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DAGs

What's a DAG?
DAG stands for directed acyclic graph.
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DAGs

What's a DAG?
DAG stands for directed acyclic graph.

More helpful...

A DAG graphically illustrates the causal relationships and non-causal
associations within a network of random variables.
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Example Omitted-variable bias in a DAG

A pretty standard DAG.



Example Omitted-variable bias in a DAG

Nodes are random variables.
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Example Omitted-variable bias in a DAG

Edges depict causal links. Causality �ows in the direction of the arrows.

Connections matter!
Direction matters (for causality).
Non-connections also matter! (More on this topic soon.)



Example Omitted-variable bias in a DAG

Here we can see that Y is affected by both D and W.

W also affects D.



Example Omitted-variable bias in a DAG

Here we can see that Y is affected by both D and W.

W also affects D.

Q How does this graph exhibit OVB?
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There are two pathways from D to Y.
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Example Omitted-variable bias in a DAG

There are two pathways from D to Y.

1. The path from D to Y  is our casual relationship of interest. 
2. The path  creates a non-causal association btn D and Y.

To shut down this pathway creating a non-causal association, we must
condition on W. Sound familiar?

(D → Y)

(Y ← W → D)
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Graphs

More formally
In graph theory, a graph is a collection of nodes connected by edges.
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Graphs

More formally
In graph theory, a graph is a collection of nodes connected by edges.

Nodes connected by an edge are called adjacent.
Paths run along adjacent nodes, e.g., .
The graph above is undirected, since the edges don't have direction.

A − B − C

14 / 74



Graphs

Directed
Directed graphs have edges with direction.
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Graphs

Directed
Directed graphs have edges with direction.

Directed paths follow edges' directions, e.g., .
Nodes that precede a given node in a directed path are its ancestors.
The opposite: descendants come after the node, e.g., .

A → B → C

D = de(C)
15 / 74



Graphs

Cycles
If a node is its own descendant (e.g., ), your graph has a cycle.de(D) = D
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Graphs

Cycles
If a node is its own descendant (e.g., ), your graph has a cycle.

If your directed graph does not have any cycles, then you have a  
directed acyclic graph (DAG).

de(D) = D

16 / 74
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DAGs

The origin story
Many developments in causal graphical models came from work in
probabilistic graphical models—especially Bayesian networks.
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DAGs

The origin story
Many developments in causal graphical models came from work in
probabilistic graphical models—especially Bayesian networks.

Recall what you know about joint probabilities:

2 P(x1, x2) = P(x1)P(x2|x1)

3 P(x1, x2, x3) = P(x1)P(x2, x3|x1) = P(x1)P(x2|x1)P(x3|x2, x1)

⋮

n P(x1, x2, … , xn) = P(x1)
n

∏
i=2

P(xi|xi−1, … , x1)
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DAGs

The origin story
Many developments in causal graphical models came from work in
probabilistic graphical models—especially Bayesian networks.

Recall what you know about joint probabilities:

This �nal product can include a lot of terms.  
E.g., even when  are binary,  requires  parameters.

2 P(x1, x2) = P(x1)P(x2|x1)

3 P(x1, x2, x3) = P(x1)P(x2, x3|x1) = P(x1)P(x2|x1)P(x3|x2, x1)

⋮

n P(x1, x2, … , xn) = P(x1)
n

∏
i=2

P(xi|xi−1, … , x1)

xi P(x4|x3, x2, x1) 23 = 8
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Thinking locally
DAGs help us think through simplifying .P(xk|xk−1, xk−2, … , x1)
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DAGs

Thinking locally
DAGs help us think through simplifying .

Given a prob. dist. and a DAG, can we assume some independencies? 
Given , is it reasonable to assume  is independent of  and ?

P(xk|xk−1, xk−2, … , x1)

C D A B
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DAGs

Local Markov
This intuitive approach is the Local Markov Assumption

Given its parents in the DAG, a node  is independent of all of its
non-descendants.

X
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Ex. Consider the DAG to the right:

With the Local Markov Assumption,  
 simpli�es to .

Conditional on its parent ,  
 is independent of  and .

DAGs

Local Markov
This intuitive approach is the Local Markov Assumption

Given its parents in the DAG, a node  is independent of all of its
non-descendants.

X

P(D|A, B, C) P(D|C)

(C)

D A B
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DAGs

Local Markov and factorization
The Local Markov Assumption is equiv. to Bayesian Network Factorization

For prob. dist.  and DAG ,  factorizes according to  if

where  refers to 's parents in .

Bayesian network factorization is also called the chain rule for Bayesian
networks and Markov compatibility.

P G P G

P(x1, … , xn) = ∏
i

P(xi|pai)

pai xi G

21 / 74



DAGs

Factorize!
You can now (more easily) factorize the DAG/dist. below! (You're welcome.)
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Factorization via B.N. chain rule

DAGs

Factorize!
You can now (more easily) factorize the DAG/dist. below! (You're welcome.)

P(A, B, C, D)

= ∏
i

P(xi|pai)

= P(A)P(B|A)P(C|A, B)P(D|C)

22 / 74



DAGs

Independence
What have we learned so far? (Why should you care about this stuff?)

Local Markov and Bayesian Network Factorization tell us abount
independencies within a probability distribution implied by the given DAG.

You're now able to say something about which variables are independent.
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DAGs

Independence
What have we learned so far? (Why should you care about this stuff?)

Local Markov and Bayesian Network Factorization tell us abount
independencies within a probability distribution implied by the given DAG.

You're now able to say something about which variables are independent.

There's more: Great start, but there's more to life than independence.  
We also want to say something about dependence.

23 / 74



DAGs

Dependence
We need to strengthen our Local Markov assumption to be able to interpret
adjacent nodes as dependent. (I.e., add it to our small set of assumptions.)
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DAGs

Dependence
We need to strengthen our Local Markov assumption to be able to interpret
adjacent nodes as dependent. (I.e., add it to our small set of assumptions.)

The Minimality Assumption†

�. Local Markov Given its parents in the DAG, a node  is
independent of all of its non-descendants.

�. (NEW) Adjacent nodes in the DAG are dependent.

X

† The name minimality refers to the minimal set of independencies for  and —we cannot remove any
more edges from the graph (while staying Markov compatible with ).

P G

G
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DAGs

Dependence
We need to strengthen our Local Markov assumption to be able to interpret
adjacent nodes as dependent. (I.e., add it to our small set of assumptions.)

The Minimality Assumption†

�. Local Markov Given its parents in the DAG, a node  is
independent of all of its non-descendants.

�. (NEW) Adjacent nodes in the DAG are dependent.

With the minimality assumption, we can learn both dependence and
independence from connections (or non-connections) in a DAG.

X

† The name minimality refers to the minimal set of independencies for  and —we cannot remove any
more edges from the graph (while staying Markov compatible with ).

P G

G

24 / 74



DAGs

Causality
We need one last assumption move DAGs from statistical to causal models.
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DAGs

Causality
We need one last assumption move DAGs from statistical to causal models.

Strict Causal Edges Assumption

Every parent is a direct cause of each of its children.

For , the set of direct causes is the set of variables to which  responds.

This assumption actually strengthens the second part of Minimality:

2. Adjacent nodes in the DAG are dependent.

Y Y
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DAGs

Assumptions
Thus, we only need two assumptions to turn DAGs into causal models:

�. Local Markov Given its parents in the DAG, a node  is independent of
all of its non-descendants.

�. Strict Causal Edges Every parent is a direct cause of each of its children.

X
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DAGs

Assumptions
Thus, we only need two assumptions to turn DAGs into causal models:

�. Local Markov Given its parents in the DAG, a node  is independent of
all of its non-descendants.

�. Strict Causal Edges Every parent is a direct cause of each of its children.

Not bad, right?

X
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DAGs

Flows
Brady Neal emphasizes the �ow(s) of association and causation in DAGs,  
and I �nd it to be a super helpful way to think about these models.

Flow of association refers to whether two nodes are associated (statistically
dependent) or not (statistically independent).

We will be interested in unconditional and conditional associations.

27 / 74

https://bradyneal.com/


DAGs

Building blocks
We will run through a few simple building blocks (DAGs) that make up more
complex DAGs.

For each simple DAG, we want to ask a few questions:

�. Which nodes are unconditionally or conditionally independent?†

�. Which nodes are dependent?

�. What is the intuition?

† To prove  and  are conditionally independent, we can show  factorizes as .A B P(A, B|C) P(A|C)P(B|C)

28 / 74



Building block 1: Two unconnected nodes
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Intuition:
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Intuition:  and  appear independent—no link between the nodes.A B
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A B



Building block 1: Two unconnected nodes

Intuition:  and  appear independent—no link between the nodes.

Proof: By Bayesian network factorization,

(since neither node has parents). 

A B

P(A, B) = P(A)P(B)

✓



Building block 2: Two connected nodes



Building block 2: Two connected nodes

Intuition:



Building block 2: Two connected nodes

Intuition:  "is a cause of" : there is clear (causal) dependence.†A B

† I'm not a huge fan of the "is a cause of" wording, but it appears to be (unfortunately) common in this
literature. IMO,  causes (or affects)  would be clearer (and more grammatical), but no one asked me.
One argument for "a cause of" (vs. "causes") is it emphasizes that events often have multiple causes.

‘‘A B"
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Intuition:  "is a cause of" : there is clear (causal) dependence.†

Proof:

A B

† I'm not a huge fan of the "is a cause of" wording, but it appears to be (unfortunately) common in this
literature. IMO,  causes (or affects)  would be clearer (and more grammatical), but no one asked me.
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Building block 2: Two connected nodes

Intuition:  "is a cause of" : there is clear (causal) dependence.†

Proof: By the Strict Causal Edges Assumption, every parent (here, ) is a
direct cause of each of its children . 

A B

† I'm not a huge fan of the "is a cause of" wording, but it appears to be (unfortunately) common in this
literature. IMO,  causes (or affects)  would be clearer (and more grammatical), but no one asked me.
One argument for "a cause of" (vs. "causes") is it emphasizes that events often have multiple causes.

‘‘A B"

A

(B) ✓
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Building block 3: Chains

Intuition: We already showed two connected nodes are dependent:

 and  are dependent.
 and  are dependent.

The question is whether  and  are dependent:  
Does association �ow from  to  through ?

A B

B C

A C

A C B



Building block 3: Chains

Intuition: We already showed two connected nodes are dependent:

 and  are dependent.
 and  are dependent.

The question is whether  and  are dependent:  
Does association �ow from  to  through ?

The answer generally† is "yes": changes in  typically cause changes in .

A B

B C

A C

A C B

A C

† Section 2.2 of Pearl, Glymour, and Jewell provides a "pathological" example of "intransitive dependence".
It's basically when  induces variation in  that is not relevant to  outcome.A B C

http://bayes.cs.ucla.edu/PRIMER/


Building block 3: Chains

Proof: Here's the unsatisfying part.

Without more assumptions, we can't prove this association of  and .

We'll think of this as a potential (even likely) association.

A C



Building block 3: Chains with conditions

Q How does conditioning on  affect the association between  and ?

Intuition:

�.  affects  by changing .
�. When we hold  constant,  cannot "reach" .

We've blocked the path of association between  and .

Conditioning blocks the �ow of association in chains. ("Good" control!)

B A C

A C B

B A C

A C



Building block 3: Chains with conditions

Proof: We want to show  and  are independent conditional on , 
i.e., .

A C B

P(A, C|B) = P(A|B)P(C|B)
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Start with BN factorization: 

A C B
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Proof: We want to show  and  are independent conditional on , 
i.e., .

Start with BN factorization:  .

A C B

P(A, C|B) = P(A|B)P(C|B)
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Building block 3: Chains with conditions

Proof: We want to show  and  are independent conditional on , 
i.e., .

Start with BN factorization:  .

Now apply Bayes' rule for the LHS of our goal: .

A C B

P(A, C|B) = P(A|B)P(C|B)

P(A, B, C) = P(A)P(B|A)P(C|B)

P(A, C|B) =
P(A,B,C)

P(B)



Building block 3: Chains with conditions

Proof: We want to show  and  are independent conditional on , 
i.e., .

Start with BN factorization:  .

Now apply Bayes' rule for the LHS of our goal: .

And substitute our factorization into the Bayes' rule expression:

A C B

P(A, C|B) = P(A|B)P(C|B)

P(A, B, C) = P(A)P(B|A)P(C|B)

P(A, C|B) =
P(A,B,C)

P(B)

P(A, C|B) =
P(A)P(B|A)P(C|B)
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Building block 3: Chains with conditions

Proof: We want to show  and  are independent conditional on , 
i.e., .

Start with BN factorization:  .

Now apply Bayes' rule for the LHS of our goal: .

And substitute our factorization into the Bayes' rule expression:

   (Bayes rule again)

A C B

P(A, C|B) = P(A|B)P(C|B)

P(A, B, C) = P(A)P(B|A)P(C|B)

P(A, C|B) =
P(A,B,C)

P(B)

P(A, C|B) =
P(A)P(B|A)P(C|B)

P(B)
= P(A|B)P(C|B) ✓



Building block 3: Chains

Note This association of  and  is not directional. (It is symmetric.)

On the other hand, causation is directional (and asymmetric).

As you've been warned for years: Associations are not necessarily causal.

A C



Building block 4: Forks

Forks are another very common structure in DAGs: .A ← B → C



Building block 4: Forks

 and  are usually associated in forks. (As with chains.)

This chain of association follows the path .

A C

A ← B → C
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 and  are usually associated in forks. (As with chains.)

This chain of association follows the path .

Intuition:
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Building block 4: Forks

 and  are usually associated in forks. (As with chains.)

This chain of association follows the path .

Intuition:  induces changes in  and . An observer will see  change
when  also changes—they are associated due to their common cause.

A C

A ← B → C

B A B A

C



Building block 4: Forks

Another way to think about forks:

OVB when a treatment  does not affect the outcome .

Without controlling for ,  and  are (usually) non-causally associated.

D Y

W Y D



Building block 4: Forks

 and  are usually associated in forks. (As with chains.)

This chain of association follows the path .

Proof:

A C

A ← B → C



Building block 4: Forks

 and  are usually associated in forks. (As with chains.)

This chain of association follows the path .

Proof: Same problem as chains: We can't show  and  are independent,
so we assume they're likely (potentially?) dependent.

A C

A ← B → C

A C
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Conditioning on  makes  and B A C



Building block 4: Blocked forks

Conditioning on  makes  and  independent. (As with chains.)

Intuition:

B A C



Building block 4: Blocked forks

Conditioning on  makes  and  independent. (As with chains.)

Intuition:  and  are only associated due to their common cause .

When we shutdown (hold constant) this common cause , 
there is way for  and  to associate.

B A C

A C B

(B)

A C



Building block 4: Blocked forks

Conditioning on  makes  and  independent. (As with chains.)

Intuition:  and  are only associated due to their common cause .

When we shutdown (hold constant) this common cause , 
there is way for  and  to associate.

Also: Think about Local Markov. Or think about OVB.

B A C

A C B

(B)

A C



Building block 4: Blocked forks

Proof: We want to show .P(A, C|B) = P(A|B)P(C|B)



Building block 4: Blocked forks

Proof: We want to show .

Step 1: Bayesian net. factorization: 

P(A, C|B) = P(A|B)P(C|B)

P(A, B, C) = P(B)P(A|B)P(C|B)



Building block 4: Blocked forks

Proof: We want to show .

Step 1: Bayesian net. factorization: 

Step 2: Bayes' rule: 

P(A, C|B) = P(A|B)P(C|B)

P(A, B, C) = P(B)P(A|B)P(C|B)

P(A, C|B) =
P(A,B,C)

P(B)



Building block 4: Blocked forks

Proof: We want to show .

Step 1: Bayesian net. factorization: 

Step 2: Bayes' rule: 

Step 3: Combine 2 & 1:  

P(A, C|B) = P(A|B)P(C|B)

P(A, B, C) = P(B)P(A|B)P(C|B)

P(A, C|B) =
P(A,B,C)

P(B)

P(A, C|B) = = P(A|B)P(C|B)
P(A,B,C)

P(B)
✓



Building block 4: Forks

Two more items to emphasize:

�. Association need not follow paths' directions, e.g., .

�. Causation follows directed paths.

A ← B → C



Building block 5: Immoralities

An immorality occurs when two nodes share a child without being
otherwise connected.† A → B ← C

† I'm not making this up.
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The child (here: ) at the center of this immorality is called a collider.
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Building block 5: Immoralities

An immorality occurs when two nodes share a child without being
otherwise connected.† 

The child (here: ) at the center of this immorality is called a collider.

Notice: An immorality is a fork with reversed directions of the edges.

A → B ← C

† I'm not making this up.

B
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Q Are  and  independent? 
A Yes. .

A C
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Building block 5: Immoralities

Q Are  and  independent? 
A Yes. .

Intuition: Causal effects �ow from  and  and stop there.

Neither  nor  is a descendant of the other.
 and  do not share any common causes.

A C

A ⊥⊥ C

A C

A C

A C



Building block 5: Immoralities

Proof: Start with marginalizing dist. of  and . Then BNF.A C

P(A, C) = ∑B P(A, B, C)
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Building block 5: Immoralities

Proof: Start with marginalizing dist. of  and . Then BNF.A C

P(A, C) = ∑B P(A, B, C)

P(A, C) = ∑B P(A)P(C)P(B|A, C)

P(A, C) = P(A)P(C) (∑B P(B|A, C) = 1)



Building block 5: Immoralities

Proof: Start with marginalizing dist. of  and . Then BNF.

  (  without conditioning)

A C

P(A, C) = ∑B P(A, B, C)

P(A, C) = ∑B P(A)P(C)P(B|A, C)

P(A, C) = P(A)P(C) (∑B P(B|A, C) = 1)

P(A, C) = P(A)P(C) ✓ A ⊥⊥ C
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Q What happens when we condition on ?B



Building block 5: Immoralities with conditions

Q What happens when we condition on ?  
A We unblock (or open) the previously blocked (closed) path.

While  and  are independent, they are conditionally dependent.

B

A C



Building block 5: Immoralities with conditions

Q What happens when we condition on ?  
A We unblock (or open) the previously blocked (closed) path.

While  and  are independent, they are conditionally dependent.

Important: When you condition on a collider, you open up the path.

B

A C



Building block 5: Immoralities with conditions

Intuition:  is a combination of  and .

Conditioning on a value of  jointly constrains  and —they can no
longer move independently.

B A C
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Building block 5: Immoralities with conditions

Intuition:  is a combination of  and .

Conditioning on a value of  jointly constrains  and —they can no
longer move independently.

Example: Let  take on  and  take on  (independently).

Conditional on ,  and  are perfectly negatively correlated.

B A C

B A C

A {0, 1} C {0, 1}

B = 1 A C



Building block 5: Immoralities with conditions

In MHE vocabulary: The collider  is a bad control.

 is affected by both your treatment  and outcome .
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The result: A spurious relationship between  and   
Remember: they're actually (unconditionally) independent.
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Building block 5: Immoralities with conditions

In MHE vocabulary: The collider  is a bad control.

 is affected by both your treatment  and outcome .

The result: A spurious relationship between  and   
Remember: they're actually (unconditionally) independent.

This spurious relationship is often called collider bias.

X

X D Y

Y D



Example Data from hospitalized patients: Mobility and respiratory health.



Example Data from hospitalized patients: Mobility and respiratory health.

Q How does this example relate to collider bias?



Example Data from hospitalized patients: Mobility and respiratory health.

Q How does this example relate to collider bias? 
A Write out the DAG (+ think about selection into your sample)!
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De�ne  as mobility,  as respiratory health, and  as hospitalized.

Suppose for the moment respiratory health and mobility

�. are independent of each other
�. each cause hospitalization (when they are too low)
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Example Data from hospitalized patients: Mobility and respiratory health.

De�ne  as mobility,  as respiratory health, and  as hospitalized.
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Example Data from hospitalized patients: Mobility and respiratory health.

De�ne  as mobility,  as respiratory health, and  as hospitalized.

Suppose for the moment respiratory health and mobility

�. are independent of each other
�. each cause hospitalization (when they are too low)

Our data conditions on hospitalization, which opens .

M R H

M → H ← R



You can also see this example graphically...
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Example Data from hospitalized patients: Mobility and respiratory health.

Let ; ; .

Without conditioning: No relationship between mobility and resp. health.

M ∼ Uniform(0, 1) R ∼ Uniform(0, 1) H = I{M + R < 1}



Example Data from hospitalized patients: Mobility and respiratory health.

; ; .

Recall: Our sample excludes non-hospitalized individuals.

M ∼ Uniform(0, 1) R ∼ Uniform(0, 1) H = I{M + R < 1}



Example Data from hospitalized patients: Mobility and respiratory health.

; ; .

Conditioning on : Mobility and respiratory health are associated.

M ∼ Uniform(0, 1) R ∼ Uniform(0, 1) H = I{M + R < 1}

H



I like this example because it reminds us that conditioning occurs both
explicitly (e.g., "controlling for") and implicitly (e.g., sample inclusion).

This example of collider bias in hospitalization data comes from David L.
Sackett's 1978 paper Bias in Analytic Research.

Sackett called it admission rate bias.

More generally: You'll hear this called selection bias or Berkson's paradox.

https://www.jameslindlibrary.org/wp-data/uploads/2014/06/Sackett-1979-whole-article.pdf
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Let's formally de�ne a blocked path (blocking is important).

A path between  and  is blocked by conditioning on a set of variables 
(possibly empty) if either of the following statements is true:

�. On the path, there is a chain  or a fork 
, and we condition on  .

�. On the path, there is a collider , and we do not
condition on   or any of its descendants .
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Let's formally de�ne a blocked path (blocking is important).

A path between  and  is blocked by conditioning on a set of variables 
(possibly empty) if either of the following statements is true:

�. On the path, there is a chain  or a fork 
, and we condition on  .

�. On the path, there is a collider , and we do not
condition on   or any of its descendants .

Association �ows along unblocked paths.

X Y Z

(⋯ → W → …)

(⋯ ← W → …) W (W ∈ Z)

(⋯ → W ← …)

W (W ∉ Z) (de(W) ⊈ Z)
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DAGs

d-separation and d-connected(-ness)
Finally, we'll de�ne whether nodes are separated or connected in DAGs.

Separation: Nodes  and  are d-separated by a set of nodes  if all paths
between  and  are blocked by .

Notation for d-separation: 

Connection: If there is at least one path between  and  that is
unblocked, then  and  are d-connected.

X Y Z

X Y Z

X ⊥⊥G Y|Z

X Y

X Y

59 / 74
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We must eliminate non-causal association.

Putting these ideas together, here is our criterion to isolate causal e�ects:

If we remove all edges �owing out of  (its causal effects),  
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DAGs

d-separation and causality
d-separation tells us that two nodes are not associated.

To measure the causal effect of  on :  
We must eliminate non-causal association.

Putting these ideas together, here is our criterion to isolate causal e�ects:

If we remove all edges �owing out of  (its causal effects),  
then  and  should be d-separated.

This criterion ensures that we've closed the backdoor paths that generate
non-causal associations between  and .

X Y

X

X Y

X Y

60 / 74



ExamplesExamples



Example 1: OVB

Q OVB using DAG fundamentals: When can we isolate causal effects?



Example 2: Mediation

Here  is a mediator: it mediates the effect of  on .

Q1 What do we need to condition on to get the effect of  on ?  
Q2 What happens if we condition on  and ?

M D Y

D Y

W M



Example 3: Partial mediation

Q1 What do we need to condition on to get the effect of  on ?  
Q2 What happens if we condition on  and ?

D Y

W M



Example 4: Non-mediator descendants

Q1 What do we need to condition on to get the effect of  on ?  
Q2 What happens if we condition on  and/or ?

D Y

W Z



Example 5: M-Bias

Notice that  here is not a result of treatment (could be "pre-treatment").

Q1 What do we need to condition on to get the effect of  on ?  
Q2 What happens if we condition on ?  
Q3 What happens if we condition on  along with  and/or ?

C

D Y

C

C B C



One more note:

DAGs are often drawn without "noise variables" (disturbances).

But they still exist—they're just "outside of the model."
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DAGs

Limitations
So what can't DAGs do (well)?

Simultaneity: De�ned causality as unidirectional and prohibited cycles.

Dynamics: You can sort of allow a variable to affect itself... .

Uncertainty: DAGs are most useful when you can correctly draw them.

Make friends: There's a lot of (angry/uncharitable) �ghting about DAGs:

Yt=1 → Yt=2

Philosophy → DAGs/Epidemiology ← Economics

68 / 74



Some of Judea Pearl's thoughts (source)

So, what is it about epidemiologists that drives them to seek the
light of new tools, while economists (at least those in Imbens’s
camp) seek comfort in partial blindness, while missing out on the
causal revolution? Can economists do in their heads what
epidemiologists observe in their graphs? Can they, for instance,
identify the testable implications of their own assumptions? Can
they decide whether the IV assumptions (i.e., exogeneity and
exclusion) are satis�ed in their own models of reality? Of course
the can’t; such decisions are intractable to the graph-less mind. (I
have challenged them repeatedly to these tasks, to the sound of
a pin-drop silence)

http://127.0.0.1:3304/(http://causality.cs.ucla.edu/blog/index.php/2014/10/27/are-economists-smarter-than-epidemiologists-comments-on-imbenss-recent-paper/


Pearl, continued (source)

Or, are problems in economics different from those in
epidemiology? I have examined the structure of typical problems
in the two �elds, the number of variables involved, the types of
data available, and the nature of the research questions. The
problems are strikingly similar.

I have only one explanation for the difference: Culture.

The arrow-phobic culture started twenty years ago, when Imbens
and Rubin (1995) decided that graphs “can easily lull the
researcher into a false sense of con�dence in the resulting
causal conclusions,” and Paul Rosenbaum (1995) echoed with “No
basis is given for believing” […] “that a certain mathematical
operation, namely this wiping out of equations and �xing of
variables, predicts a certain physical reality”

http://127.0.0.1:3304/(http://causality.cs.ucla.edu/blog/index.php/2014/10/27/are-economists-smarter-than-epidemiologists-comments-on-imbenss-recent-paper/


Guido Imbens's response (source)

... Judea and others using graphical models have developed a
very interesting set of tools that researchers in many areas have
found useful for their research. Other researchers, including
myself, have found the potential outcome framework for
causality associated with the work by Rubin... more useful for
their work. In my view that difference of opinion does not re�ect
“economists being scared of graphs”, or “educational
de�ciencies” as Judea claims, merely legitimate heterogeneity in
views arising from differences in preferences and problems. The
“educational de�ciencies” claim, and similarly the comment
about my “vow” to avoid causal graphs is particularly ironic given
that in the past Judea has presented, at my request, his work on
causal graphs to participants in a graduate seminar I taught at
Harvard University.

http://127.0.0.1:3304/(http://causality.cs.ucla.edu/blog/index.php/2014/10/27/are-economists-smarter-than-epidemiologists-comments-on-imbenss-recent-paper/


🤷  

Suggestion: Be nice to people and be intellectually honest.



Sources

Thanks
These notes rely heavily upon Brady Neal's Introduction to Causal Inference.

I also borrow from Scott Cunningham's Causal Inference: The Mixtape.

I found the Sackett (1978) example on the "Catalog of Bias" website.
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https://bradyneal.com/causal-inference-course
https://www.scunning.com/mixtape.html
https://catalogofbias.org/biases/collider-bias/
https://catalogofbias.org/biases/collider-bias/
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