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Schedule

Last time
An analytical solution to cluter-robust inference

Today
Inference using (re)randomization †

Upcoming
The end is near. As is the �nal.

Also: The last problem set!

† These notes follow notes by Kosuke Imai, Field Experiments by Gerber and Green, and Causal Inference
for Statistics, Social, and Biomedical Sciences by Imbens and Rubin.
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https://imai.fas.harvard.edu/
https://books.wwnorton.com/books/webad.aspx?id=24003
https://www.cambridge.org/core/books/causal-inference-for-statistics-social-and-biomedical-sciences/71126BE90C58F1A431FE9B2DD07938AB
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Inference and (re)randomization

Inference recap
Our inference techniques have focused on (asymptotic) analytical methods.

�. Choose (or derive) an estimator

�. Derived the estimator's (asymptotic) distribution†

�. Construct con�dence intervals or hypothesis tests

† And, consequently, standard errors.
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Inference and (re)randomization

Resampling
Resampling methods offers a different, more computationally intense (less
asymptotically intense) approach.

A resampling method involves repeatedly drawing samples (resampling)
from a dataset and re�tting the model of interest on each sample. We can
learn about the behavior of the model through its performance across the
many iterations.†

Common implementations: Bootstrap (and jackknife), cross validation,
permutation tests/randomization inference

† This approach is very similar to our Monte Carlo simulations, except that we will sample with
replacement from a single dataset.
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The bootstrap

Basics
Bootstrapping resamples, with replacement, from the original dataset.

In each sample, we apply our estimator.
Then, we consider the distribution/properties of these estimates.

This resampling helps us better understand the uncertainty associated with
our estimator (within the current data setting).
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The bootstrap

More formally
Let's formalize the bootstrap a bit.

 denotes our original dataset (e.g.,  in our standard setup).
 refers to the estimate for  derived from our dataset .

We draw  bootstrap samples .
 represents our �rst bootstrap sample .

 is our estimator evaluated on the �rst bootstrap sample.

The bootstrapped standard error of  is the standard deviation of the 
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The bootstrap

More graphically

Z

β̂ = 0.653
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Z⋆B

β̂ = 0.978
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The bootstrap
Running this bootstrap 10,000 times

plan(multiprocess, workers = 10)
# Set a seed
set.seed(123)
# Run the simulation 1e4 times
boot_df �� future_map_dfr(
  # Repeat sample size 100 for 1e4 times
  rep(n, 1e4),
  # Our function
  function(n) {
    # Estimates via bootstrap
    est �� lm(y ~ x, data = z[sample(1:n, n, replace = T), ])
    # Return a tibble
    data.frame(int = est$coefficients[1], coef = est$coefficients[2])
  },
  # Let furrr know we want to set a seed
  .options = future_options(seed = T)
)
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The bootstrap

Comparison
In this 10,000-sample bootstrap, we calculate a standard error for  of
approximately 0.77.

If we go the old-fashioned OLS route , we estimate 0.673.

Not bad.

β̂1

(s2(X′X)
2
)
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Permutation tests

Motivation
Consider the null hypothesis of no average treatment effect, i.e.,

Ho: 

We've discussed how randomization avoids the pitfalls of selection bias.

Randomization can also clarify inference—helping quantify uncertainty.

Q How?

A We know exactly how the randomness happened (we assigned it), so we
don't need parametric assumptions to derive a distribution under Ho! 
We use the experimental design, rather than a probability model.

¯̄¯̄
Y0 =

¯̄¯̄
Y1 (⟹ ¯̄̄τ = 0)
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Permutation tests

Tea drinkers
Classic example Sir R. A. Fisher had a colleague who claimed to be able to
tell whether the tea was poured into milk or milk was poured into the tea.†

Being the friend he was, Fisher designed an experiment to determine
whether his colleague was telling the truth.

Fisher randomized the order of 8 cups of tea:

4 cups with milk added �rst
4 cups with tea added �rst

Vindication! His colleague got all 8 correct. 
Q With random guessing, how likely is correctly guessing all 8 cups?

† Don't worry, Fisher is known for more than this one experiment.
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Permutation tests

Tea drinkers 2
Q With random guessing, how likely is correctly guessing all 8 cups?

This question re�ects our understanding of a p-value.

If Fisher's colleague had no ability and simply guessed (Ho), what is the
probability she would have guessed all 8 cups correctly?

Fisher's Ho: the answers were unrelated to the cups' actual contents.

Under this hypothesis, we can re-randomize the cups and see how many
times her answer was perfectly correct.

This is the idea behind permutation testing and randomization inference.
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Permutation tests

Tea drinkers with a vengeance

So our permutation-test-based p-value is 1/70  0.0143.  Reject Ho.≈ ⟹
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Permutation tests

Generalization
The procedure for permutation-based hypothesis testing† is the same as
our "standard" asymptotic-based hypothesis testing.

�. De�ne hypotheses, Ho and Ha.
�. Choose our rejection threshold  (tolerated type-I error rate).
�. Choose a test statistic that is a function of our sample.
�. Derive/calculate the test statistic's distribution under Ho.
�. Compute the p-value by comparing test stat. to its Ho distribution.
�. Conclusions—reject or fail to reject Ho.

The di�erence: Permutation tests use the randomization's mechanism to
construct the test-statistic's exact distribution under Ho.

† Also called Fisher's exact test, as you get exact p-values.

α
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Permutation tests

More generally
Fisher focused on testing a sharp null hypothesis—no effect for anyone, i.e.,

Ho: 

against an alternative hypothesis that someone has a non-zero effect

Ha:  for some  

A sharp null hypothesis is speci�ed for all individuals, e.g.,

Ho: 

which differs from the ATE-based nulls that we normally consider, e.g.,

Ho: .

Y1i − Y0i = 0 ∀i (⟹ τi = 0 ∀i)

Y1i − Y0i ≠ 0 i (⟹ ∃i s.t. τi ≠ 0)

Y1i − Y0i = C ∀i

E[Y1i − Y0i] = C
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Permutation tests

Key insight
Our estimate (or test statistic) is a function of

�. individuals' responses 
�. individuals' treatment assignments 

Under the sharp null Ho:  

 (i.e., changing  will not affect observed )

Permutations of  construct the exact null distribution (unchanged ).

The number of possible permutations can get big—e.g., 500 treated and 500
control has 2.7  10299 options. Approximate the distribution by sampling.

(Yi)

(Di)

τi = 0 (∀i)

Y0i = Y1i = Yi ∀i Di Yi

D Y

×
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Permutation tests

Different inference
In his 2019 paper Channeling Fisher: Randomization Tests and the
Statistical Insigni�cance of Seemingly Signi�cant Experimental Results,
Alwyn Young 'updates' inference from 53 experimental papers by using
randomization-based inference.

In the average paper, randomization tests of the signi�cance of
individual treatment effects �nd 13% to 22% fewer signi�cant
results than are found using authors’ methods.

Young (2019)
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Permutation tests

Different inference?
It's certainly possible authors and methods can be wrong.

However, permutation-based inference itself may generate differences
relative to the more standard, derived, asymptotics-based estimators.

Why?

�. We are testing different null hypotheses (sharp vs. non-sharp).
�. The two estimators have different asymptotic properties.†

† Thanks go to Alberto Abadie for this point.
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Permutation tests

On average
The sharp null was central to Fisher's interpretation.

Neyman et al. (1935) extended† this idea of permutation-based tests to the
average treatment effect (testing Ho: ).

Neyman and others also added standard errors and con�dence intervals.

These extensions have come to be known as randomization inference.††

E[Y1i] − E[Y0i] = 0

† Fisher, paraphrased: 🤬   
†† Permutation tests and Randomization inference are not the most strictly de�ned terms.
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https://www-jstor-org.libproxy.uoregon.edu/stable/2983637
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Randomization inference

Setup
In order to generalize our null hypothesis to the average treatment effect,

Ho: 

we have to give up something.

�. If we want an exact null distribution, then we must assume a uniform
treatment effect. (Assuming our way back to a sharp null.)

�. If we want to avoid assuming , then we have to accept a non-
exact null distribution. (We don't observe  for .)

If we don't like either option, then we need to go back to deriving
asymptotic properties via probability modeling assumptions.

¯̄̄τ = 0 ⟹ E[Y1i − Y0i] = 0

τi = ¯̄̄τ ∀i

Y0i Di = 1
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Randomization inference

Implementation
Once we decide which simpli�cation we're willing to accept, we proceed
similarly to permutation tests:

shuf�e  in a way that mimics treatment assignment

collect test statistics from each iteration

Note Monte Carlo simulations, bootstrap, permutation tests, and
randomization all apply very similar processes.

D
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Randomization inference

(Which) Test statistics
We still need to choose a test statistic on which we base the p-value.

The actual estimate—difference in means or coef�cient
Transformed estimates
Quantiles, e.g., the median
t statistic
Rank statistics

We can also extend this idea to con�dence intervals.

E.g., Use the point estimates associated with the 2.5th and 97.5super[th]
percentiles to construct a 95% con�dence interval.
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Randomization inference

Example
Back to the LaLonde NSW dataset. We previously estimated

the NSW increased real earnings by  $886.30
(het.-robust) standard error of $488.20
t statistic  1.82 with p-value  0.0699

Let's re-randomize treatment 10,000 times. In each iteration , calculate

�. , the point estimate (the regression coef�cient)
�. , the t statistic

Then calculate the implied p-values using the location of  and  in the
distributions of  and , respectively.†

β̂1 ≈

tstat ≈ ≈

r

β̂
r

1

tr
stat

β̂1 tstat

β̂
r

1 tr
stat

† Very similar exercise for con�ence intervals.
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Randomization inference

Example: Re-randomization
The main decision is how to generate treatment.

Q Should we permute  or draw  for each individual?†

A How was the original randomization conducted?

We'll assume the NSW started with a set number of treatments to disperse.

D Di

† The difference is in whether we hold the number of treated individuals constant.
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First, we'll write a function that performs one iteration.

# Arguments: 'i' (iteration), 'n_t' (# of trt)
fun_randomization �� function(i) {
  # Sample the treatment vector. NOTE� Sampling WITHOUT replacement
  t_i �� sample(nsw_df$treat, size = nrow(nsw_df), replace = F)
  # Regression using our re�randomized treatment
  est_i �� lm_robust(re78 ~ t_i, data = nsw_df) %>% tidy()
  # Return tibble with iteration, point estimate, and test statistic
  tibble(i, est = est_i[2,"estimate"], t_stat = est_i[2,"statistic"])
}

And now run the re-randomization function 10,000 times.

# Set up parallelization and seed
plan(multiprocess, workers = 4); set.seed(1234)
# Run the simulation 1e4 times
random_df �� future_map_dfr(
  1:1e4,
  fun_randomization,
  .options = future_options(seed = T)
)



Result 1 Share  0.0618. (Original p-value  0.0699)∣∣β̂
r

1
∣∣ > β̂1 = =



Result 2 Share  0.0715. (Original p-value  0.0699)∣∣tr
stat

∣∣ > tstat = =



Randomization inference

Con�dence intervals
To construct con�dence intervals, we invert randomization-based
hypothesis tests, imposing a range of null hypotheses.

E.g., To construct a 95% C.I. for 

�. Impose the null hypothesis Ho:  for many values of .
�. Find all values of  that do not reject  at the 5% level.

Note We must to be able to clearly impose the null in our "model".

τ̂

τ = τo τo

τo τ̂

34 / 42



Constructing a 95% con�dence interval



Athey and Imbens (2016) on regression and randomization inference:†

Although these methods [regression] remain the most popular
way of analyzing data from randomized experiments, we suggest
caution in using them.

... In particular there is a disconnect between the way the
conventional assumptions in regression analyses are formulated
and the implications of randomization. As a result it is easy for
the researcher using regression methods to go beyond analyses
that are justi�ed by randomization, and end up with analyses
that rely on a dif�cult-to-assess mix of randomization
assumptions, modeling assumptions, and large sample
approximation.

† Speci�cally in the context of experiments, though the concerns should remain in other contexts.

https://arxiv.org/pdf/1607.00698.pdf


Athey and Imbens (2016) on regression and randomization inference:†

Ultimately we recommend that researchers wishing to use
regression or other model-based methods rather than the
randomization-based methods we prefer, do so with care. For
example, using only indicator variables based on partitioning the
covariate space, rather than using multi-valued variables as
covariates in the regression function preserves many of the �nite
sample properties that simple comparisons of means have, and
leads to regression estimates with clear interpretations. In
addition, in many cases the potential gains from regression
adjustment can also be captured by careful ex ante design, that
is, through strati�ed randomized experiments to be discussed in
the next section, without the potential costs associated with ex
post regression adjustment.

† Speci�cally in the context of experiments, though the concerns should remain in other contexts.

https://arxiv.org/pdf/1607.00698.pdf
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Randomization and clustering

The plot thickens
Permutation tests and randomization inference both work because we
know† the process through which treatment was randomly assigned.

If treatment is correlated within groups, then our bootstraps, permutations,
and re-randomizations need to re�ect this dependence.

† Or claim to understand.
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Further reading

Papers
Bootstrap-Based Improvements for Inference with Clustered Errors  
Cameron, Gelbach, and Miller (2008)

The Econometrics of Randomized Experiments Athey and Imbens (2016)

Randomization Inference With Natural Experiments  
Ho and Imai (2012)  
Also: Notes by Kosuke Imai
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https://www.mitpressjournals.org/doi/abs/10.1162/rest.90.3.414
https://arxiv.org/pdf/1607.00698.pdf
https://www.tandfonline.com/doi/abs/10.1198/016214505000001258
https://imai.fas.harvard.edu/


Further reading

Books: Resampling methods and the bootstrap

An Introduction to Statistical Learning  
James, Witten, Hastie, and Tibshirani

Elements of Statistical Learning  
Hastie, Tibshirani, and Friedman

Books: Permutation tests and randomization inference

Causal Inference for Statistics, Social, and Biomedical Sciences 
Imbens and Rubin

Field Experiments  
Gerber and Green
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http://www-bcf.usc.edu/~gareth/ISL/
https://web.stanford.edu/~hastie/ElemStatLearn/
https://www.cambridge.org/core/books/causal-inference-for-statistics-social-and-biomedical-sciences/71126BE90C58F1A431FE9B2DD07938AB
https://books.wwnorton.com/books/webad.aspx?id=24003
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