Inference: Clustering

EC 607, Set 11

Edward Rubin Spring 2021

Prologue

Schedule

Last time

Regression discontinuities

Today

Inference and clustering

Upcoming

Problem set #2 due **Thursday**.

Problem set #3 coming soon.

Motivation

So far, we've focused on carefully **obtaining causal estimates** of the effect of some treatment D_i on our outcome Y_i .

Our discussion of research designs and their requirements/assumptions has centered on avoiding selection and securing unbiased and/or consistent estimates for τ .

In other words, we've concentrated on **point estimates**.

What about **inference**?

Shminference †

Q Why care about inference?

A I'll give you two reasons.

- 1. We often want to **test theories/hypotheses**. Point estimates (*i.e.*, $\hat{\beta}$) can't do this alone. Inference finishes the job.
- 2. Other times, we want to *measure* the effect of a treatment. Inference helps us think about the **precision** of our estimates.

Note: Similar reasoning can apply to bounding forecasting/predictions.

If you want answers, then you need to do inference correctly.

What's so complicated?

Angrist and Pischke told us that "correcting" our standard errors for heteroskedasticity may increase the standard errors up to 25%.

What else are we worried about?

What we're worried about

- Transformations of estimators, i.e., $\mathrm{Var}\Big[f\left(\hat{eta}\right)\Big]
 eq f\Big(\mathrm{Var}\Big[\hat{eta}\Big]\Big)$
- Dependence/correlation in our disturbance, i.e., $\mathrm{Cov}ig(arepsilon_i,\,arepsilon_jig)
 eq 0$
 - \circ Autocorrelation $\varepsilon_t = \rho \varepsilon_{t-1} + \varepsilon_t$
 - \circ Correlated shocks within groups $arepsilon_i = arepsilon_{g(i)} + arepsilon_i$
- Finite-sample properties vs. asymptotic properties
- Power and minimal detectable effects
- Multiple-hypothesis testing and p-hacking

In other words: We've got a lot to worry/think about.

Setup

Many studies—observational and experimental—have a treatment that is assigned to all/most individuals within a group.

- Classrooms/schools
- Households
- Villages/counties/states

Furthermore, we might imagine individuals within the same group may have correlated disturbances. For i and j in group g

$$\mathrm{Cov}ig(arepsilon_i,\,arepsilon_jig)=Eig[arepsilon_iarepsilon_jig]=
ho_arepsilon\sigma_arepsilon^2$$

where ρ_{ε} gives the within-group correlation of disturbances—what MHE calls the intraclass correlation coefficient.

Setup

In other words, we have a regression

$$y_i = eta_0 + eta_1 x_{g(i)} + arepsilon_i$$

where individual i is in group g, and $X_{q(i)}$ only varies across groups.

For within-group correlation, we can use an additive random-effects model

$$arepsilon_i =
u_{g(i)} + \eta_i$$

meaning group members all receive a common shock $\nu_{g(i)}$, and individuals receive independent shocks η_i .

Note We assume η_i is independent of η_j $(i \neq j)$ and ν_g $(\forall g)$.

Additive random effects

Based upon this model we've set up

$$arepsilon_i =
u_{g(i)} + \eta_i$$

the covariance between individuals i and j in group g is

$$egin{aligned} \operatorname{Cov}ig(arepsilon_i,\,arepsilon_jig) &= Eig[arepsilon_iarepsilon_jig] = Eig[ig(
u_g + \eta_iig)\,ig(
u_g + \eta_jig)ig] = Eig[
u_g^2ig] = \sigma_
u^2 \ &=
ho_arepsilon\sigma_arepsilon^2 \ &=
ho_arepsilon\,ig(\sigma_
u^2 + \sigma_\eta^2ig) \end{aligned}$$

Thus, we can write the intraclass correlation coefficient as

$$ho_arepsilon = rac{\sigma_
u^2}{\sigma_arepsilon^2} = rac{\sigma_
u^2}{\sigma_
u^2 + \sigma_\eta^2}$$

What is ρ_{ε} ?

Let's review what we know.

$$arepsilon_i =
u_{g(i)} + \eta_i \qquad ext{and} \qquad
ho_arepsilon = rac{\sigma_
u^2}{\sigma_arepsilon^2} = rac{\sigma_
u^2}{\sigma_
u^2 + \sigma_\eta^2}$$

One way to think about ρ_{ε} is as the share of the variance of the disturbance ε_i accounted for by the shared disurbance $\nu_{g(i)}$.

As $u_{g(i)}$ accounts for more and more of the variation in ε_i , $\rho_{\varepsilon} \to 1$.

So...

Q Why do we care about ρ_{ε} ?

A It tells us by how wrong our standard errors can be if we treat all observations as independent.

Let ${
m Var}_o{\left(\hat{eta}_1
ight)}$ denote the conventional variance formula for OLS estimator. †

Let $\operatorname{Var}(\hat{\beta}_1)$ denote the actual variance of $\hat{\beta}_1$.

So....

With (1) nonstochastic regressors fixed by group and (2) groups of size n

$$rac{ ext{Var}ig(\hat{eta}_1ig)}{ ext{Var}_oig(\hat{eta}_1ig)} = 1 + (n-1)
ho_arepsilon \quad \Longrightarrow \quad rac{ ext{S.E.}ig(\hat{eta}_1ig)}{ ext{S.E.}_oig(\hat{eta}_1ig)} = \sqrt{1 + (n-1)
ho_arepsilon}$$

The term $\sqrt{1+(n-1)\rho_{\varepsilon}}$ is called the **Moulton factor**[†].

The Moulton factor tells us by what factor standard errors will be wrong if we ignore within-group correlation (conditional on assumptions 1 and 2).

- Q What happens if $\rho = 1$? What if you duplicated your dataset?
- \mathbf{Q} What happens as n increases?

[†] After Moulton (1986). Derivation: MHE 323-325.

The Moulton factor

The Moulton factor

$$rac{ ext{S.E.} \left(\hat{eta}_1
ight)}{ ext{S.E.}_o \left(\hat{eta}_1
ight)} = \sqrt{1 + (n-1)
ho_arepsilon}$$

shows even when ρ_{ε} is small, we can have vary large standard error issues.

Ex An experiment on 400 schools, each with 1,000 students.

If
$$ho_{arepsilon}=0.01$$
, the Moulton factor is $\sqrt{1+(1,000-1) imes0.01}pprox3.32$.

Test statistics

Recall
$$t_{ ext{stat}} = rac{\hat{eta}_1}{ ext{S.E.} \left(\hat{eta}_1
ight)}.$$

$$\therefore \frac{t_o}{t} = \frac{\hat{\beta}_1/\operatorname{S.E.}_o\left(\hat{\beta}_1\right)}{\hat{\beta}_1/\operatorname{S.E.}\left(\hat{\beta}_1\right)} = \frac{\operatorname{S.E.}\left(\hat{\beta}_1\right)}{\operatorname{S.E.}_o\left(\hat{\beta}_1\right)} = \text{the Moulton factor.}$$

Ex Thus, in our example of 400 schools with 1,000 students, ignoring within-school correlation of $\rho_{\varepsilon}=$ 0.01 would lead us test statistics that are more than 3 times as large as they should be.

This is why economics seminars have standard-error police.

Relaxing assumptions

If we allow regressors to vary by individual and groups to differ in size (n_g) ,

$$rac{ ext{Var}\Big(\hat{eta}_1\Big)}{ ext{Var}_o\Big(\hat{eta}_1\Big)} = 1 + \left[rac{ ext{Var}ig(n_gig)}{\overline{n}} + \overline{n} - 1
ight]
ho_x
ho_arepsilon$$

where ho_x denotes the intraclass (within-group) correlation of x_i .

Important The Moulton factor for this general model depends upon the amount of within-group correlation in x_i and ε_i .

The special case is also important, as treatment is often fixed at some level.

[†] See MHE for mathematical definitions and the derivation.

The answer

Q So what do we do now?

A We've got options (as usual)

- 1. Parametrically model the random effects
- 2. Cluster-robust standard error (estimator)
- 3. Aggregate up to the group (or a similar method)
- 4. Block (group-based) bootstrap
- 5. GLS/MLE modeling y_i and $arepsilon_i$

Most common: Cluster-robust standard errors

Runner up: Block bootstrap

Second runner up: Group-level analysis

Cluster-robust standard errors

Liang and Zeger (1986) extend White's heteroskedasticity-robust covariance matrix to allow for both clustering and heteroskedasticity.[†]

$$\hat{\Omega}_{ ext{cl}} = \left(ext{X}' ext{X}
ight)^{-1} \left(\sum_g ext{X}_g' \hat{\Psi}_g ext{X}_g
ight) \left(ext{X}' ext{X}
ight)^{-1}$$

$$\hat{\Psi}_g = ae_ge_g' = a egin{bmatrix} e_{1g}^2 & e_{1g}e_{2g} & \cdots & e_{1g}e_{n_gg} \ e_{1g}e_{2g} & e_{2g}^2 & e_{2g} \cdots & e_{2g}e_{n_gg} \ dots & dots & \ddots & dots \ e_{1g}e_{n_gg} & e_{2g}e_{n_gg} & \cdots & e_{n_gg}^2 \end{bmatrix}$$

where e_g are the OLS residuals for group g, e_{ig} is the residual for individual i in group g, and a is a degrees-of-freedom adjustment.

† When people say clustering, they typically mean correlated disturbances within a group.

Cluster-robust standard errors

Derivation Let \mathbf{x}_i denote observation i (row) from \mathbf{X} .

$$Var\left(\hat{\beta}\middle|\mathbf{X}\right) = E\left[\left(\hat{\beta} - \beta\right)\left(\hat{\beta} - \beta\right)'\middle|\mathbf{X}\right] = E\left[\left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'\varepsilon\varepsilon'\mathbf{X}\left(\mathbf{X}'\mathbf{X}\right)^{-1}\middle|\mathbf{X}\right]$$
$$= \left(\mathbf{X}'\mathbf{X}\right)^{-1}\mathbf{X}'E\left[\varepsilon\varepsilon'\middle|\mathbf{X}\right]\mathbf{X}\left(\mathbf{X}'\mathbf{X}\right)^{-1}$$

$$=\left(\sum_{i=1}^{N} extbf{x}_i' extbf{x}_i
ight)^{-1} \left(\sum_{i=1}^{N} \sum_{j=1}^{N} extbf{x}_i' extbf{x}_j oldsymbol{E}ig[arepsilon_jarepsilon_i| extbf{X}ig]
ight) \left(\sum_{i=1}^{N} extbf{x}_i' extbf{x}_i
ight)^{-1}$$

Q Can we estimate $\left(\sum_{i}\sum_{j}\mathbf{x}_{i}'\mathbf{x}_{j}E\left[\varepsilon_{j}\varepsilon_{i}|\mathbf{X}\right]\right)$ with $\sum_{i}\sum_{j}\mathbf{x}_{i}'\mathbf{x}_{j}e_{j}e_{i}=\mathbf{X}'ee'\mathbf{X}$?

A No. Recall with OLS, $\mathbf{X}'e=\mathbf{0}$. But we will do something similar.

Cluster-robust standard errors

Imagine we have G clusters with some unknown dependence between observations within a cluster and independence between clusters.

Then we can ignore $\mathbf{x}_i'\mathbf{x}_j E[\varepsilon_j \varepsilon_i | \mathbf{X}]$ if i and j are in different clusters.

We can estimate $\sum_{i} \sum_{j} \mathbf{x}_{i}' \mathbf{x}_{j} E[\varepsilon_{j} \varepsilon_{i} | \mathbf{X}]$ with

$$\sum_{g=1}^G \left(\sum_{i=1}^{N_g}\sum_{j=1}^{N_g} \mathbf{x}_i'\mathbf{x}_j e_j e_i
ight) = \sum_{g=1}^G \mathbf{X}_g' e_g e_g' \mathbf{X}_g$$

I.e., to learn about within-group covariance, we calculate these within-group cross products and then sum over groups.[†]

Guidelines for group number/size

Large G, Small N_q

Clustered standard errors work well. $G>N_q$ and G>20.

Large G, Large N_g

We might be concerned about the number of within-group cross terms here. However, for moderately large G (50?), cluster-robust standard errors appear to perform well with large N_g .

Small G, Large N_q

Cluster-robust standard errors do not work well (definitely G < 10). Options Collapse groups? Wild clustered bootstrap?

Small G, Small N_q

Essentially the same issues and solutions as small G with large N_q .

Further extensions

We've discussed the standard cluster-robust variance-covariance estimator.

Multi-way clustering allows multiple levels/dimensions in which individuals are *clustered*.

- For nested clusters (e.g., state and county), people commonly cluster at the highest (largest) unit.
- For non-nested clusters (e.g., state and year), Cameron, Gelbach, and Miller (2011) provide a covariance estimator

$$ext{Var} \Big(\hat{eta} \Big) = ext{Var}_{ ext{State}} \Big(\hat{eta} \Big) + ext{Var}_{ ext{Year}} \Big(\hat{eta} \Big) - ext{Var}_{ ext{State-Year}} \Big(\hat{eta} \Big)$$

where $\mathrm{Var}_{\mathrm{State}} \Big(\hat{eta} \Big)$ denotes the covariance of \hat{eta} clustered by state.

Further extensions

We've discussed the standard cluster-robust variance-covariance estimator.

The term **Conley standard errors** is often used to describe situations in which you have spatial clustering/correlation that you can describe via a function like spatial distance.[†]

See Conley (1999) for the paper and this blog by Dan Christensen and Thiemo Fetzer for practical implementation in R and Stata.

[†] They also are robust to heteroskedasticity and autocorrelation within units.

Cluster-robust standard errors

So now you know what lm_robust(), iv_robust(), etc. are doing when you specify a variable for clustering (e.g., clusters = var).

lm_robust() without clustering

```
# Estimate without clusters
vote_no ← lm_robust(
  voteA ~ expendA + expendB,
  fixed_effects = state,
  data = wooldridge::vote1
)
```

lm_robust() with clustering

```
# Estimate with clusters
vote_cl ← lm_robust(
  voteA ~ expendA + expendB,
  fixed_effects = state,
  clusters = state,
  data = wooldridge::vote1
)
```

Cluster-robust standard errors

Alternatives for clustering: felm() from lfe and feols() from fixest.

felm() clustering by state

```
# Estimate with clusters
est_felm = felm(
  voteA ~ expendA + expendB |
  state |
  0 |
  state,
  data = wooldridge::vote1
)
```

feols() clustering by state

```
# Estimate with clusters
est_feols = feols(
  voteA ~ expendA + expendB |
  state,
  data = wooldridge::vote1
)
# Force cluster-rob. SEs
summary(
  est_feols,
  se = "cluster",
  cluster = "state"
)
```

Time for a simulation.

Cluster simulation

Cluster simulation

The DGP

Let's opt for a simple-ish example.

$$egin{aligned} y_{ig} &= \left(eta_0 = 1
ight) + \left(eta_1 = 2
ight) x_{1,g} + \left(eta_2 = 0
ight) x_{2,g} + arepsilon_{ig} \ arepsilon_{ig} &=
u_g + \eta_i \end{aligned}$$

where the $\eta_i \perp \eta_j$, $\eta_i \perp \nu_g$, and $\nu_g \perp \nu_h$.

Let's assume $\eta_i \sim N(0,1)$ and $u_g \sim N(0,1)$. And $x_g \sim N(0,1)$.

Plus $N_g=100$ with 10 groups.

Note Small G with large-ish N_g .

[†] So we have more room for problem sets/exams.

First we need to write the data generating process for one iteration.

```
# The DGP
sim dgp \leftarrow function(n = 100, n grps = 10, \sigma v = 1, \sigma \eta = 1) 
  # Create the right number of observations
  sample df \leftarrow expand.grid(i = 1:n, g = 1:n grps) %>% as tibble()
  # Create a unique ID (from 1 to number of observations)
  sample df \%% mutate(id = 1:(n * n grps))
  # Sample v at the group level (NOTE: DON'T FORGET TO UNGROUP)
  sample df %<>% group by(g) %>%
    mutate(v = rnorm(1, sd = \sigma v)) \% > \% ungroup()
  # Sample n at the individual level
  sample_df %\diamond% mutate(\eta = rnorm(n * n_grps, sd = \sigma\eta))
  # Sample x g from N(0,1)
  sample_df %<>% group_by(g) %>%
    mutate(x1 = rnorm(1), x2 = rnorm(1)) \%>\% ungroup()
  # Calculate v
  sample_df %>% mutate(y = 1 + 2 * x1 + 0 * x2 + v + \eta)
  # Return
  return(sample df)
```

Now we **analyze** the data within one iteration.

```
# Analvze 'data'
sim analyze ← function(data) {
 # Conventional SEs
 result ols ← lm robust(
   y ~ x1 + x2, data = data, se type = "classical"
 ) %>% tidy() %>% filter(term %in% c("x1", "x2")) %>% select(1:5) %>%
 mutate(type = "conventional")
 # Cluster-robust SEs
 result cl ← lm robust(
   y \sim x1 + x2, data = data, clusters = g
 ) %>% tidy() %>% filter(term %in% c("x1", "x2")) %>% select(1:5) %>%
 mutate(type = "clustered")
 # Bind results together and add column for standard errors
 results df ← bind rows(result ols, result cl)
 # Return results
 return(results df)
```

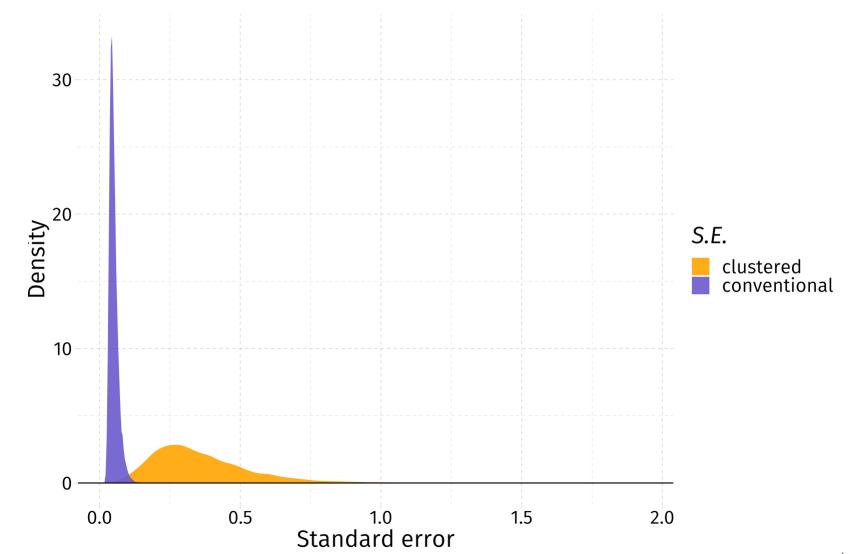
Now put the pieces together.

```
# Join sim_dgp and sim_analyze
sim_iter ← function(n = 100, n_grps = 10, σv = 1, ση = 1) {
    # Run the analysis in sim_analyze on the output of sim_dgp
    sim_dgp(n = 100, n_grps = 10, σv = 1, ση = 1) %>% sim_analyze()
}
```

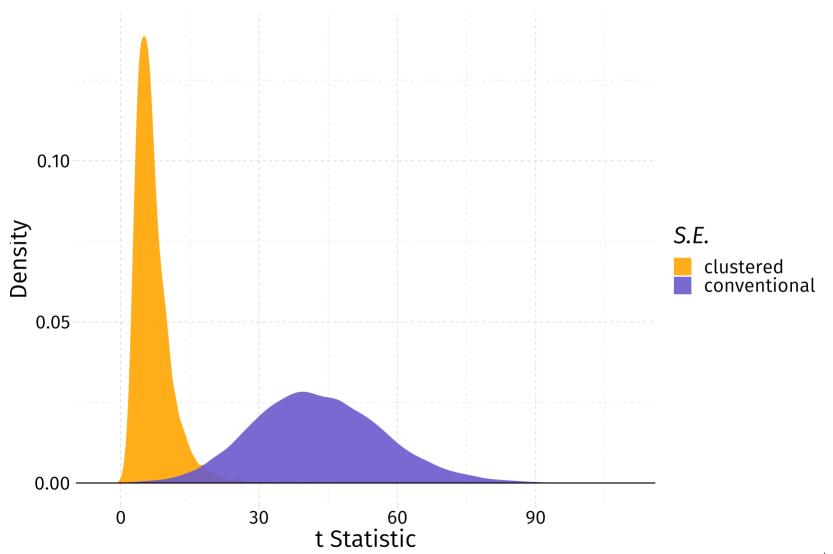
And we **run the simulation** (10,000 times).

```
# Load and set up furrr
p load(furrr)
plan(multiprocess, workers = 10)
# Set a seed
set.seed(1234)
# Run the simulation 1e4 times
sim_df ← future_map_dfr(
 # Repeat sample size 100 for 1e4 times
 rep(100, 1e4),
 # Our function
 sim_iter,
 # Let furrr know we want to set a seed
  .options = future_options(seed = T)
```

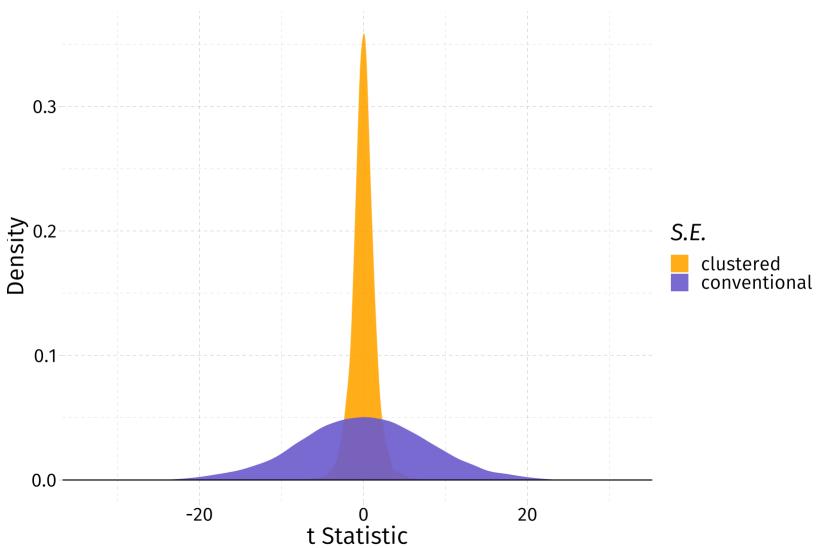
Comparing standard errors for $\hat{\beta}_1$ (coefficient on x_1)



Comparing t statistics for $\hat{\beta}_1$ (coefficient on x_1)



Comparing t statistics for \hat{eta}_2 (coefficient on x_2)



Rejection rates

term	type	mean(p.value < 0.05)
x1	clustered	0.881
x1	conventional	1
x2	clustered	0.0334
x2	conventional	0.802

- We definitely can see the **need for clustering**.
 Conventional standard errors are rejecting a true H_o 80% of the time.
- 2. Cluster-robust standard errors are struggling a bit in this situation. Small G; large N_q . Rejecting false H_o 88% and true H_o 3.7% of the time.

Resources from the literature

When Should You Adjust Standard Errors for Clustering? Abadie, Athey, Imbens, and Wooldridge

A Practitioner's Guide to Cluster-Robust Inference Cameron and Miller (2015)

Robust Inference With Multiway Clustering Cameron, Gelbach, and Miller (2011)

Bootstrap-Based Improvements for Inference with Clustered Errors Cameron, Gelbach, and Miller (2008)

How Much Should We Trust Differences-In-Differences Estimates? Bertrand, Duflo, and Mullainathan (2004)

Table of contents

Inference

- 1. Motivation
- 2. Clustering
- 3. Moulton factors
 - Example
 - Test statistics
- 4. Answers
- 5. Cluster-robust S.E.s
- 6. Clustering extensions
- 7. Simulation
- 8. Resources