Matching

EC 607, Set 8

Edward Rubin
Spring 2021

Prologue

Schedule

Last times

- DAGs
- The conditional independence assumption: $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$
- Omitted variable bias
- Good vs. bad controls

Today

- First problem set!
- Matching estimators (MHE 3.2 and Cameron and Trivedi 25.4).

Matching

Matching

The gist

Remember the conditional independence assumption ${ }^{\dagger}$ in a setting-i.e., treatment is as-good-as random conditional on a known set of covariates?

Matching

The gist

Remember the conditional independence assumption ${ }^{\dagger}$ in a setting-i.e., treatment is as-good-as random conditional on a known set of covariates?

Matching estimators take us at our word.

Matching

The gist

Remember the conditional independence assumption ${ }^{\dagger}$ in a setting-i.e., treatment is as-good-as random conditional on a known set of covariates?

Matching estimators take us at our word.
If we really believe $\left(\mathrm{Y}_{1 i}, \mathrm{Y}_{0 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then we can just calculate a bunch of treatment effects conditional on $\mathrm{X}_{\text {i }}$, i.e.,

$$
\tau(x)=E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{X}_{i}=x\right]
$$

Matching

The gist

Remember the conditional independence assumption ${ }^{\dagger}$ in a setting-i.e., treatment is as-good-as random conditional on a known set of covariates?

Matching estimators take us at our word.
If we really believe $\left(\mathrm{Y}_{1 i}, \mathrm{Y}_{0 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then we can just calculate a bunch of treatment effects conditional on $\mathrm{X}_{\text {i }}$, i.e.,

$$
\tau(x)=E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{X}_{i}=x\right]
$$

The idea: Estimate a treatment effect only using observations with (nearly?) identical values of X_{i}.

Matching

The gist

Remember the conditional independence assumption ${ }^{\dagger}$ in a setting-i.e., treatment is as-good-as random conditional on a known set of covariates?

Matching estimators take us at our word.
If we really believe $\left(\mathrm{Y}_{1 i}, \mathrm{Y}_{0 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then we can just calculate a bunch of treatment effects conditional on X_{i}, i.e.,

$$
\tau(x)=E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{X}_{i}=x\right]
$$

The idea: Estimate a treatment effect only using observations with (nearly?) identical values of \mathbf{X}_{i}. The CIA buys us causality within these groups.

Matching

Goals

Let's return to the fundamental problem of causal inference for a moment.

1. We want/need to know $\tau_{i}=\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}$.
2. We cannot simultaneously observe both $\mathrm{Y}_{1 i}$ and $\mathrm{Y}_{0 i}$.

Matching

Goals

Let's return to the fundamental problem of causal inference for a moment.

1. We want/need to know $\tau_{i}=\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}$.
2. We cannot simultaneously observe both $\mathrm{Y}_{1 i}$ and $\mathrm{Y}_{0 i}$.

Most empirical strategies boil to strategies to estimate $\mathrm{Y}_{0 i}$ for treated individuals-the unobservable counterfactual for the treatment group.

Matching

Goals

Let's return to the fundamental problem of causal inference for a moment.

1. We want/need to know $\tau_{i}=\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}$.
2. We cannot simultaneously observe both $\mathrm{Y}_{1 i}$ and $\mathrm{Y}_{0 i}$.

Most empirical strategies boil to strategies to estimate $\mathrm{Y}_{0 i}$ for treated individuals-the unobservable counterfactual for the treatment group.

Matching is no different.
We match untreated observations to treated observations using X_{i}, i.e., calculate a $\widehat{\mathrm{Y}_{0 i}}$ for each $\mathrm{Y}_{1 i}$, based upon "matched" untreated individuals.

Matching

More formally

We want to construct a counterfactual for each individual with $\mathrm{D}_{i}=1$.

Matching

More formally

We want to construct a counterfactual for each individual with $\mathrm{D}_{i}=1$.
The counterfactual for i should only use individuals that match X_{i}.

Matching

More formally

We want to construct a counterfactual for each individual with $\mathrm{D}_{i}=1$.
The counterfactual for i should only use individuals that match X_{i}.
Let there be N_{T} treated individuals and N_{C} control individuals. We want

- N_{T} sets of weights
- with N_{C} weights in each set

Matching

More formally

We want to construct a counterfactual for each individual with $\mathrm{D}_{i}=1$.
The counterfactual for i should only use individuals that match X_{i}.
Let there be N_{T} treated individuals and N_{C} control individuals. We want

- N_{T} sets of weights
- with N_{C} weights in each set: $w_{i}(j)\left(i=1, \ldots, N_{T} ; j=1, \ldots, N_{C}\right)$

Matching

More formally

We want to construct a counterfactual for each individual with $\mathrm{D}_{i}=1$.
The counterfactual for i should only use individuals that match X_{i}.
Let there be N_{T} treated individuals and N_{C} control individuals. We want

- N_{T} sets of weights
- with N_{C} weights in each set: $w_{i}(j)\left(i=1, \ldots, N_{T} ; j=1, \ldots, N_{C}\right)$

Assume $\sum_{j} w_{i}(j)=1$. Our estimate for the counterfactual of treated i is

$$
\widehat{\mathrm{Y}_{0 i}}=\sum_{j \in(D=0)} w_{i}(j) \mathrm{Y}_{j}
$$

Matching

More formally

If our estimated counterfactual for treated individual i is

$$
\widehat{\mathrm{Y}_{0 i}}=\sum_{j} w_{i}(j) \mathrm{Y}_{j}
$$

then our estimated treatment effect (for individual i) is

$$
\hat{\tau}_{i}=\mathrm{Y}_{1 i}-\widehat{\mathrm{Y}_{0 i}}=\mathrm{Y}_{1 i}-\sum_{j} w_{i}(j) \mathrm{Y}_{j}
$$

Matching

More formally

If our estimated counterfactual for treated individual i is

$$
\widehat{\mathrm{Y}_{0 i}}=\sum_{j} w_{i}(j) \mathrm{Y}_{j}
$$

then our estimated treatment effect (for individual i) is

$$
\hat{\tau}_{i}=\mathrm{Y}_{1 i}-\widehat{\mathrm{Y}_{0 i}}=\mathrm{Y}_{1 i}-\sum_{j} w_{i}(j) \mathrm{Y}_{j}
$$

\therefore a generic matching estimator for the treatment effect on the treated is

$$
\hat{\tau}_{M}=\frac{1}{N_{T}} \sum_{i \in(\mathrm{D}=1)}\left(\mathrm{Y}_{1 i}-\widehat{\mathrm{Y}_{0 i}}\right)=\frac{1}{N_{T}} \sum_{i \in(\mathrm{D}=1)}\left(\mathrm{Y}_{1 i}-\sum_{j \in(D=0)} w_{i}(j) \mathrm{Y}_{j}\right)
$$

Matching

Weight for it^{\dagger}

So all we need is those weights and we're done. ${ }^{+\dagger}$
†崖 $\dagger+$ Plus an interesting, policy-relevant setting with valid conditional independence. And data.

Matching

Weight for it^{\dagger}

So all we need is those weights and we're done. ${ }^{\dagger \dagger}$
Q Where does one find these handy weights?
† $\dagger+$ Plus an interesting, policy-relevant setting with valid conditional independence. And data.

Matching

Weight for it^{\dagger}

So all we need is those weights and we're done. ${ }^{\dagger+}$
Q Where does one find these handy weights?
A You've got options, but you need to choose carefully/responsibly.
E.g., if $w_{i}(j)=\frac{1}{N_{C}}$ for all (i, j), then we're back to a difference in means.

This weighting doesn't abide by our conditional independence assumption.
† $+\dagger$ Plus an interesting, policy-relevant setting with valid conditional independence. And data.

Matching

Weight for it^{\dagger}

So all we need is those weights and we're done. ${ }^{\dagger+}$
Q Where does one find these handy weights?
A You've got options, but you need to choose carefully/responsibly.
E.g., if $w_{i}(j)=\frac{1}{N_{C}}$ for all (i, j), then we're back to a difference in means.

This weighting doesn't abide by our conditional independence assumption.
The plan Choose weights $w_{i}(j)$ that indicate how close \mathbf{X}_{j} is to \mathbf{X}_{i}.
† $+\dagger$ Plus an interesting, policy-relevant setting with valid conditional independence. And data.

Matching

Proximity

Our weights $w_{i}(j)$ should be a measure of how close X_{j} is to X_{i}.

Matching

Proximity

Our weights $w_{i}(j)$ should be a measure of how close X_{j} is to X_{i}.
If X is discrete, then we can consider equality, i.e., $w_{i}(j)=\mathbb{I}\left(\mathrm{X}_{i}=\mathrm{X}_{j}\right)$, scaling as necessary to get $\sum_{j} w_{i}(j)=1$.

Matching

Proximity

Our weights $w_{i}(j)$ should be a measure of how close X_{j} is to X_{i}.
If X is continuous, then we need proximity rather than equality.

Matching

Proximity

Our weights $w_{i}(j)$ should be a measure of how close X_{j} is to X_{i}.
If X is continuous, then we need proximity rather than equality.
Nearest-neighbor matching chooses the single closest control observation using the Euclidean distance between \mathbf{X}_{i} and \mathbf{X}_{j}, i.e.,

$$
\mathrm{d}_{i, j}=\left(\mathrm{X}_{i}-\mathrm{X}_{j}\right)^{\prime}\left(\mathrm{X}_{i}-\mathrm{X}_{j}\right)
$$

Matching

Proximity

Our weights $w_{i}(j)$ should be a measure of how close X_{j} is to X_{i}.
If X is continuous, then we need proximity rather than equality.
Nearest-neighbor matching chooses the single closest control observation using the Euclidean distance between \mathbf{X}_{i} and \mathbf{X}_{j}, i.e.,

$$
\mathrm{d}_{i, j}=\left(\mathrm{X}_{i}-\mathrm{X}_{j}\right)^{\prime}\left(\mathrm{X}_{i}-\mathrm{X}_{j}\right)
$$

- $\hat{\tau}_{i}=\mathrm{Y}_{1 i}-\mathrm{Y}_{0 j}^{i}$, where $\mathrm{Y}_{0 j}^{i}$ is i^{\prime} 's nearest neighbor in the control group.
- Estimator: $\hat{\tau}_{M}=\frac{1}{N_{T}} \sum_{i} \hat{\tau}_{i}$
- Produces causal estimates if CIA is valid and we have sufficient overlap.
- Suffers from arbitrary choices of units.

Matching

Proximity

Our weights $w_{i}(j)$ should be a measure of how close X_{j} is to X_{i}.
If X is continuous, then we need proximity rather than equality.
Nearest-neighbor matching with Mahalanobis distance chooses the single closest control using Mahalanobis distance between X_{i} and X_{j}, i.e.,

$$
\mathrm{d}_{i, j}=\left(\mathrm{X}_{i}-\mathrm{X}_{j}\right)^{\prime} \Sigma_{X}^{-1}\left(\mathrm{X}_{i}-\mathrm{X}_{j}\right)
$$

where Σ_{X}^{-1} is the covariance matrix of \mathbf{X}.

Matching

Proximity

Our weights $w_{i}(j)$ should be a measure of how close X_{j} is to X_{i}.
If X is continuous, then we need proximity rather than equality.
Nearest-neighbor matching with Mahalanobis distance chooses the single closest control using Mahalanobis distance between X_{i} and X_{j}, i.e.,

$$
\mathrm{d}_{i, j}=\left(\mathrm{X}_{i}-\mathrm{X}_{j}\right)^{\prime} \Sigma_{X}^{-1}\left(\mathrm{X}_{i}-\mathrm{X}_{j}\right)
$$

where Σ_{X}^{-1} is the covariance matrix of \mathbf{X}.

- Estimator: $\hat{\tau}_{M}=\frac{1}{N_{T}} \sum_{i} \hat{\tau}_{i}$ where $\left(\hat{\tau}_{i}=\mathrm{Y}_{1 i}-\mathrm{Y}_{0 j}^{i}\right)$
- Produces causal estimates if CIA is valid and we have sufficient overlap.
- Does not suffer from arbitrary choices of units.

Matching

More neighbors?

Why limit ourselves to a single "best" match?
If we're going to let a function/algorithm choose the nearest match, can't we also let the function/algorithm choose how many matches?

Furthermore, if $N_{C} \gg N_{T}$, it we're throwing away a lot of information.
We could instead use this information and be more efficient.

Matching

More neighbors!

Kernel matching gives positive weight to all control observations within some bandwidth h, with higher weight for closer matches determined by some kernel function $K(\cdot)$,

$$
w_{i}(j)=\frac{K\left(\frac{\mathrm{X}_{j}-\mathrm{X}_{i}}{h}\right)}{\sum_{j \in(D=0)} K\left(\frac{\mathrm{X}_{j}-\mathrm{X}_{i}}{h}\right)}
$$

Matching

More neighbors!

Kernel matching gives positive weight to all control observations within some bandwidth h, with higher weight for closer matches determined by some kernel function $K(\cdot)$,

$$
w_{i}(j)=\frac{K\left(\frac{\mathrm{X}_{j}-\mathrm{X}_{i}}{h}\right)}{\sum_{j \in(D=0)} K\left(\frac{\mathrm{X}_{j}-\mathrm{X}_{i}}{h}\right)}
$$

Example The Epanechnikov kernel is defined as

$$
K(z)=\frac{3}{4}\left(1-z^{2}\right) \times \mathbb{I}(|z|<1)
$$

The Epanechnikov kernel $K(z)=\frac{3}{4}\left(1-z^{2}\right) \times \mathbb{I}(|z|<1)$

The Epanechnikov kernel $K(z)=\frac{3}{4}\left(1-z^{2}\right) \times \mathbb{I}(|z|<1)$

The Triangle kernel $K(z)=(1-|z|) \times \mathbb{I}(|z|<1)$

The Uniform kernel $K(z)=\frac{1}{2} \times \mathbb{I}(|z|<1)$

The Gaussian kernel $K(z)=(2 \pi)^{-1 / 2} \exp \left(-z^{2} / 2\right)$

Kernels

Aside

Kernel functions are good for more than just matching.
You will most commonly see/use them smoothing out densities-providing a smooth, moving-window average.

Kernels

Aside

Kernel functions are good for more than just matching.
You will most commonly see/use them smoothing out densities-providing a smooth, moving-window average.
E.g., R's (ggplot2 's) smooth, density-plotting function geom_density().
geom_density() defaults to kernel = "gaussian", but you can specify many other kernel functions (including "epanechnikov").

Kernels

Aside

Kernel functions are good for more than just matching.
You will most commonly see/use them smoothing out densities-providing a smooth, moving-window average.
E.g., R's (ggplot2 's) smooth, density-plotting function geom_density().
geom_density() defaults to kernel = "gaussian", but you can specify many other kernel functions (including "epanechnikov").

You can also change the bandwidth argument. The default is a bandwidthchoosing function called bw.nrd0().

Matching

Adding neighbors

As we add more neighbors-either moving from 1 to $n>1$ or increasing our bandwidth-we potentially increase the efficiency of our estimator.

Matching

Adding neighbors

As we add more neighbors-either moving from 1 to $n>1$ or increasing our bandwidth-we potentially increase the efficiency of our estimator.

We need to be careful not to add too many controls for each treated i.

Matching

Adding neighbors

As we add more neighbors-either moving from 1 to $n>1$ or increasing our bandwidth-we potentially increase the efficiency of our estimator.

We need to be careful not to add too many controls for each treated i.
CIA requires that we're actually conditioning on the observables-it does not allow us to take a simple average across all control observations.

Matching

The curse of dimensionality ${ }^{\dagger}$

It turns out kernel- and bandwidth-selection are not our biggest enemies.

Matching

The curse of dimensionality ${ }^{\dagger}$

It turns out kernel- and bandwidth-selection are not our biggest enemies.
As the dimension of X expands (matching on more variables), it becomes harder and harder to find a nice, close control for each treated unit.

Matching

The curse of dimensionality ${ }^{\dagger}$

It turns out kernel- and bandwidth-selection are not our biggest enemies.
As the dimension of X expands (matching on more variables), it becomes harder and harder to find a nice, close control for each treated unit.

We need a way to shrink the dimensionality of X .

Propensity-score methods

Propensity-score methods

Setup

Let's begin with two assumptions-one old and one new.

1. Conditional independence: $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$
2. Overlap: $0<\operatorname{Pr}\left(\mathrm{D}_{i}=1 \mid \mathrm{X}_{i}\right)<1$

Propensity-score methods

Setup

Let's begin with two assumptions-one old and one new.

1. Conditional independence: $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$
2. Overlap: $0<\operatorname{Pr}\left(\mathrm{D}_{i}=1 \mid \mathrm{X}_{i}\right)<1$

We can estimate an average treatment effect by conditioning on X_{i}.

Propensity-score methods

Setup

Let's begin with two assumptions-one old and one new.

1. Conditional independence: $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$
2. Overlap: $0<\operatorname{Pr}\left(\mathrm{D}_{i}=1 \mid \mathrm{X}_{i}\right)<1$

We can estimate an average treatment effect by conditioning on X_{i}.
However, overlap may fail if the dimensions of X are large and N is finite.

Propensity-score methods

Setup

Let's begin with two assumptions-one old and one new.

1. Conditional independence: $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$
2. Overlap: $0<\operatorname{Pr}\left(\mathrm{D}_{i}=1 \mid \mathrm{X}_{i}\right)<1$

We can estimate an average treatment effect by conditioning on X_{i}.
However, overlap may fail if the dimensions of X are large and N is finite.
Propensity scores provide a solution to this mess.

Propensity-score methods

The magic

It turns out that if $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then we actually only need to match/condition on $p\left(\mathrm{X}_{i}\right)=E\left[\mathrm{D}_{i} \mid \mathrm{X}_{i}\right]$.

Propensity-score methods

The magic

It turns out that if $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then we actually only need to match/condition on $p\left(\mathrm{X}_{i}\right)=E\left[\mathrm{D}_{i} \mid \mathrm{X}_{i}\right]$.
$p\left(\mathrm{X}_{i}\right)$ is the propensity score

Propensity-score methods

The magic

It turns out that if $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then we actually only need to match/condition on $p\left(\mathrm{X}_{i}\right)=E\left[\mathrm{D}_{i} \mid \mathrm{X}_{i}\right]$.
$p\left(\mathrm{X}_{i}\right)$ is the propensity score, the probability of treatment given X_{i}.

Propensity-score methods

The magic

It turns out that if $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then we actually only need to match/condition on $p\left(\mathrm{X}_{i}\right)=E\left[\mathrm{D}_{i} \mid \mathrm{X}_{i}\right]$.
$p\left(\mathrm{X}_{i}\right)$ is the propensity score, the probability of treatment given X_{i}.
Propensity-score theorem If $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid p\left(\mathrm{X}_{i}\right)$.

Propensity-score methods

The magic

It turns out that if $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then we actually only need to match/condition on $p\left(\mathrm{X}_{i}\right)=E\left[\mathrm{D}_{i} \mid \mathrm{X}_{i}\right]$.
$p\left(\mathrm{X}_{i}\right)$ is the propensity score, the probability of treatment given X_{i}.
Propensity-score theorem If $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid p\left(\mathrm{X}_{i}\right)$.
This theorem extends our CIA to a one-dimensional score, avoiding the curse of dimensionality.

Propensity-score methods

Theorem If $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid p\left(\mathrm{X}_{i}\right)$.

Proof

Propensity-score methods

Theorem If $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid p\left(\mathrm{X}_{i}\right)$.

Proof

To prove this theorem, we will show $\operatorname{Pr}\left(\mathrm{D}_{i}=1 \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right)=p\left(\mathrm{X}_{i}\right)$, i.e., D_{i} is independent of $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right)$ after conditioning on $p\left(\mathrm{X}_{i}\right)$.

Propensity-score methods

Theorem If $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid p\left(\mathrm{X}_{i}\right)$.
Proof
$\operatorname{Pr}\left[\mathrm{D}_{i}=1 \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right]$

Propensity-score methods

Theorem If $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid p\left(\mathrm{X}_{i}\right)$.
Proof

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathrm{D}_{i}=1 \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] } \\
& =E\left[\mathrm{D}_{i} \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right]
\end{aligned}
$$

Propensity-score methods

Theorem If $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid p\left(\mathrm{X}_{i}\right)$.

Proof

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathrm{D}_{i}=1 \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] } \\
& =E\left[\mathrm{D}_{i} \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] \\
& =E\left[E\left(\mathrm{D}_{i} \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right), \mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right]
\end{aligned}
$$

Propensity-score methods

Theorem If $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid p\left(\mathrm{X}_{i}\right)$.

Proof

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathrm{D}_{i}=1 \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] } \\
& =E\left[\mathrm{D}_{i} \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] \\
& =E\left[E\left(\mathrm{D}_{i} \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right), \mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] \\
& =E\left[E\left(\mathrm{D}_{i} \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, \mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right]
\end{aligned}
$$

Propensity-score methods

Theorem If $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid p\left(\mathrm{X}_{i}\right)$.

Proof

$\operatorname{Pr}\left[\mathrm{D}_{i}=1 \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right]=\cdots=E\left[E\left(\mathrm{D}_{i} \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, \mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right]$

Propensity-score methods

Theorem If $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid p\left(\mathrm{X}_{i}\right)$.

Proof

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathrm{D}_{i}=1 \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right]=\cdots=E\left[E\left(\mathrm{D}_{i} \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, \mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] } \\
& =E\left[E\left(\mathrm{D}_{i} \mid \mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right]
\end{aligned}
$$

Propensity-score methods

Theorem If $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid p\left(\mathrm{X}_{i}\right)$.

Proof

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathrm{D}_{i}=1 \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right]=\cdots=E\left[E\left(\mathrm{D}_{i} \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, \mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] } \\
& =E\left[E\left(\mathrm{D}_{i} \mid \mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] \\
& =E\left[p\left(\mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right]
\end{aligned}
$$

Propensity-score methods

Theorem If $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid p\left(\mathrm{X}_{i}\right)$.

Proof

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathrm{D}_{i}=1 \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right]=\cdots=E\left[E\left(\mathrm{D}_{i} \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, \mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] } \\
& =E\left[E\left(\mathrm{D}_{i} \mid \mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] \\
& =E\left[p\left(\mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] \\
& =p\left(\mathrm{X}_{i}\right)
\end{aligned}
$$

Propensity-score methods

Theorem If $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$, then $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i} \mid p\left(\mathrm{X}_{i}\right)$.

Proof

$$
\begin{aligned}
\operatorname{Pr} & {\left[\mathrm{D}_{i}=1 \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right]=\cdots=E\left[E\left(\mathrm{D}_{i} \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, \mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] } \\
& =E\left[E\left(\mathrm{D}_{i} \mid \mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] \\
& =E\left[p\left(\mathrm{X}_{i}\right) \mid \mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}, p\left(\mathrm{X}_{i}\right)\right] \\
& =p\left(\mathrm{X}_{i}\right)
\end{aligned}
$$

$\therefore\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i}\left|\mathrm{X}_{i} \Longrightarrow\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right) \Perp \mathrm{D}_{i}\right| p\left(\mathrm{X}_{i}\right)$

Propensity-score methods

Intuition

Q What's going on here?
X_{i} carries way more information than $p\left(\mathrm{X}_{i}\right)$, so how can we still get conditional independence of treatment by only conditioning on $p\left(\mathrm{X}_{i}\right)$?

Propensity-score methods

Intuition

Q What's going on here?
X_{i} carries way more information than $p\left(\mathrm{X}_{i}\right)$, so how can we still get conditional independence of treatment by only conditioning on $p\left(\mathrm{X}_{i}\right)$?
A_{1} Conditional independence of treatment isn't about extracting all of the information possible from X_{i}. We actually only care about creating a situation in which $\mathrm{D}_{i} \mid$ something is independent of $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right)$.

Propensity-score methods

Intuition

Q What's going on here?
X_{i} carries way more information than $p\left(\mathrm{X}_{i}\right)$, so how can we still get conditional independence of treatment by only conditioning on $p\left(\mathrm{X}_{i}\right)$?
A_{1} Conditional independence of treatment isn't about extracting all of the information possible from X_{i}. We actually only care about creating a situation in which $\mathrm{D}_{i} \mid$ something is independent of $\left(\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right)$.
A_{2} Back to our main concern: selection bias. People select into treatment. If X says two people were equally likely to be treated, and if X_{i} explains all of selection (CIA), then there cannot be selection between these two people.

Propensity-score methods

Estimation

So where do propensity scores come from?

Propensity-score methods

Estimation

So where do propensity scores come from?
We estimate them-and there are a lot of ways to do that.

1. Flexible (i.e., interactions) logit specification
2. Kernel regression (remember kernel functions?)
3. Many others-machine learning, series-logit estimator, etc.

Propensity-score methods

Estimation

So where do propensity scores come from?
We estimate them-and there are a lot of ways to do that.

1. Flexible (i.e., interactions) logit specification
2. Kernel regression (remember kernel functions?)
3. Many others-machine learning, series-logit estimator, etc.

Q Can we just use plain OLS (linear probability model)?

Propensity-score methods

Estimation

So where do propensity scores come from?
We estimate them-and there are a lot of ways to do that.

1. Flexible (i.e., interactions) logit specification
2. Kernel regression (remember kernel functions?)
3. Many others-machine learning, series-logit estimator, etc.

Q Can we just use plain OLS (linear probability model)?
A Sort of. Think about FWL. This route is going to be the same as a regression conditioning on \mathbf{X}_{i}.

Propensity-score methods

Estimation

From MHE (p. 83)

Question
A big question here is how to best model and estimate $p\left(\mathrm{X}_{i}\right)$...

Answer

The answer to this is inherently application-specific. A growing empirical literature suggests that a logit model for the propensity score with a few polynomial terms in continuous covariates works well in practice...

Propensity-score methods

Application

So you have some estimated propensity scores $\hat{p}\left(\mathrm{X}_{i}\right)$. What next?

Propensity-score methods

Application

So you have some estimated propensity scores $\hat{p}\left(\mathrm{X}_{i}\right)$. What next?
Option 1 Conditioning via regression

Propensity-score methods

Application

So you have some estimated propensity scores $\hat{p}\left(\mathrm{X}_{i}\right)$. What next?
Option 1 Conditioning via regression
Option 1a Use a regression to condition on $p\left(\mathrm{X}_{i}\right)$, i.e.,

$$
\begin{equation*}
\mathrm{Y}_{i}=\alpha+\delta \mathrm{D}_{i}+\beta p\left(\mathrm{X}_{i}\right)+u_{i} \tag{1a}
\end{equation*}
$$

Propensity-score methods

Application

So you have some estimated propensity scores $\hat{p}\left(\mathrm{X}_{i}\right)$. What next?
Option I Conditioning via regression
Option 1a Use a regression to condition on $p\left(\mathrm{X}_{i}\right)$, i.e.,

$$
\begin{equation*}
\mathrm{Y}_{i}=\alpha+\delta \mathrm{D}_{i}+\beta p\left(\mathrm{X}_{i}\right)+u_{i} \tag{1a}
\end{equation*}
$$

Option ib If we think treatment effects are heterogeneous and may covary with X , then we might want to also interact treatment with $p\left(\mathrm{X}_{i}\right)$, i.e.,

$$
\begin{equation*}
\mathrm{Y}_{i}=\alpha+\delta_{1} \mathrm{D}_{i}+\delta_{2} \mathrm{D}_{i} p\left(\mathrm{X}_{i}\right)+\beta p\left(\mathrm{X}_{i}\right)+u_{i} \tag{1b}
\end{equation*}
$$

Propensity-score methods

Heterogeneity with regression

Let's think a bit more about heterogeneous treatment effects in this setting.

$$
\begin{aligned}
& \mathrm{Y}_{0 i}=\alpha+\beta \mathrm{X}_{i}+u_{i} \\
& \mathrm{Y}_{1 i}=\mathrm{Y}_{0 i}+\delta_{1}+\delta_{2} \mathrm{X}_{i}
\end{aligned}
$$

i.e., the treatment effect depends upon \mathbf{X}_{i}.

Propensity-score methods

Heterogeneity with regression

Let's think a bit more about heterogeneous treatment effects in this setting.

$$
\begin{aligned}
& \mathrm{Y}_{0 i}=\alpha+\beta \mathrm{X}_{i}+u_{i} \\
& \mathrm{Y}_{1 i}=\mathrm{Y}_{0 i}+\delta_{1}+\delta_{2} \mathrm{X}_{i}
\end{aligned}
$$

i.e., the treatment effect depends upon \mathbf{X}_{i}.
$\mathrm{Y}_{i}=\mathrm{D}_{i} \mathrm{Y}_{1 i}+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i}$

Propensity-score methods

Heterogeneity with regression

Let's think a bit more about heterogeneous treatment effects in this setting.

$$
\begin{aligned}
& \mathrm{Y}_{0 i}=\alpha+\beta \mathrm{X}_{i}+u_{i} \\
& \mathrm{Y}_{1 i}=\mathrm{Y}_{0 i}+\delta_{1}+\delta_{2} \mathrm{X}_{i}
\end{aligned}
$$

i.e., the treatment effect depends upon \mathbf{X}_{i}.

$$
\begin{aligned}
\mathrm{Y}_{i} & =\mathrm{D}_{i} \mathrm{Y}_{1 i}+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i} \\
& =\mathrm{D}_{i}\left(\mathrm{Y}_{0 i}+\delta_{1}+\delta_{2} \mathrm{X}_{i}\right)+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i}
\end{aligned}
$$

Propensity-score methods

Heterogeneity with regression

Let's think a bit more about heterogeneous treatment effects in this setting.

$$
\begin{aligned}
& \mathrm{Y}_{0 i}=\alpha+\beta \mathrm{X}_{i}+u_{i} \\
& \mathrm{Y}_{1 i}=\mathrm{Y}_{0 i}+\delta_{1}+\delta_{2} \mathrm{X}_{i}
\end{aligned}
$$

i.e., the treatment effect depends upon X_{i}.

$$
\begin{aligned}
\mathrm{Y}_{i} & =\mathrm{D}_{i} \mathrm{Y}_{1 i}+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i} \\
& =\mathrm{D}_{i}\left(\mathrm{Y}_{0 i}+\delta_{1}+\delta_{2} \mathrm{X}_{i}\right)+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i} \\
& =\mathrm{Y}_{0 i}+\delta_{1} \mathrm{D}_{i}+\delta_{2} \mathrm{D}_{i} \mathrm{X}_{i}
\end{aligned}
$$

Propensity-score methods

Heterogeneity with regression

Let's think a bit more about heterogeneous treatment effects in this setting.

$$
\begin{aligned}
& \mathrm{Y}_{0 i}=\alpha+\beta \mathrm{X}_{i}+u_{i} \\
& \mathrm{Y}_{1 i}=\mathrm{Y}_{0 i}+\delta_{1}+\delta_{2} \mathrm{X}_{i}
\end{aligned}
$$

i.e., the treatment effect depends upon \mathbf{X}_{i}.

$$
\begin{aligned}
\mathrm{Y}_{i} & =\mathrm{D}_{i} \mathrm{Y}_{1 i}+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i} \\
& =\mathrm{D}_{i}\left(\mathrm{Y}_{0 i}+\delta_{1}+\delta_{2} \mathrm{X}_{i}\right)+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i} \\
& =\mathrm{Y}_{0 i}+\delta_{1} \mathrm{D}_{i}+\delta_{2} \mathrm{D}_{i} \mathrm{X}_{i} \\
& =\alpha+\delta_{1} \mathrm{D}_{i}+\delta_{2} \mathrm{D}_{i} \mathrm{X}_{i}+\beta \mathrm{X}_{i}+u_{i}
\end{aligned}
$$

Propensity-score methods

Heterogeneity

This final equation

$$
\mathrm{Y}_{i}=\alpha+\delta_{1} \mathrm{D}_{i}+\delta_{2} \mathrm{D}_{i} \mathrm{X}_{i}+\beta \mathrm{X}_{i}+u_{i}
$$

Propensity-score methods

Heterogeneity

This final equation

$$
\mathrm{Y}_{i}=\alpha+\delta_{1} \mathrm{D}_{i}+\delta_{2} \mathrm{D}_{i} \mathrm{X}_{i}+\beta \mathrm{X}_{i}+u_{i}
$$

suggests that we want $p\left(\mathrm{X}_{i}\right)$ and $\mathrm{D}_{i} p\left(\mathrm{X}_{i}\right)$, i.e.,

$$
\begin{equation*}
\mathrm{Y}_{i}=\alpha+\delta_{1} \mathrm{D}_{i}+\delta_{2} \mathrm{D}_{i} p\left(\mathrm{X}_{i}\right)+\beta p\left(\mathrm{X}_{i}\right)+u_{i} \tag{1b}
\end{equation*}
$$

Propensity-score methods

Heterogeneity

This final equation

$$
\mathrm{Y}_{i}=\alpha+\delta_{1} \mathrm{D}_{i}+\delta_{2} \mathrm{D}_{i} \mathrm{X}_{i}+\beta \mathrm{X}_{i}+u_{i}
$$

suggests that we want $p\left(\mathrm{X}_{i}\right)$ and $\mathrm{D}_{i} p\left(\mathrm{X}_{i}\right)$, i.e.,

$$
\begin{equation*}
\mathrm{Y}_{i}=\alpha+\delta_{1} \mathrm{D}_{i}+\delta_{2} \mathrm{D}_{i} p\left(\mathrm{X}_{i}\right)+\beta p\left(\mathrm{X}_{i}\right)+u_{i} \tag{1b}
\end{equation*}
$$

which yields

1. a group-specific treatment effect $\delta_{1}+\delta_{2} p\left(\mathrm{X}_{i}\right)$ for each X_{i}
2. an average treatment effect $\delta_{1}+\delta_{2} \bar{p}\left(\mathrm{X}_{i}\right)$

Propensity-score methods

More flexibility

We motivated propensity scores with a desire to reduce dimensionality and estimate/choose/assume fewer parameters.

Adding $p\left(\mathrm{X}_{i}\right)$ and $\mathrm{D}_{i} p\left(\mathrm{X}_{i}\right)$ as covariates in a linear regression doesn't quite exhaust our potential for flexible/nonparametric estimation.

Propensity-score methods

Blocking

Option 2 Block (stratify) on propensity scores.

Propensity-score methods

Blocking

Option 2 Block (stratify) on propensity scores.

1. Divide the range of $\hat{p}\left(\mathrm{X}_{i}\right)$ into K blocks (e.g., 0.05 -wide blocks).
2. Place each observation into a block via its $\hat{p}\left(\mathrm{X}_{i}\right)$.
3. Calculate $\hat{\tau}_{k}$ for each block via difference in means.
4. Average the $\hat{\tau}_{k}$ using their shares of the sample, i.e.,

$$
\hat{\tau}_{\text {Block }}=\sum_{k=1}^{K} \hat{\tau}_{k} \frac{N_{1 k}+N_{0 k}}{N}
$$

Propensity-score methods

Blocking

Option 2 Block (stratify) on propensity scores.

1. Divide the range of $\hat{p}\left(\mathrm{X}_{i}\right)$ into K blocks (e.g., 0.05 -wide blocks).
2. Place each observation into a block via its $\hat{p}\left(\mathrm{X}_{i}\right)$.
3. Calculate $\hat{\tau}_{k}$ for each block via difference in means.
4. Average the $\hat{\tau}_{k}$ using their shares of the sample, i.e.,

$$
\hat{\tau}_{\text {Block }}=\sum_{k=1}^{K} \hat{\tau}_{k} \frac{N_{1 k}+N_{0 k}}{N}
$$

Note Blocking is similar to NN/kernel matching using $p\left(\mathrm{X}_{i}\right)$ as distance.

Propensity-score methods

Choosing blocks

Blocking on propensity scores requires defining defining blocks.
One common route involves some iteration.

1. Choose blocks.
2. Check the balance of the covariates within each block. ${ }^{\dagger}$

- If covariates are not balanced, then split your blocks and repeat.
- If covariates are balanced, then stop.
† Keep multiple-hypothesis testing in mind. With many covariates and many blocks, you are bound to find statistically significant relationships-even if you are balanced in truth.

Propensity-score methods

Overlap

Blocking emphasizes our overlap assumption, i.e., $0<\operatorname{Pr}\left(\mathrm{D}_{i} \mid \mathrm{X}_{i}\right)<1$.
If a block contains zero treated/control units, we cannot calculate $\hat{\tau}_{k}$.

Propensity-score methods

Overlap

Blocking emphasizes our overlap assumption, i.e., $0<\operatorname{Pr}\left(\mathrm{D}_{i} \mid \mathrm{X}_{i}\right)<1$.
If a block contains zero treated/control units, we cannot calculate $\hat{\tau}_{k}$.
Caution Logit can hide violations-it forces $0<\hat{p}\left(\mathrm{X}_{i}\right)<1$.

Propensity-score methods

Overlap

Blocking emphasizes our overlap assumption, i.e., $0<\operatorname{Pr}\left(\mathrm{D}_{i} \mid \mathrm{X}_{i}\right)<1$.
If a block contains zero treated/control units, we cannot calculate $\hat{\tau}_{k}$.
Caution Logit can hide violations-it forces $0<\hat{p}\left(\mathrm{X}_{i}\right)<1$.
Common practice Empirically enforce overlap:

- Drop control units with $\hat{p}\left(\mathrm{X}_{i}\right)$ below the minimum propensity score in the treatment group.
- Drop treated units with $\hat{p}\left(\mathrm{X}_{i}\right)$ above the maximum propensity score in the control group.

Propensity-score methods

Weighting

Option 3 Weight observations by the inverse propensity score.

Propensity-score methods

Weighting

Option 3 Weight observations by the inverse propensity score.
Q How does weighting by $1 / \hat{p}\left(\mathrm{X}_{i}\right)$ make sense?

Propensity-score methods

Weighting

Option 3 Weight observations by the inverse propensity score.
Q How does weighting by $1 / \hat{p}\left(\mathrm{X}_{i}\right)$ make sense?
A Consider our old (likely biased) friend the difference in means, i.e.,

$$
\hat{\tau}_{\text {Diff }}=\overline{\mathrm{Y}}_{\mathrm{T}}-\overline{\mathrm{Y}}_{\mathrm{C}}=\frac{\sum_{i} \mathrm{D}_{i} \mathrm{Y}_{i}}{\sum_{i} \mathrm{D}_{i}}-\frac{\sum_{i}\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{i}}{\sum_{i}\left(1-\mathrm{D}_{i}\right)}
$$

Propensity-score methods

Weighting

Option 3 Weight observations by the inverse propensity score.
Q How does weighting by $1 / \hat{p}\left(\mathrm{X}_{i}\right)$ make sense?
A Consider our old (likely biased) friend the difference in means, i.e.,

$$
\hat{\tau}_{\text {Diff }}=\overline{\mathrm{Y}}_{\mathrm{T}}-\overline{\mathrm{Y}}_{\mathrm{C}}=\frac{\sum_{i} \mathrm{D}_{i} \mathrm{Y}_{i}}{\sum_{i} \mathrm{D}_{i}}-\frac{\sum_{i}\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{i}}{\sum_{i}\left(1-\mathrm{D}_{i}\right)}
$$

which we've discussed is biased due to selection into treatment, i.e.,

$$
E\left[\mathrm{Y}_{0 i} \mid \mathrm{D}_{i}=1\right] \neq E\left[\mathrm{Y}_{0 i}\right]
$$

Propensity-score methods

Weighting, justified

Suppose we know $p\left(\mathrm{X}_{i}\right)$ and we weight each treated individual by $1 / p\left(\mathrm{X}_{i}\right)$

Propensity-score methods

Weighting, justified

Suppose we know $p\left(\mathrm{X}_{i}\right)$ and we weight each treated individual by $1 / p\left(\mathrm{X}_{i}\right)$
$E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{i}}{p\left(\mathrm{X}_{i}\right)}\right]$

Propensity-score methods

Weighting, justified

Suppose we know $p\left(\mathrm{X}_{i}\right)$ and we weight each treated individual by $1 / p\left(\mathrm{X}_{i}\right)$

$$
E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{i}}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i}\left(\mathrm{D}_{i} \mathrm{Y}_{1 i}+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i}\right)}{p\left(\mathrm{X}_{i}\right)}\right]
$$

Propensity-score methods

Weighting, justified

Suppose we know $p\left(\mathrm{X}_{i}\right)$ and we weight each treated individual by $1 / p\left(\mathrm{X}_{i}\right)$

$$
E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{i}}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i}\left(\mathrm{D}_{i} \mathrm{Y}_{1 i}+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i}\right)}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{1 i}}{p\left(\mathrm{X}_{i}\right)}\right]
$$

Propensity-score methods

Weighting, justified

Suppose we know $p\left(\mathrm{X}_{i}\right)$ and we weight each treated individual by $1 / p\left(\mathrm{X}_{i}\right)$

$$
\begin{aligned}
& E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{i}}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i}\left(\mathrm{D}_{i} \mathrm{Y}_{1 i}+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i}\right)}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{1 i}}{p\left(\mathrm{X}_{i}\right)}\right] \\
& \quad=E\left(E\left[\left.\frac{\mathrm{D}_{i} \mathrm{Y}_{1 i}}{p\left(\mathrm{X}_{i}\right)} \right\rvert\, \mathrm{X}_{i}\right]\right)
\end{aligned}
$$

Propensity-score methods

Weighting, justified

Suppose we know $p\left(\mathrm{X}_{i}\right)$ and we weight each treated individual by $1 / p\left(\mathrm{X}_{i}\right)$

$$
\begin{aligned}
& E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{i}}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i}\left(\mathrm{D}_{i} \mathrm{Y}_{1 i}+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i}\right)}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{1 i}}{p\left(\mathrm{X}_{i}\right)}\right] \\
& \quad=E\left(E\left[\left.\frac{\mathrm{D}_{i} \mathrm{Y}_{1 i}}{p\left(\mathrm{X}_{i}\right)} \right\rvert\, \mathrm{X}_{i}\right]\right)=E\left(\frac{E\left[\mathrm{D}_{i} \mid \mathrm{X}_{i}\right] E\left[\mathrm{Y}_{1 i} \mid \mathrm{X}_{i}\right]}{p\left(\mathrm{X}_{i}\right)}\right)
\end{aligned}
$$

Propensity-score methods

Weighting, justified

Suppose we know $p\left(\mathrm{X}_{i}\right)$ and we weight each treated individual by $1 / p\left(\mathrm{X}_{i}\right)$

$$
\begin{aligned}
& E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{i}}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i}\left(\mathrm{D}_{i} \mathrm{Y}_{1 i}+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i}\right)}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{1 i}}{p\left(\mathrm{X}_{i}\right)}\right] \\
& \quad=E\left(E\left[\left.\frac{\mathrm{D}_{i} \mathrm{Y}_{1 i}}{p\left(\mathrm{X}_{i}\right)} \right\rvert\, \mathrm{X}_{i}\right]\right)=E\left(\frac{E\left[\mathrm{D}_{i} \mid \mathrm{X}_{i}\right] E\left[\mathrm{Y}_{1 i} \mid \mathrm{X}_{i}\right]}{p\left(\mathrm{X}_{i}\right)}\right) \\
& \quad=E\left(\frac{p\left(\mathrm{X}_{i}\right) E\left[\mathrm{Y}_{1 i} \mid \mathrm{X}_{i}\right]}{p\left(\mathrm{X}_{i}\right)}\right)
\end{aligned}
$$

Propensity-score methods

Weighting, justified

Suppose we know $p\left(\mathrm{X}_{i}\right)$ and we weight each treated individual by $1 / p\left(\mathrm{X}_{i}\right)$

$$
\begin{gathered}
E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{i}}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i}\left(\mathrm{D}_{i} \mathrm{Y}_{1 i}+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i}\right)}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{1 i}}{p\left(\mathrm{X}_{i}\right)}\right] \\
\quad=E\left(E\left[\left.\frac{\mathrm{D}_{i} \mathrm{Y}_{1 i}}{p\left(\mathrm{X}_{i}\right)} \right\rvert\, \mathrm{X}_{i}\right]\right)=E\left(\frac{E\left[\mathrm{D}_{i} \mid \mathrm{X}_{i}\right] E\left[\mathrm{Y}_{1 i} \mid \mathrm{X}_{i}\right]}{p\left(\mathrm{X}_{i}\right)}\right) \\
\quad=E\left(\frac{p\left(\mathrm{X}_{i}\right) E\left[\mathrm{Y}_{1 i} \mid \mathrm{X}_{i}\right]}{p\left(\mathrm{X}_{i}\right)}\right)=E\left(E\left[\mathrm{Y}_{1 i} \mid \mathrm{X}_{i}\right]\right)
\end{gathered}
$$

Propensity-score methods

Weighting, justified

Suppose we know $p\left(\mathrm{X}_{i}\right)$ and we weight each treated individual by $1 / p\left(\mathrm{X}_{i}\right)$

$$
\begin{gathered}
E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{i}}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i}\left(\mathrm{D}_{i} \mathrm{Y}_{1 i}+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i}\right)}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{1 i}}{p\left(\mathrm{X}_{i}\right)}\right] \\
\quad=E\left(E\left[\left.\frac{\mathrm{D}_{i} \mathrm{Y}_{1 i}}{p\left(\mathrm{X}_{i}\right)} \right\rvert\, \mathrm{X}_{i}\right]\right)=E\left(\frac{E\left[\mathrm{D}_{i} \mid \mathrm{X}_{i}\right] E\left[\mathrm{Y}_{1 i} \mid \mathrm{X}_{i}\right]}{p\left(\mathrm{X}_{i}\right)}\right) \\
\quad=E\left(\frac{p\left(\mathrm{X}_{i}\right) E\left[\mathrm{Y}_{1 i} \mid \mathrm{X}_{i}\right]}{p\left(\mathrm{X}_{i}\right)}\right)=E\left(E\left[\mathrm{Y}_{1 i} \mid \mathrm{X}_{i}\right]\right)=E\left[\mathrm{Y}_{1 i}\right]
\end{gathered}
$$

Propensity-score methods

Weighting, justified

Suppose we know $p\left(\mathrm{X}_{i}\right)$ and we weight each treated individual by $1 / p\left(\mathrm{X}_{i}\right)$

$$
\begin{gathered}
E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{i}}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i}\left(\mathrm{D}_{i} \mathrm{Y}_{1 i}+\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{0 i}\right)}{p\left(\mathrm{X}_{i}\right)}\right]=E\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{1 i}}{p\left(\mathrm{X}_{i}\right)}\right] \\
\quad=E\left(E\left[\left.\frac{\mathrm{D}_{i} \mathrm{Y}_{1 i}}{p\left(\mathrm{X}_{i}\right)} \right\rvert\, \mathrm{X}_{i}\right]\right)=E\left(\frac{E\left[\mathrm{D}_{i} \mid \mathrm{X}_{i}\right] E\left[\mathrm{Y}_{1 i} \mid \mathrm{X}_{i}\right]}{p\left(\mathrm{X}_{i}\right)}\right) \\
\quad=E\left(\frac{p\left(\mathrm{X}_{i}\right) E\left[\mathrm{Y}_{1 i} \mid \mathrm{X}_{i}\right]}{p\left(\mathrm{X}_{i}\right)}\right)=E\left(E\left[\mathrm{Y}_{1 i} \mid \mathrm{X}_{i}\right]\right)=E\left[\mathrm{Y}_{1 i}\right]
\end{gathered}
$$

Similarly, weighting control individuals by $1 /\left(1-p\left(\mathrm{X}_{i}\right)\right)$ yields

$$
E\left[\frac{\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{i}}{1-p\left(\mathrm{X}_{i}\right)}\right]=E\left[\mathrm{Y}_{0 i}\right]
$$

Propensity-score methods

Weighting: The estimator

Thus, we can estimate an unbiased treatment effect via

$$
\hat{\tau}_{p \mathrm{Weight}}=\frac{1}{N} \sum_{i=1}^{N}\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{i}}{p\left(\mathrm{X}_{i}\right)}-\frac{\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{i}}{1-p\left(\mathrm{X}_{i}\right)}\right]
$$

Propensity-score methods

Weighting: The estimator

Thus, we can estimate an unbiased treatment effect via

$$
\hat{\tau}_{p \text { Weight }}=\frac{1}{N} \sum_{i=1}^{N}\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{i}}{p\left(\mathrm{X}_{i}\right)}-\frac{\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{i}}{1-p\left(\mathrm{X}_{i}\right)}\right]
$$

Intuition We're trying to overcome selection bias, i.e., treated individuals were more likely to be treated as a function of $\mathbf{X}_{i}-$ producing higher $p\left(\mathbf{X}_{i}\right)$.

Propensity-score methods

Weighting: The estimator

Thus, we can estimate an unbiased treatment effect via

$$
\hat{\tau}_{p \text { Weight }}=\frac{1}{N} \sum_{i=1}^{N}\left[\frac{\mathrm{D}_{i} \mathrm{Y}_{i}}{p\left(\mathrm{X}_{i}\right)}-\frac{\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{i}}{1-p\left(\mathrm{X}_{i}\right)}\right]
$$

Intuition We're trying to overcome selection bias, i.e., treated individuals were more likely to be treated as a function of $\mathbf{X}_{i}-$ producing higher $p\left(\mathbf{X}_{i}\right)$.

We want to get back to as-good-as random variation in treatment.
So we upweight (1) treated individuals with low $p\left(\mathbf{X}_{i}\right)$ and (2) control observations with high $p\left(\mathbf{X}_{i}\right)$.

Propensity-score methods

Weighting: The example

Suppose for some individual $i, p\left(\mathrm{X}_{i}\right)=0.80$.

Propensity-score methods

Weighting: The example

Suppose for some individual $i, p\left(\mathrm{X}_{i}\right)=0.80$.
This propensity score says someone with this set of \mathbf{X}_{i} was four-times more likely to be treated than control.

Propensity-score methods

Weighting: The example

Suppose for some individual $i, p\left(\mathrm{X}_{i}\right)=0.80$.
This propensity score says someone with this set of \mathbf{X}_{i} was four-times more likely to be treated than control.

Our weights fix this imbalance for each X_{i}.

Propensity-score methods

Weighting: The example

Suppose for some individual $i, p\left(\mathrm{X}_{i}\right)=0.80$.
This propensity score says someone with this set of \mathbf{X}_{i} was four-times more likely to be treated than control.

Our weights fix this imbalance for each X_{i}.

- If i is treated, then her weight is $1 / p\left(\mathrm{X}_{i}\right)=1 / 0.80=1.25$

Propensity-score methods

Weighting: The example

Suppose for some individual $i, p\left(\mathrm{X}_{i}\right)=0.80$.
This propensity score says someone with this set of \mathbf{X}_{i} was four-times more likely to be treated than control.

Our weights fix this imbalance for each \mathbf{X}_{i}.

- If i is treated, then her weight is $1 / p\left(\mathrm{X}_{i}\right)=1 / 0.80=1.25$
- If i is control, then her weight is $1 /\left(1-p\left(\mathrm{X}_{i}\right)\right)=1 /(1-0.80)=5$

Propensity-score methods

Weighting: The example

Suppose for some individual $i, p\left(\mathrm{X}_{i}\right)=0.80$.
This propensity score says someone with this set of \mathbf{X}_{i} was four-times more likely to be treated than control.

Our weights fix this imbalance for each X_{i}.

- If i is treated, then her weight is $1 / p\left(\mathrm{X}_{i}\right)=1 / 0.80=1.25$
- If i is control, then her weight is $1 /\left(1-p\left(\mathrm{X}_{i}\right)\right)=1 /(1-0.80)=5$

And guess what 5/1.25 is...

Propensity-score methods

Weighting: The example

Suppose for some individual $i, p\left(\mathrm{X}_{i}\right)=0.80$.
This propensity score says someone with this set of \mathbf{X}_{i} was four-times more likely to be treated than control.

Our weights fix this imbalance for each X_{i}.

- If i is treated, then her weight is $1 / p\left(\mathrm{X}_{i}\right)=1 / 0.80=1.25$
- If i is control, then her weight is $1 /\left(1-p\left(\mathrm{X}_{i}\right)\right)=1 /(1-0.80)=5$

And guess what $5 / 1.25$ is... 4 !

Propensity-score methods

Weighting: The example

Suppose for some individual $i, p\left(\mathrm{X}_{i}\right)=0.80$.
This propensity score says someone with this set of \mathbf{X}_{i} was four-times more likely to be treated than control.

Our weights fix this imbalance for each X_{i}.

- If i is treated, then her weight is $1 / p\left(\mathrm{X}_{i}\right)=1 / 0.80=1.25$
- If i is control, then her weight is $1 /\left(1-p\left(\mathrm{X}_{i}\right)\right)=1 /(1-0.80)=5$

And guess what $5 / 1.25$ is... 4 ! This weighting scheme gets us back to equal representation for each set of \mathbf{X}_{i}.

Propensity-score methods

Weighting: Last issue

Practical issue Nothing guarantees $\sum_{i} \hat{p}\left(\mathrm{X}_{i}\right)=1$.

Propensity-score methods

Weighting: Last issue

Practical issue Nothing guarantees $\sum_{i} \hat{p}\left(\mathrm{X}_{i}\right)=1$.
Solution Normalize weights by their total sum.

Propensity-score methods

Weighting: Last issue

Practical issue Nothing guarantees $\sum_{i} \hat{p}\left(\mathrm{X}_{i}\right)=1$.
Solution Normalize weights by their total sum.
Applying the normalized (and estimated) propensity scores

$$
\hat{\tau}_{p \text { Weight }}=\sum_{i=1}^{N} \frac{\frac{\mathrm{D}_{i} \mathrm{Y}_{i}}{\hat{p}\left(\mathrm{X}_{i}\right)}}{\sum_{i} \frac{\mathrm{D}_{i}}{\hat{p}\left(\mathrm{X}_{i}\right)}}-\sum_{i=1}^{N} \frac{\frac{\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{i}}{1-\hat{p}\left(\mathrm{X}_{i}\right)}}{\sum_{i} \frac{\left(1-\mathrm{D}_{i}\right)}{1-\hat{p}\left(\mathrm{X}_{i}\right)}}
$$

Propensity-score methods

Weighting: Last issue

Practical issue Nothing guarantees $\sum_{i} \hat{p}\left(\mathrm{X}_{i}\right)=1$.
Solution Normalize weights by their total sum.
Applying the normalized (and estimated) propensity scores

$$
\hat{\tau}_{p \mathrm{Weight}}=\sum_{i=1}^{N} \frac{\frac{\mathrm{D}_{i} \mathrm{Y}_{i}}{\hat{p}\left(\mathrm{X}_{i}\right)}}{\sum_{i} \frac{\mathrm{D}_{i}}{\hat{p}\left(\mathrm{X}_{i}\right)}}-\sum_{i=1}^{N} \frac{\frac{\left(1-\mathrm{D}_{i}\right) \mathrm{Y}_{i}}{1-\hat{p}\left(\mathrm{X}_{i}\right)}}{\sum_{i} \frac{\left(1-\mathrm{D}_{i}\right)}{1-\hat{p}\left(\mathrm{X}_{i}\right)}}
$$

Hirano, Imbens, and Ridder (2003) suggests this estimator is efficient.

Propensity-score methods

Why choose one?

There's nothing special about weighted averages-regression can weight.
Thus, a regression-based estimate

$$
\mathrm{Y}_{i}=\alpha+\mathrm{X}_{i} \beta+\tau \mathrm{D}_{i}+u_{i}
$$

Propensity-score methods

Why choose one?

There's nothing special about weighted averages-regression can weight.
Thus, a regression-based estimate

$$
\mathrm{Y}_{i}=\alpha+\mathrm{X}_{i} \beta+\tau \mathrm{D}_{i}+u_{i}
$$

with weights

$$
w_{i}=\sqrt{\frac{\mathrm{D}_{i}}{\hat{p}\left(\mathrm{X}_{i}\right)}+\frac{\left(1-\mathrm{D}_{i}\right)}{1-\hat{p}\left(\mathrm{X}_{i}\right)}}
$$

Propensity-score methods

Why choose one?

There's nothing special about weighted averages-regression can weight.
Thus, a regression-based estimate

$$
\mathrm{Y}_{i}=\alpha+\mathrm{X}_{i} \beta+\tau \mathrm{D}_{i}+u_{i}
$$

with weights

$$
w_{i}=\sqrt{\frac{\mathrm{D}_{i}}{\hat{p}\left(\mathrm{X}_{i}\right)}+\frac{\left(1-\mathrm{D}_{i}\right)}{1-\hat{p}\left(\mathrm{X}_{i}\right)}}
$$

offers a doubly robust property-you have two chances to be right: $p\left(\mathrm{X}_{i}\right)$ or the regression specification.

Propensity-score methods

Why choose one? Part two

An alternative, doubly robust method combines propensity-score blocking with regression.

Propensity-score methods

Why choose one? Part two

An alternative, doubly robust method combines propensity-score blocking with regression.

Step I For each block k, we run the regression

$$
\mathrm{Y}_{i}=\alpha_{k}+\mathrm{X}_{i} \beta_{k}+\tau_{k} \mathrm{D}_{i}+u_{i}
$$

Propensity-score methods

Why choose one? Part two

An alternative, doubly robust method combines propensity-score blocking with regression.

Step 1 For each block k, we run the regression

$$
\mathrm{Y}_{i}=\alpha_{k}+\mathrm{X}_{i} \beta_{k}+\tau_{k} \mathrm{D}_{i}+u_{i}
$$

Step 2 Aggregate block-level treatment-effect estimates

$$
\hat{\tau}=\sum_{k=1}^{K} \hat{\tau}_{k} \frac{N_{1 k}+N_{0 k}}{N}
$$

Propensity-score methods

Major requirements

Don't get (too) caught up in the bells and whistles.
We still have two major requirements for any of these methods to work.

Propensity-score methods

Major requirements

Don't get (too) caught up in the bells and whistles.
We still have two major requirements for any of these methods to work.

1. Is the conditional-independence assumption true?

Propensity-score methods

Major requirements

Don't get (too) caught up in the bells and whistles.
We still have two major requirements for any of these methods to work.

1. Is the conditional-independence assumption true?
2. Do we have overlap between treatment and control units.

Propensity-score methods

Major requirements

Don't get (too) caught up in the bells and whistles.
We still have two major requirements for any of these methods to work.

1. Is the conditional-independence assumption true?
2. Do we have overlap between treatment and control units.

We can look for evidence of (2) in the data-particularly if we're using propensity-score methods. ${ }^{\dagger}$

How? Plot the distributions of $p\left(\mathrm{X}_{i}\right)$ for \mathbf{T} and \mathbf{C}.

+ Checking for overlap in X-space, can be tough as the dimensions of \mathbf{X} expand.

Missing overlap in $p\left(\mathrm{X}_{i}\right)$

Authentic (enforced) overlap in $p\left(\mathrm{X}_{i}\right)$

Logit-based $\hat{p}\left(\mathrm{X}_{i}\right)$ hiding some of the missing overlap in $p\left(\mathrm{X}_{i}\right)$

Overlap in one dimension does not guarantee in two dimensions.
Note Shading denotes share of treatment: white $=0 \%$ and $\mathbf{p i n k}=100 \%$.

Table of contents

Admin

1. Schedule
2. Follow up

General matching

1. The gist
2. Goals
3. Generic matching
4. Weights

- Discrete X
- Nearest neighbor, Euclidean
- Nearest neighbor, Mahalanobis
- Kernel matching

Propensity-score methods

1. Setup
2. Propensity-score theorem

- The magic
- The proof
- Intuition

3. Estimation
4. Application

- Regression
- Heterogeneity
- Blocking on $p\left(\mathrm{X}_{i}\right)$
- Weighting with $p\left(\mathbf{X}_{i}\right)$
- Doubly robust methods

5. Overlap plots
