westmoreland County, Pennsylvania; Franklin County, Ohio; Montgomery 
County, Pennsylvania; Queens County, New York; Nassau County, New York; Suffolk County, New York; Baltimore 
City County, Maryland; Lancaster County, Pennsylvania; and Montgomery County, Maryland. 
40 States with clean RPS would see their SO2 and NOx emissions to be 56.65% and 33.16% higher in 2016 if not for 
the passage of a clean RPS on or before 2010. States with discrepant RPS would see their SO2 to be 21.81% higher, 
and NOx to remain the same in 2016, if not for the passage of a discrepant RPS on or before 2010. 
41 A detailed breakdown of monetized value by category is presented in Appendix Table A.5. 
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in the Great Lakes and the Northeast region, similar to that of Hollingsworth and Rudik 

(2019).42, 43  

Our findings suggest that RPSs generate economically significant co-benefits from air 

pollution reductions, comparable to their compliance costs and benefits from decarbonization. To 

benchmark these figures, the compliance cost of RPS estimated to range from $4 billion annually 

with a 2% electricity price increase in Barbose et al. (2019) and Wolverton et al. (2023), to $30 

billion annually with an 11% electricity price increase in Greenstone and Nath (2021). Estimated 

benefits from decarbonization ranges from $28 billion (Wiser et al. 2017) to $33 billion 

(Greenstone and Nath, 2021) under a social cost of carbon $185-190 per ton of CO2 suggested by 

recent literature and regulatory determination (Rennert et al., 2022; USEPA, 2023).44  

Estimation of the air pollution co-benefits for RPS policies is rare in previous literature, with 

the closest study being Wiser et al. (2017), who find that RPSs yield an air pollution benefit of 

$4.6 billion.45 Their high renewable scenario, for which states adopt aggressive RPS policies, 

lead to an annual benefit of $26 billion. Our findings are larger in magnitude for a couple of 

reasons. First, our analysis takes into account new advances in the literature on the air pollution – 

mortality relationship, leading to higher instances of mortality in the case of particulate matters 

exposure and added mortality effects of Ozone exposure. Second, our analysis uses a lower 

discount rate of 2%, which increases the present value benefits from long-term exposure-related 

mortality outcomes.  

6. Conclusions 

 

42 The top 20 counties ranked by actual avoided damages are: Cook County, Illinois; Allegheny County, 
Pennsylvania; Cuyahoga County, Ohio; Wayne County, Michigan; Franklin County, Ohio; Hamilton County, Ohio; 
Philadelphia County, Pennsylvania; St Louis County, Missouri; Oakland County, Michigan; Baltimore County, 
Maryland; Kings County, New York; Baltimore City, Maryland; Summit County, Ohio; Macomb County, Michigan; 
Erie County, New York; Montgomery County, Ohio; Queens County, New York; Marion County, Indiana; Nassau 
County, New York; and Prince Georges County, Maryland. 
43 Readers are referred to Appendix Figure A.5 for the full spatial distribution of actual avoided damages. 
44 The original estimate from Wiser et al. (2017) was $161 billion over the period of 2015-2050, which annualizes to 
$7.5 billion per year under a social cost of carbon of $50 per ton of CO2. 
45 Hollingsworth and Rudik (2019) estimated the avoided damages of a 1% increase in REC demand, though they do 
not provide an aggregate number across the nation.  
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This study provides new empirical evidence on the environmental impacts of Renewable 

Portfolio Standards (RPS) and highlights the critical role of policy design in determining their 

effectiveness. Using a difference-in-differences approach with staggered adoption timing, we 

find that RPS policies generally lead to reductions in power sector emissions and improvements 

in air quality. However, our analysis reveals substantial heterogeneity in these effects based on 

the stringency of RPS policy enforcement. 

Our key contribution is to demonstrate that discrepancies in RPS policy design— such as 

exemptions, credit multipliers, and inclusion of carbon-emitting technologies—significantly 

attenuate the environmental benefits of these policies. This attenuation is particularly pronounced 

for non-CO2 pollutants like SO2 and NOx. We estimate that in the medium term (5-9 years post-

implementation), clean RPSs reduce SO2 emissions by 57.6% and NOx emissions by 33.7%, 

while discrepant RPSs lead to only a 25.1% reduction in SO2 and negligible effects on NOx. 

These differences translate into substantial foregone health co-benefits, which we estimate to be 

between $12 billion and $22 billion annually. Most of these foregone benefits would have been 

accrued outside of the immediate state boundary that implemented the discrepant RPS policies. 

The stark contrast in outcomes between clean and discrepant RPS underscores the critical 

importance of policy design stringency and their unintended consequences. Our results 

demonstrate that seemingly minor differences in RPS policy design can lead to substantial 

variations in environmental co-benefits, highlighting potential tradeoffs between consumer 

welfare, public finance, and policy efficacy. This emphasizes the need for policymakers to 

carefully consider the long-term and wide-ranging impacts of their policy choices, as well as 

potential interactions with other existing regulations and market forces. 

Our study also reveals important interstate externalities in renewable energy policy. While 

the carve-outs and electricity price savings usually benefit constituents within state borders or 

within the same electricity market, major proportions of the foregone health benefits from 

discrepant RPS designs would be accrued to other states. This situation exemplifies the classic 

problem of under-provision of public goods, where individual states may not have sufficient 

incentives to implement stringent policies due to spillover benefits. Our findings echo previous 

studies and have implications for environmental federalism (Holland et al., 2016; Blundell et al., 

2021; Aronoff & Rafey, 2023; He et al., 2020), indicating that purely state-level decision-making 
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may not fully account for the broader regional or national impacts of local policies. It 

underscores the potential value of cooperation between jurisdictions and/or federal coordination 

and oversight in maximizing the benefits of renewable energy policies. 

Finally, our research highlights the substantial co-benefits of stringent RPS policies, 

particularly in terms of improved air quality and associated health outcomes. The magnitude of 

these co-benefits suggests that evaluations of RPS policies focusing solely on carbon reductions 

or renewable energy deployment may significantly underestimate their total social impact. Our 

finding calls for a more comprehensive approach to policy assessment that fully accounts for 

these additional benefits and implies that the true cost-effectiveness of RPS policies may be 

considerably higher than previously estimated when these co-benefits are factored in.  

As the United States and other nations accelerate their clean energy transition, important 

lessons can be drawn from the implementation of state-wide renewable energy policies. Our 

findings suggest that the path to effective decarbonization is not merely about setting ambitious 

targets, but also about crafting policies with careful attention to enforcement mechanisms, cross-

border impacts, and comprehensive benefit assessments. Although this study does not focus on 

it, policy designs affecting legal enforceability and transparency can influence the equitable 

distribution of policy effects. For example, if exempted energy producers are located near 

disadvantaged communities, the foregone benefits will disproportionally burden these areas. 

Future research could build on these findings by further exploring the downstream impacts of 

environmental performance, downscaling the analysis into plant-level analyses to reveal more 

insights, and investigating the distributional consequences of various RPS designs. 
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Figures and Tables 

 

Figure 1 RPS policies, nominal commitments, and characterized discrepancy. The Y-axis labels denote each RPS 
policy bill by their respective state and time (year-month) of implementation uniquely identifying each law. Hollow 
bar with black border denotes the nominal commitment in percentage. Orange, yellow, turquoise, and blue bars 
denote carbon-emitting, excluded, multiplier, and voluntary shares of commitment respectively.  
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Figure 2 Event-study plots show estimates of the -! coefficients in equation (1). Dynamic effects of RPS policy 
without distinguishing between the clean and discrepant RPS policies on the emission outcomes are shown for the 
natural logarithms of (a) CO2 emission, (b) SO2 emission, and (c) NOx emission. Dynamic effects on the air quality 
outcomes are shown for the natural logarithms of (d) PM2.5 annual average and (e) AQI 90th-percentile. Blue line 
with triangles depicts the DID estimators of two-way fixed effect (TWFE). Red line with circle markers depicts the 
DID estimators of Sun and Abraham (2021). The ribbon areas are the 95% confidence intervals of the estimators. 
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Figure 3 This figure presents estimates of the -! and .! coefficients in equation (2). Discrepancy implies the 
existence of non-binding targets in the active RPS legislation, varying by state and by year. The environmental 
outcomes of interest in panel (a)-(e) are the natural logarithms of CO2 emission, SO2 emission, NOx emission, 
PM2.5 annual average, and AQI 90th-percentile. The points and error bars are the estimates and 95% confidence 
intervals of the baseline discrepant-free RPS treatment effects (black triangles) and of the differences due to the 
presence of discrepant policy designs (orange circles).  
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Figure 4 Foregone Benefits Caused by RPS Discrepancy. Map depicts the monetized foregone benefits in 2016 (in 
million 2016 dollars), as a result of discrepant RPS policies active in 2010, for each county in the continental US. 
Lighter yellow – darker purple gradients denote lower to higher foregone benefits. Estimates are generated using 
COBRA’s low PM-mortality instance estimates based on Wu et al. (2019) under a 2% discount rate. 
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Table 1 State Renewable Portfolio Standards and targets defined in the first RPS legislation. The legislative bill 
identifier, enactment date, nominal and binding minimum targets are listed for the 34 RPS states in our sample. 
Iowa, Texas, Kansas, and West Virginia are excluded.  

State Legislative Bill Identifier Enact Date Nominal Target 

(percent) 

Binding Minimum 

(percent) 

AZ AAC R14-2-1618 Jan 01, 2001 1.1 0.1 
CA CA SB 1078 Sep 12, 2002 20.0 17.1 
CO CRS 40-2-124 Nov 01, 2004 21.4 0.0 
CT CT HB 5005 Apr 29, 1998 13.0 13.0 
DE DE SB 74 Aug 08, 2005 10.0 10.0 
HI HI HB 173 Jul 12, 2001 9.0 9.0 
IL 20 ILCS 688 Jul 01, 2001 15.0 0.0 
IN IN SB 251 May 19, 2011 10.0 0.0 
MA MA General Statutes C. 25A S. 11F Nov 25, 1997 21.5 21.5 
MD MD SB 869 May 20, 2004 7.5 3.8 
ME ME PL C. 316 Jan 01, 1999 30.0 30.0 
MI MI SB 213 Oct 06, 2008 10.0 4.3 
MN MN SF 146 May 04, 2007 28.8 18.7 
MO MO R.S. 393.1020 et seq. Jun 27, 2007 15.0 7.6 
MT MT MCA 69-3-2001 et seq. Jan 04, 2005 15.0 14.1 
NC NC SB 3 Jan 01, 2008 11.7 8.6 
ND ND HB 1506 Aug 24, 2007 10.0 9.8 
NH NH Title XXXIV Section 362F May 14, 2007 25.2 25.2 
NJ NJ PL 1999 Ch. 23 Mar 01, 1999 6.5 6.5 
NM NM SB 43 Jul 01, 2004 10.0 6.8 
NV NV AB 226 Jul 01, 1997 1.0 1.0 
NY NY Public Service Commission 

Order approving RPS 
Sep 24, 2004 25.0 24.0 

OH OH SB 221 Jul 31, 2008 12.5 12.5 
OK OK HB 3028 May 27, 2010 15.0 14.8 
OR OR SB 838 Jun 06, 2007 25.0 25.0 
PA PA SB 1030 Feb 28, 2005 18.0 0.0 
RI RI S 2082 Jun 29, 2004 16.0 16.0 
SC SC SB 1189 Jun 02, 2014 2.0 0.0 
SD SD HB 1123 Mar 21, 2008 10.0 0.0 
UT UT SB 202 Mar 27, 2008 20.0 8.3 
VA VA. Code § 56-585.2 Apr 04, 2007 15.0 0.0 
VT VT Statutes 30-8001 Jul 01, 2005 20.0 0.0 
WA WA Initiative 936 Nov 15, 2006 15.0 5.0 
WI WI State Legislature CH 196 Oct 27, 1999 10.0 10.0 
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Table 2 Descriptive statistics of RPS and control states for difference-in-differences (DID) estimation. Panel A 
summarizes the outcome variables in the DID regression models. Panel B summarizes the covariates included in the 
DID regression models. Panel C summarizes the policy design variables including characterized discrepancies in 
years post states’ RPS implementations. 

Panel A: Outcome Variables 
 RPS states Control states 

 N 
Mean 

(std dev) 
Min-Max N 

Mean 

(std dev) 
Min-Max 

CO2 
(1000 metric tons) 

986 37339.63 
(32408.56) 

6.58-
133416.55 348 47592.93 

(33431.82) 
438.13-
131543.37 

SO2 
(1000 metric tons) 

986 163.75 
(279.94) 

0.01-
2045.98 348 205.47 

(232.05) 
2.56-
892.35 

NOx 
(1000 metric tons) 

986 78.13 
(91.58) 

0.15-
535.62 348 97.94 

(89.76) 
1.93-
353.55 

AQI 90th percentile 986 74.71 
(21.20) 

29.73-
164.65 319 69.47 

(17.11) 
36.97-
131.84 

PM2.5 (μg/m³) 693 9.20 (2.74) 4.40-
16.80 231 9.97 (2.92) 4.80-

17.20 
% of Generation: 
Coal and Oil 

986 45.80 
(30.24) 

0.03-
96.96 348 48.56 

(28.01) 
0.11-
97.56 

% of Generation: 
Natural Gas 

986 18.50 
(22.36) 

0.00-
98.94 348 20.76 

(22.29) 
0.03-
79.67 

% of Generation: 
Wind & Solar 

986 2.09 (4.77) 0.00-
32.23 348 0.92 (2.99) 0.00-

18.48 
% of Generation: 
Hydro & Nuclear 

986 30.35 
(25.02) 

0.00-
96.46 348 27.33 

(20.21) 
1.32-
94.28 

% of Generation: 
Other Renewable 

986 2.84 (4.76) 0.00-
37.14 348 2.06 (1.67) 0.00-8.54 

Electricity Price 
(cents per kWh, 2015 USD) 

986 10.44 
(3.53) 

5.10-
34.04 348 8.46 (2.37) 5.10-

17.73 
Panel B: State-level Time-varying Covariates 
 RPS states Control states 

 N 
Mean 

(std dev) 
Min-Max N 

Mean 

(std dev) 
Min-Max 

Democrat-controlled Legislature  986 0.41 (0.49) 0-1 348 0.35 (0.48) 0-1 
Republican-controlled 
Legislature   986 0.34 (0.48) 0-1 348 0.44 (0.50) 0-1 

Democratic-controlled 
Governorship and Legislature   986 0.22 (0.42) 0-1 348 0.19 (0.39) 0-1 

Democratic-controlled 
Governorship and Legislature   986 0.24 (0.43) 0-1 348 0.32 (0.47) 0-1 

Governor’s Party (0=GOP; 
1=DEM) 986 0.48 (0.49) 0-1 348 0.40 (0.48) 0-1 

Log(Gross State Product) 986 11.85 
(1.12) 

9.35-
14.82 348 11.53 

(0.95) 
9.45-
13.74 
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Natural Gas Price  
($ per 1000 ft3) 

986 6.13 (3.00) 2.00-
32.39 348 5.38 (2.11) 0.48-

11.37 

Log(Population) 986 15.14 
(1.02) 

13.24-
17.49 348 14.90 

(0.98) 
13.03-
16.87 

Net Metering Program  
(0=No, 1=Yes) 

986 0.63 (0.48) 0-1 348 0.34 (0.48) 0-1 

NOx Trading Program  
(0=No, 1=Yes) 

986 0.09 (0.29) 0-1 348 0.05 (0.22) 0-1 

% of Energy Exported 986 0.09 (0.44) -0.84-2.74 348 0.17 (0.60) -0.64-2.61 

Heating Degree Days (HDD) 986 5553.19 
(2055.92) 

0.00-
10810.00 348 4461.66 

(2821.51) 
430.00-
11702.00 

Cooling Degree Days (CDD) 986 964.86 
(900.16) 

42.00-
5213.00 348 1518.92 

(994.76) 
0.00-
4156.00 

Panel C: Policy Design Variables post RPS Implementation 
 RPS states Control states 

 N 
Mean 

(std dev) 
Min-Max N 

Mean 

(std dev) 
Min-Max 

Discrepant Law in Effect 
(binary) 489 0.66 (0.47) 0-1 -- -- -- 

Nominal Target (% of total sales) 489 20.54 
(13.87) 

1.00-
100.00 -- -- -- 

Binding Minimum (% of total 
sales) 489 5.28 (7.55) 0.00-

33.33 -- -- -- 

Excluded Sales (% of total sales) 489 1.03 (2.10) 0.00-
10.02 -- -- -- 

Voluntary Sales (% of total sales) 489 1.38 (4.30) 0.00-
20.00 -- -- -- 

Multiplier Credit (% of total 
sales) 489 1.69 (3.49) 0.00-

13.33 -- -- -- 

Carbon Emitting (% of total 
sales) 489 2.20 (6.60) 0.00-

30.00 -- -- -- 
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Table 3 Diagnostic Tests for Parallel Trend for the Discrepancy Model 
              
Outcome Event Study Coefficients: Control vs. Clean RPS 

 Pre-trend Test Power Analysis (Roth 2022) 

   Positive Pretrend Negative Pretrend 

 
Pretrend 
Level  

Pretrend 
Slope 

Bayes 
Factor 

Likelihoo
d Ratio 

Bayes 
Factor 

Likelihoo
d Ratio 

log(CO2 Emission) -0.039*** -0.017 0.119 0 0.119 0 
log(SO2 Emission) -0.064*** 0.011 0.116 0.001 0.116 0.001 
log(NOx Emission) -0.01*** 0.008 0.119 0.253 0.119 0 
log(PM25) -0.022*** 0.018** 0.118 171,678 0.118 0 
log(AQI 90th percentile) -0.035*** 0.002 0.121 0.057 0.121 0.002 
% of Generation: Coal & Oil -3.85*** 0.567 0.12 0.794 0.12 0 
% of Generation: Natural Gas 3.779*** -1.553*** 0.119 0 0.119 0.228 
% of Generation: Wind and 
Solar -0.993** 0.252** 0.116 0.759 0.116 0 
% of Generation: Hydro and 
Nuclear 0.996*** 0.861 0.118 0 0.118 0 
% of Generation: Other 
Renewable 0.002 -0.005 0.113 0 0.113 0.002 
Electricity Price 0.443*** -0.07 0.121 0 0.121 0.211 
Note: Diagnostic tests based on event study regressions that estimate differences in outcomes between clean 
and discrepant RPS states over time. Sample consists of states with consistently clean and discrepant RPS 
policies as well as non-RPS states. States with both clean and discrepant RPS policies (i.e., switchers) are 
omitted. Pre-trend test in column 2 presents the average of pre-trend coefficients for five pre-treatment years, 
β-6 to β-2, as well as hypothesis tests on those coefficients being jointly zero (indicated by the trailing stars). 
Column 3 presents the linear trend coefficient for the five pre-treatment years plus the reference period, β-6 to 
β-1, as well as hypothesis tests on the trend coefficient equal to zero (indicated by the trailing stars). Pre-trend 
power analysis follows Roth (2022) by selecting a pre-trend slope for 5 pre-treatment periods (periods -6 to -2) 
and test the likelihood of the observed 10 post-treatment effects (periods 0 to 9) under parallel trend versus the 
hypothesized linear pre-trend. Slope of the linear trend is selected such that the power of the pretest is close to 
to 0.9. The sign of the linear slope is positive for columns 4-5, and negative for columns 6-7. The Bayes factor 
(column 4 and 6) is the ratio of the probability of “passing” the pre-test under the hypothesized linear trend 
relative to under parallel trends: smaller BF means more likely to pass the pre-test. The likelihood ratio 
(column 5 and 7) corresponds to the ratio of the likelihood of the observed coefficients under the hypothesized 
linear trend relative to under parallel trends: smaller likelihood ratio means observed coefficients are more 
likely to be observed under parallel trend. ***, **, * indicate statistical significance at 1%, 5% and 10%, 
respectively. 
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Table 4 Break model ATT estimates. The estimates represent the time-varying effects of an RPS policy in general, 
without distinguishing across different policy designs.  
Panel A: Estimates for the emission and air quality outcomes 
 (1) (2) (3) (4) (5)  
 log(CO2) log(SO2) log(NOx) log(PM2.5) log(AQI90)  
0-4 years post RPS -0.083** -0.102 -0.011 -0.011 -0.033*  
 (0.041) (0.089) (0.056) (0.019) (0.019)  
5-9 years post RPS -0.152*** -0.467*** -0.128 -0.019 -0.054*  
 (0.051) (0.172) (0.123) (0.030) (0.032)  
≥ 10 years post RPS -0.243*** -0.802*** -0.213 0.014 -0.065  
 (0.079) (0.236) (0.190) (0.045) (0.049)  
Obs. 1334 1334 1334 924 1305  
R2 0.987 0.945 0.944 0.933 0.831  
Panel B: Estimates for the power sector outcomes 
 (6) (7) (8) (9) (10) (11) 

 Coal and Oil Natural Gas Wind and 
Solar 

Hydro and 
Nuclear 

Other 
Renewables 

Electricity 
Price 

0-4 years post RPS -2.154* 0.155 1.393** 0.274 -0.020 0.035 
 (1.194) (1.683) (0.689) (1.288) (0.229) (0.240) 
5-9 years post RPS -6.965*** 3.279 2.024* 1.541 -0.264 0.226 
 (2.448) (2.756) (1.126) (2.001) (0.298) (0.302) 
≥ 10 years post RPS -9.408** 5.275 1.668 1.762 -0.010 0.417 
 (4.335) (4.224) (1.329) (3.222) (0.495) (0.516) 
Obs. 1334 1334 1334 1334 1334 1334 
R2 0.945 0.902 0.658 0.948 0.925 0.924 
Notes: In Panel A, the dependent variables are the natural logarithm of CO2 emission (1), natural logarithm of SO2 
emission (2), natural logarithm of NOx emission (3), natural logarithm of AQI 90th-percentile (4), and natural 
logarithm of PM2.5 annual average (5). In Panel B, the dependent variables are the percentage of power generation 
by coal and oil (6), natural gas (7), wind and solar (8), hydro and nuclear (9), other renewables (10), and the 
electricity price (11). All regression models are estimated controlling the covariates in Table 2 and including state 
and year fixed effects. Standard errors are clustered at the state level. ***, **, * indicate statistical significance at 
1%, 5% and 10%, respectively. 
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Table 5 Break model ATT estimates for the emission and pollution outcomes, distinguishing between “clean” RPS 
and the differences due to discrepant policy designs.  
 (1) (2) (3) (4) (5)  

 log(CO2) log(SO2) log(NOx) log(PM2.5) log(AQI90)  

Panel A: Heterogeneous Effects Associated to Policy Discrepancy 
Baseline ATT of Discrepancy-free RPS 
0-4 years post RPS -0.053 -0.065 -0.074 -0.030 -0.054**  

 (0.045) (0.119) (0.081) (0.024) (0.023)  

5-9 years post RPS -0.185*** -0.859*** -0.411*** -0.044 -0.129***  

 (0.068) (0.259) (0.140) (0.031) (0.041)  

≥ 10 years post RPS -0.263*** -1.187*** -0.632*** -0.053 -0.176***  

 (0.097) (0.312) (0.195) (0.046) (0.057)  

 ATT Differences due to RPS Policy Discrepancy 
(0-4 years) × Discrepancy -0.048 -0.089 0.064 0.020 0.025  

 (0.065) (0.146) (0.099) (0.022) (0.025)  

(5-9 years) × Discrepancy 0.046 0.570** 0.412*** 0.029 0.112**  

 (0.081) (0.276) (0.144) (0.021) (0.045)  

(≥ 10 years) × Discrepancy 0.030 0.578 0.631*** 0.092*** 0.172***  

 (0.095) (0.380) (0.154) (0.034) (0.058)  

Obs. 1334 1334 1334 924 1305  

R2 0.987 0.948 0.949 0.935 0.839  

Summary of policy effect  
(using estimates of 5-9 years) 

CO2 
Emission 

SO2 
Emission 

NOx 
Emission 

PM2.5 
Concentration 

AQI 90th-
percentile  

Clean RPS -16.9% -57.6% -33.7% -4.3% -12.1%  

Discrepant RPS -13.0% -25.1% 0.1% -1.5% -1.7%  

Panel B: ATT Differences by Source of Discrepancy 
(5-9 years) × exclude 0.176** 0.514 0.387** 0.030 0.170***  

 (0.074) (0.310) (0.158) (0.032) (0.057)  

(5-9 years) × voluntary -0.189* -0.009 0.018 -0.020 -0.008  

 (0.101) (0.355) (0.306) (0.055) (0.084)  

(5-9 years) × multiplier -0.009 0.307 -0.045 0.024 -0.052  

 (0.074) (0.239) (0.142) (0.042) (0.056)  

(5-9 years) × carbon 0.106 0.158 0.185 0.035 0.062  

 (0.088) (0.222) (0.138) (0.026) (0.056)  

Obs. 1334 1334 1334 924 1305  

R2 0.988 0.949 0.949 0.937 0.844  

Note: In Panel A, Discrepancy = 1 if the state has an active RPS legislation with non-binding target due to any of the four 

categories of discrepancy. In Panel B, the RPS policy discrepancy effects are examined by four types of discrepant policy 
designs: excluded sales (exclude = 1), voluntary sales (voluntary = 1), multiplier credit (multiplier = 1), and carbon 

emitting (carbon = 1). The four categories are non-exclusive, i.e., a state’s RPS legislation can have multiple discrepant 
features. Dependent variables are the natural logarithm of CO2 emission (1), natural logarithm of SO2 emission (2), natural 

logarithm of NOx emission (3), natural logarithm of PM2.5 annual average (4), and natural logarithm of AQI 90th-

percentile (5). All regression models are estimated controlling the covariates in Table 2 and including state and year fixed 
effects. Standard errors are clustered at the state level. ***, **, * indicate statistical significance at 1%, 5% and 10%, 

respectively. The summary of policy effect, in percentage change, is computed using coefficient estimates of the “5-9 

years” interval. 
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Table 6 Break model ATT estimates for the power sector outcomes, distinguishing between “clean” RPS and the 
differences due to discrepant policy designs. 
 (1) (2) (3) (4) (5) (6) 

 
Coal and  

Oil 
Natural Gas 

Wind and 

Solar 

Hydro and 

Nuclear 

Other 

Renewable 

Electricity 

Price 

Panel A: Heterogeneous Effects Associated to Policy Discrepancy 
Baseline ATT of Discrepancy-free RPS 
0-4 years post RPS -2.028 1.202 0.924 -0.733 0.009 -0.001 

 (1.558) (2.741) (0.732) (2.270) (0.442) (0.488) 

5-9 years post RPS -11.359*** 7.358* -0.011 3.884* -0.185 0.037 

 (3.537) (3.982) (0.968) (2.312) (0.389) (0.407) 

≥ 10 years post RPS -13.365** 8.253 -1.465 6.072* -0.082 0.405 

 (5.711) (5.591) (1.329) (3.058) (0.456) (0.570) 

 ATT Differences due to RPS Policy Discrepancy 
(0-4 years) × Discrepancy -0.548 -1.283 0.477 1.820 -0.044 0.048 

 (2.028) (2.827) (0.769) (2.048) (0.398) (0.510) 

(5-9 years) × Discrepancy 6.450* -6.121 2.953** -3.237* -0.127 0.289 

 (3.824) (3.926) (1.206) (1.826) (0.309) (0.443) 

(≥ 10 years) × Discrepancy 5.913 -4.395 4.720*** -6.548** 0.115 0.010 

 (6.123) (5.793) (1.501) (2.865) (0.863) (0.658) 

Obs. 1334 1334 1334 1334 1334 1334 

R2 0.946 0.903 0.682 0.949 0.925 0.925 

Summary of policy effect  
(using estimates of 5-9 years) 

Coal and 
Oil Natural Gas Wind and 

Solar 
Hydro and 
Nuclear 

Other 
Renewable 

Electricity 
Price 

Clean RPS -11.36% 7.36% -0.01% 3.88% -0.19% 0.04 ¢/kWh 

Discrepant RPS -4.91% 1.24% 2.94% 0.65% -0.31% 0.33 ¢/kWh 

Panel B: ATT Differences by Source of Discrepancy 
(5-9 years) × exclude 7.770* -8.533** 6.619*** -5.927** 0.155 0.537 

 (3.909) (3.770) (1.877) (2.475) (0.598) (0.533) 

(5-9 years) × voluntary 0.889 -1.765 1.108 0.083 -0.187 0.099 

 (4.761) (5.130) (3.435) (2.390) (0.397) (0.293) 

(5-9 years) × multiplier 2.097 0.631 -4.678** 1.142 0.628 -0.830* 

 (3.625) (3.546) (1.880) (2.449) (0.407) (0.491) 

(5-9 years) × carbon -2.165 -0.289 3.927** -1.227 -0.394 0.643 

 (3.748) (3.991) (1.732) (1.680) (0.318) (0.631) 

Obs. 1334 1334 1334 1334 1334 1334 

R2 0.949 0.908 0.719 0.950 0.928 0.930 

Note: In Panel A, Discrepancy = 1 if the state has an active RPS legislation with non-binding target due to any of the four 

categories of discrepancy. In Panel B, the RPS policy discrepancy effects are examined by four types of discrepant policy 

designs: excluded sales (exclude = 1), voluntary sales (voluntary = 1), multiplier credit (multiplier = 1), and carbon 
emitting (carbon = 1). The four categories are non-exclusive, i.e., a state’s RPS legislation can have multiple discrepant 

features. Dependent variables are the percentage of power generation by coal and oil (1), natural gas (2), wind and solar 
(3), hydro and nuclear (4), other renewable (5), and the electricity price (6). All regression models are estimated 

controlling the covariates in Table 2 and including state and year fixed effects. Standard errors are clustered at the state 

level. ***, **, * indicate statistical significance at 1%, 5% and 10%, respectively. The summary of policy effect, in 

percentage change and cent per kWh, is computed using coefficient estimates of the “5-9 years” interval. 
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Appendix Figures and Tables 

 

Figure A.1 Event-study plots show estimates of the -! coefficients in equation (1). Outcomes of interest in panels 
(a)-(f) are electricity generation share by fuel type including coal and oil, natural gas, wind and solar, hydro and 
nuclear, other renewable such as biomass and geothermal, and the electricity price. Blue line with triangles depicts 
the DID estimators of two-way fixed effect (TWFE). Red line with circle markers depicts the DID estimators of Sun 
and Abraham (2021). The ribbon areas are the 95% confidence intervals of the estimators. 
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Figure A.2 This figure presents estimates of the -! and .! coefficients in equation (2). Discrepancy implies the 
existence of non-binding targets in the active RPS legislation, varying by state and by year. Panels (a)-(f) depict the 
dynamic effects on power sector outcomes: electricity generation share by fuel type include (a) coal and oil, (b) 
natural gas, (c) wind and solar, (d) hydro and nuclear, (e) other renewable energy sources such as biomass and 
geothermal, and (f) the electricity retail price in cents per kWh. The points and error bars are the estimates and 95% 
confidence intervals of the baseline discrepant-free RPS treatment effects (black triangles) and of the differences due 
to the presence of discrepant policy designs (orange circles).   
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Figure A.3 Dynamic effects of RPS policy and the differences between clean and discrepant RPS states. The 
“difference” values depicted in the figure are coefficients of the intersections between the “discrepant RPS state” 
dummy and the time dummy indicating number of years post RPS passage. Clean RPS states are states with 
discrepancies identified in none or at most 2 post-RPS years. Discrepant RPS states are states that have never passed 
a clean RPS. States that had their RPS discrepancy status switch overtime are removed in this analysis. The 
pollution outcomes from power generation are (a) the natural logarithms of CO2 emission, (b) SO2 emission, (c) 
NOx emission. The air quality outcomes are measured by (d) the natural logarithm of PM2.5 annual average and (e) 
the natural logarithm of AQI 90th-percentile. Outcomes in terms of electricity generation share by fuel type include 
(f) coal and oil, (g) natural gas, (h) wind and solar, (i) hydro and nuclear, and (j) other renewable. The electricity 
price outcome (k) is in cents per kWh in 2015 dollars. The points and error bars are the coefficient estimates and 
95% confidence intervals of the RPS treatment effects in a clean RPS state (black triangles) and of the differences in 
treatment effects if in a discrepant RPS state (orange circles). 
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Figure A.4 Compare municipal producers and investor-owned utilities (IOUs). For the 34 RPS states in our data 
sample, the nameplate capacities of generators owned by investors and by municipalities are aggregated. Generator 
ownership data is obtained from EIA Form 860, extracting all operational generators between 1997-2014. Primary 
fuel of the generator and technologies are grouped to compute the share of generation capacities in each 
“Technology/Fuel” group. Generation technologies in the “NG (Others)” category include natural gas internal 
combustion engine, natural gas fired combustion turbine, natural gas fired combined cycle, and other gases.  
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Figure A.5 Monetized Benefits for Actual RPS policy. Map depicts the monetized benefits (avoided damages) in 
2016 (in million 2016 dollars), as a result of every RPS policies active in 2010 (clean and discrepant), for each 
county in the continental US. Darker blue color denotes higher foregone benefits. Lighter yellow color denotes 
lower foregone benefits. Estimates are generated using COBRA’s low PM-mortality instance estimates based on Wu 
et al. (2019) under a 2% discount rate. 
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Table A.1 Diagnostic Tests for Parallel Trends for the Baseline Model 
              

Outcome Event Study Coefficients: Control vs. Clean RPS 

 Pre-trend Test Power Analysis (Roth 2022) 

   Positive Pretrend Negative Pretrend 

 
Pretrend 
Level  

Pretrend 
Slope 

Bayes 
Factor 

Likelihood 
Ratio 

Bayes 
Factor 

Likelihood 
Ratio 

log(CO2 Emission) 0.03*** -0.007 0.116 0.001 0.116 0 
log(SO2 Emission) 0.118*** -0.027** 0.114 0 0.114 0.227 
log(NOx Emission) 0.046** -0.015*** 0.115 0 0.115 0.272 
log(PM25) -0.008 0.006** 0.118 0 0.118 0 
log(AQI 90th percentile) 0.028*** -0.01** 0.121 0 0.121 13.322 
% of Generation: Coal & Oil -0.247*** 0.088 0.112 0 0.112 0.016 
% of Generation: Natural Gas -0.509*** 0.273** 0.116 0.083 0.116 0 
% of Generation: Wind and Solar -0.07 0 0.114 0.004 0.114 0.004 
% of Generation: Hydro and Nuclear 1.104*** -0.517** 0.112 0 0.112 0.001 
% of Generation: Other Renewable -0.338 0.135** 0.119 0.54 0.118 0 
Electricity Price 0.1*** -0.048** 0.118 0 0.118 1.112 
Note: Diagnostic tests based on event study regressions that estimates differences in outcomes between RPS 
and non-RPS states. Pre-trend test in column 2 presents the average of pre-trend coefficients for five pre-
treatment years, β-6 to β-2, as well as hypothesis tests on those coefficients being jointly zero (indicated by the 
trailing stars). Column 3 presents the linear trend coefficient for the five pre-treatment years plus the reference 
period, β-6 to β-1, as well as hypothesis tests on the trend coefficient equal to zero (indicated by the trailing 
stars). Pre-trend power analysis follows Roth (2022) by selecting a pre-trend slope for 5 pre-treatment periods 
(periods -6 to -2) and test the likelihood of the observed 10 post-treatment effects (periods 0 to 9) under 
parallel trend versus the hypothesized linear pre-trend. Slope of the linear trend is selected such that the power 
of the pretest is close to 0.9. The sign of the linear slope is positive for columns 4-5, and negative for columns 
6-7. The Bayes factor (column 4 and 6) is the ratio of the probability of “passing” the pre-test under the 
hypothesized linear trend relative to under parallel trends: smaller BF means more likely to pass the pre-test. 
The likelihood ratio (column 5 and 7) corresponds to the ratio of the likelihood of the observed coefficients 
under the hypothesized linear trend relative to under parallel trends: smaller likelihood ratio means observed 
coefficients are more likely to be observed under parallel trend. ***, **, * indicate statistical significance at 
1%, 5% and 10%, respectively. 
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Table A.2 Break model ATT estimates for the emission and pollution outcomes by four categories of discrepancy 
 (1) (2) (3) (4) (5)  

 log(CO2) log(SO2) log(NOx) log(PM2.5) log(AQI90)  

0-4 years post RPS -0.101* -0.126 -0.076 -0.024 -0.059**  

 (0.051) (0.096) (0.074) (0.024) (0.026)  

5-9 years post RPS -0.231*** -0.831*** -0.353*** -0.047 -0.139***  

 (0.062) (0.245) (0.123) (0.032) (0.041)  

≥ 10 years post RPS -0.319*** -1.248*** -0.588*** -0.059 -0.189***  

 (0.089) (0.290) (0.182) (0.046) (0.055)  

ATT Differences due to RPS Policy Discrepancy: 0-4 years post RPS 

(0-4 years) × exclude 0.119 0.107 0.164 0.009 0.060*  

 (0.082) (0.124) (0.105) (0.028) (0.034)  

(0-4 years) × voluntary -0.208 -0.299** -0.069 -0.013 -0.021  

 (0.141) (0.125) (0.116) (0.038) (0.043)  

(0-4 years) × multiplier -0.022 0.034 -0.061 0.013 -0.029  

 (0.048) (0.184) (0.115) (0.032) (0.037)  

(0-4 years) × carbon 0.078 0.087 -0.021 0.035 0.021  

 (0.106) (0.164) (0.104) (0.023) (0.041)  

ATT Differences due to RPS Policy Discrepancy: 5-9 years post RPS 

(5-9 years) × exclude 0.176** 0.514 0.387** 0.030 0.170***  

 (0.074) (0.310) (0.158) (0.032) (0.057)  

(5-9 years) × voluntary -0.189* -0.009 0.018 -0.020 -0.008  

 (0.101) (0.355) (0.306) (0.055) (0.084)  

(5-9 years) × multiplier -0.009 0.307 -0.045 0.024 -0.052  

 (0.074) (0.239) (0.142) (0.042) (0.056)  

(5-9 years) × carbon 0.106 0.158 0.185 0.035 0.062  

 (0.088) (0.222) (0.138) (0.026) (0.056)  

ATT Differences due to RPS Policy Discrepancy: ≥ 10 years post RPS 

(≥ 10 years) × exclude 0.180** 0.652 0.673*** 0.097* 0.218***  

 (0.087) (0.432) (0.188) (0.049) (0.079)  

(≥ 10 years) × voluntary -0.064 -0.798*** -0.482 -0.167 -0.148  

 (0.089) (0.205) (0.406) (0.147) (0.169)  

(≥ 10 years) × multiplier 0.027 0.578* -0.020 0.069 0.028  

 (0.088) (0.316) (0.175) (0.054) (0.055)  

(≥ 10 years) × carbon -0.101 -0.074 0.303* 0.018 0.069*  

 (0.089) (0.278) (0.160) (0.027) (0.039)  

Obs. 1334 1334 1334 924 1305  

R2 0.988 0.949 0.949 0.937 0.844  

Note: The RPS policy discrepancy effects are examined by four categories of discrepant policy designs: excluded sales 

(exclude = 1), voluntary sales (voluntary = 1), multiplier credit (multiplier = 1), and carbon emitting (carbon = 1). The four 
categories are non-exclusive, i.e., a state’s RPS legislation can have multiple discrepant features. Columns of the table 

present results for various dependent variables: natural logarithm of CO2 emission (1), natural logarithm of SO2 emission 
(2), natural logarithm of NOx emission (3), natural logarithm of PM2.5 annual average (4), and natural logarithm of AQI 

90th-percentile (5). All regression models are estimated controlling the covariates in Table 2 and including state and year 

fixed effects. Standard errors are clustered at the state level. ***, **, * indicate statistical significance at 1%, 5% and 10%, 

respectively. 
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Table A.3 Break model ATT estimates for the power sector outcomes by four categories of discrepancy 
 (1) (2) (3) (4) (5) (6) 

 Coal and Oil Natural Gas Wind and 
Solar 

Hydro and 
Nuclear 

Other 
Renewable 

Electricity 
Price 

0-4 years post RPS -3.256** 1.999 0.564 0.307 -0.165 -0.038 
 (1.366) (2.525) (0.668) (1.897) (0.373) (0.400) 
5-9 years post RPS -11.527*** 7.942* -1.129 4.755** -0.418 0.046 
 (3.456) (4.012) (1.000) (2.282) (0.444) (0.400) 
≥ 10 years post RPS -14.124** 9.898* -2.337* 6.139* -0.269 0.493 
 (5.395) (5.461) (1.258) (3.058) (0.456) (0.552) 
ATT Differences due to RPS Policy Discrepancy: 0-4 years post RPS 
(0-4 years) × exclude 2.667 -3.681 2.185** -1.132 0.252 0.305 
 (1.948) (2.474) (0.963) (1.999) (0.354) (0.483) 
(0-4 years) × voluntary 0.008 -0.811 -1.412 2.582 -0.159 0.211 
 (1.926) (2.387) (1.322) (1.772) (0.315) (0.410) 
(0-4 years) × multiplier -0.935 1.563 -1.327* 0.218 0.378* -0.659* 
 (1.742) (2.211) (0.751) (1.427) (0.225) (0.345) 
(0-4 years) × carbon -3.119 0.736 1.317** 1.770 -0.388 0.100 
 (2.793) (2.878) (0.644) (1.341) (0.326) (0.566) 
ATT Differences due to RPS Policy Discrepancy: 5-9 years post RPS 
(5-9 years) × exclude 7.770* -8.533** 6.619*** -5.927** 0.155 0.537 
 (3.909) (3.770) (1.877) (2.475) (0.598) (0.533) 
(5-9 years) × voluntary 0.889 -1.765 1.108 0.083 -0.187 0.099 
 (4.761) (5.130) (3.435) (2.390) (0.397) (0.293) 
(5-9 years) × multiplier 2.097 0.631 -4.678** 1.142 0.628 -0.830* 
 (3.625) (3.546) (1.880) (2.449) (0.407) (0.491) 
(5-9 years) × carbon -2.165 -0.289 3.927** -1.227 -0.394 0.643 
 (3.748) (3.991) (1.732) (1.680) (0.318) (0.631) 
ATT Differences due to RPS Policy Discrepancy: ≥ 10 years post RPS 
(≥ 10 years) × exclude 9.780* -9.738* 6.546*** -7.255 0.833 0.736 
 (5.725) (5.168) (1.890) (4.354) (1.419) (0.658) 
(≥ 10 years) × voluntary -9.040 13.144 -2.217 -1.735 -0.093 0.808 
 (7.917) (11.121) (4.989) (2.104) (0.592) (0.598) 
(≥ 10 years) × multiplier 5.007 -3.618 -0.608 -1.303 0.475 -2.182*** 
 (5.252) (3.764) (2.189) (3.830) (0.938) (0.762) 
(≥ 10 years) × carbon -6.882 4.715 4.586* -1.445 -1.402** 0.769 
 (4.789) (4.751) (2.373) (2.915) (0.591) (0.934) 
Obs. 1334 1334 1334 1334 1334 1334 
R2 0.949 0.908 0.719 0.950 0.928 0.930 
Note: The RPS policy discrepancy effects are examined by four categories of discrepant policy designs: excluded 
sales (exclude = 1), voluntary sales (voluntary = 1), multiplier credit (multiplier = 1), and carbon emitting (carbon = 
1). The four categories are non-exclusive, i.e., a state’s RPS legislation can have multiple discrepant features. 
Columns of the table present results for various dependent variables: the percentage of power generation by coal and 
oil (1), natural gas (2), wind and solar (3), hydro and nuclear (4), other renewable (5), and the electricity price (6). 
All regression models are estimated controlling the covariates in Error! Unknown switch argument. and including 
state and year fixed effects. Standard errors are clustered at the state level. ***, **, * indicate statistical significance 
at 1%, 5% and 10%, respectively. 
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Table A.4 Monetized Foregone Benefits for Discrepant RPS Policies Active in 2010, Itemized by Health Endpoint 

  Change in Incidence Monetary Value (in 2016 dollar) 
 Health Endpoint Pollutant  (cases, annual)  (dollars, annual)  
   Low High Low High 
 Mortality  PM2.5 + O3 1,100 1,900 $11,000,000,000 $21,000,000,000 
    Mortality, All Cause  PM2.5 650 1,500 $7,200,000,000 $16,000,000,000 
    Mortality, O3 Short-term 
Exposure  O3 17 17 $190,000,000 $190,000,000 
    Mortality, O3 Long-term 
Exposure  O3 380 380 $4,300,000,000 $4,300,000,000 
 Nonfatal Heart Attacks  PM2.5 410 410 $26,000,000 $26,000,000 
 Infant Mortality  PM2.5 6.5 6.5 $77,000,000 $77,000,000 
 Hospital Admits, All 
Respiratory  PM2.5 + O3 110 110 $1,900,000 $1,900,000 
 ER Visits, Respiratory  PM2.5 + O3 1,600 1,600 $1,900,000 $1,900,000 
 Asthma Onset  PM2.5 + O3 4,300 4,300 $250,000,000 $250,000,000 
 Asthma Symptoms  PM2.5 + O3 740,000 740,000 $120,000,000 $120,000,000 
 ER Vists, Asthma  O3 6.2 6.2 $3,900 $3,900 
 Lung Cancer Incidence  PM2.5 45 45 $1,500,000 $1,500,000 
 Hospital Admits, 
Cardiovascular  PM2.5 82 82 $1,800,000 $1,800,000 
 Hospital Admits, 
Alzheimers  PM2.5 300 300 $5,000,000 $5,000,000 
 Hospital Admits, 
Parkinsons  PM2.5 40 40 $710,000 $710,000 
 Stroke Incidence  PM2.5 35 35 $1,600,000 $1,600,000 
 Hay Fever/Rhinitis 
Incidence  PM2.5 + O3 29,000 29,000 $24,000,000 $24,000,000 
 Cardiac Arrest, Out of 
Hospital  PM2.5 9.2 9.2 $430,000 $430,000 
 ER Visits, All Cardiac  PM2.5 200 200 $320,000 $320,000 
 Minor Restricted Activity 
Days  PM2.5 530,000 530,000 $50,000,000 $50,000,000 
 School Loss Days  O3 260,000 260,000 $340,000,000 $340,000,000 
 Work Loss Days  PM2.5 89,000 89,000 $21,000,000 $21,000,000 
 Total PM Health Effects        $7,500,000,000 $17,000,000,000 
 Total O3 Health Effects        $5,100,000,000 $5,100,000,000 
 Total Health Effects        $12,000,000,000 $22,000,000,000 
Note: Scenario represents total foregone benefits had states with discrepant RPS policies adopted clean RPS 
policies in 2010, calculated using COBRA version 5.0. Positive dollar values indicate social costs, and negative 
dollar values indicate societal benefits. States with discrepant RPSs in 2010 include AZ, CA, CO, CT, HI, ME, 
MI, MN, MO, MT, NC, ND, NM, NV, OK, OR, PA, SD, UT, VA, VT, and WA. Generation, emission, and 
population scenarios are based in 2016. Foregone emission gaps are 43.4% for SO2 and 33.8% for NOx. 
Discount rate is set at 2%.  
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Table A.5 Monetized Actual Benefits (Avoided Damages) for RPS Policies Active in 2010, Itemized by Health 
Endpoint 

  Change in Incidence Monetary Value (in 2016 dollar) 
 Health Endpoint Pollutant  (cases, annual)  (dollars, annual)  
   Low High Low High 
 Mortality  PM2.5 + O3 -1,530 -3,000 -$17,000,000,000 -$34,000,000,000 
    Mortality, All Cause  PM2.5 -1,150 -2,600 -$13,000,000,000 -$29,000,000,000 
    Mortality, O3 Short-
term Exposure  O3 -16 -16 -$170,000,000 -$170,000,000 
    Mortality, O3 Long-
term Exposure  O3 -360 -360 -$4,000,000,000 -$4,000,000,000 
 Nonfatal Heart Attacks  PM2.5 -740 -740 -$47,000,000 -$47,000,000 
 Infant Mortality  PM2.5 -11.5 -11.5 -$140,000,000 -$140,000,000 
 Hospital Admits, All 
Respiratory  PM2.5 + O3 -159 -159 -$3,000,000 -$3,000,000 
 ER Visits, Respiratory  PM2.5 + O3 -1,820 -1,820 -$2,300,000 -$2,300,000 
 Asthma Onset  PM2.5 + O3 -5,300 -5,300 -$300,000,000 -$300,000,000 
 Asthma Symptoms  PM2.5 + O3 -940,000 -940,000 -$110,000,000 -$110,000,000 
 ER Vists, Asthma  O3 -5.8 -5.8 -$3,600 -$3,600 
 Lung Cancer Incidence  PM2.5 -80 -80 -$2,700,000 -$2,700,000 
 Hospital Admits, 
Cardiovascular  PM2.5 -146 -146 -$3,100,000 -$3,100,000 
 Hospital Admits, 
Alzheimers  PM2.5 -520 -520 -$8,900,000 -$8,900,000 
 Hospital Admits, 
Parkinsons  PM2.5 -71 -71 -$1,300,000 -$1,300,000 
 Stroke Incidence  PM2.5 -62 -62 -$2,900,000 -$2,900,000 
 Hay Fever/Rhinitis 
Incidence  PM2.5 + O3 -35,000 -35,000 -$29,000,000 -$29,000,000 
 Cardiac Arrest, Out of 
Hospital  PM2.5 -16.3 -16.3 -$750,000 -$750,000 
 ER Visits, All Cardiac  PM2.5 -350 -350 -$570,000 -$570,000 
 Minor Restricted Activity 
Days  PM2.5 -930,000 -930,000 -$89,000,000 -$89,000,000 
 School Loss Days  O3 -240,000 -240,000 -$290,000,000 -$290,000,000 
 Work Loss Days  PM2.5 -157,000 -157,000 -$37,000,000 -$37,000,000 
 Total PM Health Effects     -$13,000,000,000 -$30,000,000,000 
 Total O3 Health Effects     -$4,700,000,000 -$4,700,000,000 
 Total Health Effects       -$18,000,000,000 -$35,000,000,000 
Note: Scenario based on comparing actual RPS policies in 2010 with the counterfactual that these policies were 
not adopted, calculated using COBRA version 5.0. Actual benefits (avoided damages) for states with active RPS 
policies in 2010. Positive dollar values indicate social costs, and negative dollar values indicate societal benefits. 
Effects of clean and discrepant RPS are separately calculated. States with discrepant RPSs include AZ, CA, CO, 
CT, HI, ME, MI, MN, MO, MT, NC, ND, NM, NV, OK, OR, PA, SD, UT, VA, VT, and WA. States with clean 
RPS include DE, IL, MA, MD, NH, NJ, NY, OH, RI, and WI. Generation, emission, and population scenarios are 
based in 2016. Counterfactual emission increases are 57.6% for SO2 and 33.7% for NOx for states with a clean 
RPS. Counterfactual emission increases are 25.1% for SO2 and -0.1% for NOx for states with a discrepant RPS. 
Discount rate is set at 2%. 


