Controls

EC 607, Set 06

Edward Rubin
Spring 2021

Prologue

Schedule

Last time

The conditional independence assumption: $\left\{\mathrm{Y}_{0 i}, \mathrm{Y}_{1 i}\right\} \Perp \mathrm{D}_{i} \mid \mathrm{X}_{i}$
l.e., conditional on some controls (X_{i}), treatment is as-good-as random.

Today

- Omitted variable bias
- Good vs. bad controls

Upcoming

- Topics: Matching estimators

Omitted-variable bias

Omitted-variable bias

Revisiting an old friend

Let's start where we left off: Returns to schooling.
We have two linear, population models

$$
\begin{align*}
& \mathrm{Y}_{i}=\alpha+\rho \mathrm{s}_{i}+\eta_{i} \tag{1}\\
& \mathrm{Y}_{i}=\alpha+\rho \mathrm{s}_{i}+\mathrm{X}_{i}^{\prime} \gamma+\nu_{i} \tag{2}
\end{align*}
$$

Omitted-variable bias

Revisiting an old friend

Let's start where we left off: Returns to schooling.
We have two linear, population models

$$
\begin{align*}
& \mathrm{Y}_{i}=\alpha+\rho \mathrm{s}_{i}+\eta_{i} \tag{1}\\
& \mathrm{Y}_{i}=\alpha+\rho \mathrm{s}_{i}+\mathrm{X}_{i}^{\prime} \gamma+\nu_{i} \tag{2}
\end{align*}
$$

We should not interpret $\hat{\rho}$ causally in model (1) (for fear of selection bias).

Omitted-variable bias

Revisiting an old friend

Let's start where we left off: Returns to schooling.
We have two linear, population models

$$
\begin{align*}
& \mathrm{Y}_{i}=\alpha+\rho \mathrm{s}_{i}+\eta_{i} \tag{1}\\
& \mathrm{Y}_{i}=\alpha+\rho \mathrm{s}_{i}+\mathrm{X}_{i}^{\prime} \gamma+\nu_{i} \tag{2}
\end{align*}
$$

We should not interpret $\hat{\rho}$ causally in model (1) (for fear of selection bias).
For model (2), we can interpret $\hat{\rho}$ causally if $\mathrm{Y}_{s i} \Perp \mathrm{~s}_{i} \mid \mathrm{X}_{i}$ (CIA).

Omitted-variable bias

Revisiting an old friend

Let's start where we left off: Returns to schooling.
We have two linear, population models

$$
\begin{align*}
& \mathrm{Y}_{i}=\alpha+\rho \mathrm{s}_{i}+\eta_{i} \tag{1}\\
& \mathrm{Y}_{i}=\alpha+\rho \mathrm{s}_{i}+\mathrm{X}_{i}^{\prime} \gamma+\nu_{i} \tag{2}
\end{align*}
$$

We should not interpret $\hat{\rho}$ causally in model (1) (for fear of selection bias).
For model (2), we can interpret $\hat{\rho}$ causally if $\mathrm{Y}_{s i} \Perp \mathrm{~s}_{i} \mid \mathrm{X}_{i}$ (CIA).
In other words, the CIA says that our observable vector X_{i} must explain all of correlation between s_{i} and η_{i}.

Omitted-variable bias

The OVB formula

We can use the omitted-variable bias (OVB) formula to compare regression estimates from models with different sets of control variables.

Omitted-variable bias

The OVB formula

We can use the omitted-variable bias (OVB) formula to compare regression estimates from models with different sets of control variables.

We're concerned about selection and want to use a set of control variables to account for ability (A_{i})-family background, motivation, intelligence.

$$
\begin{align*}
& \mathrm{Y}_{i}=\alpha+\beta \mathrm{s}_{i}+v_{i} \tag{1}\\
& \mathrm{Y}_{i}=\pi+\rho \mathrm{s}_{i}+\mathrm{A}_{i}^{\prime} \gamma+e_{i} \tag{2}
\end{align*}
$$

Omitted-variable bias

The OVB formula

We can use the omitted-variable bias (OVB) formula to compare regression estimates from models with different sets of control variables.

We're concerned about selection and want to use a set of control variables to account for ability (A_{i})-family background, motivation, intelligence.

$$
\begin{align*}
& \mathrm{Y}_{i}=\alpha+\beta \mathrm{s}_{i}+v_{i} \tag{1}\\
& \mathrm{Y}_{i}=\pi+\rho \mathrm{s}_{i}+\mathrm{A}_{i}^{\prime} \gamma+e_{i} \tag{2}
\end{align*}
$$

What happens if we can't get data on A_{i} and opt for (1)?

Omitted-variable bias

The OVB formula

We can use the omitted-variable bias (OVB) formula to compare regression estimates from models with different sets of control variables.

We're concerned about selection and want to use a set of control variables to account for ability $\left(\mathrm{A}_{i}\right)$-family background, motivation, intelligence.

$$
\begin{align*}
& \mathrm{Y}_{i}=\alpha+\beta \mathrm{s}_{i}+v_{i} \tag{1}\\
& \mathrm{Y}_{i}=\pi+\rho \mathrm{s}_{i}+\mathrm{A}_{i}^{\prime} \gamma+e_{i} \tag{2}
\end{align*}
$$

What happens if we can't get data on A_{i} and opt for (1)?

$$
\frac{\operatorname{Cov}\left(\mathrm{Y}_{i}, \mathrm{~s}_{i}\right)}{\operatorname{Var}\left(\mathrm{s}_{i}\right)}=\rho+\gamma^{\prime} \delta_{A s}
$$

where $\delta_{A s}$ are coefficients from regressing A_{i} on s_{i}.

Omitted-variable bias

Interpretation

Our two regressions

$$
\begin{align*}
\mathrm{Y}_{i} & =\alpha+\beta \mathrm{s}_{i}+v_{i} \tag{1}\\
\mathrm{Y}_{i} & =\pi+\rho \mathrm{s}_{i}+\mathrm{A}_{i}^{\prime} \gamma+e_{i} \tag{2}
\end{align*}
$$

will yield the same estimates for the returns to schooling

$$
\frac{\operatorname{Cov}\left(\mathrm{Y}_{i}, \mathrm{~s}_{i}\right)}{\operatorname{Var}\left(\mathrm{s}_{i}\right)}=\rho+\gamma^{\prime} \delta_{A s}
$$

if (\mathbf{a}) schooling is uncorrelated with ability $\left(\delta_{A s}=0\right)$ or (\mathbf{b}) ability is uncorrelated with earnings, conditional on schooling $(\gamma=0)$.

Omitted-variable bias

Example

Table 3.2.1, The returns to schooling

	$\mathbf{1}$	$\mathbf{2}$	3	4
Schooling	0.132	0.131	0.114	0.087
	(0.007)	(0.007)	(0.007)	(0.009)
Controls	None	Age Dum.	$2+$ Add'l	$3+$ AFQT

Here we have four specifications of controls for a regression of log wages on years of schooling (from the NLSY).

Omitted-variable bias

Example

Table 3.2.1, The returns to schooling

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4
Schooling	0.132	0.131	0.114	0.087
	(0.007)	(0.007)	(0.007)	(0.009)
Controls	None	Age Dum.	$2+$ Add'l	$3+$ AFQT

Column 1 (no control variables) suggests a 13.2% increase in wages for an additional year of schooling.

Omitted-variable bias

Example

Table 3.2.1, The returns to schooling

	$\mathbf{1}$	2	3	4
Schooling	0.132	0.131	0.114	0.087
	(0.007)	(0.007)	(0.007)	(0.009)

Controls None Age Dum. 2 + Add'l 3 + AFQT

Column 2 (age dummies) suggests a 13.1\% increase in wages for an additional year of schooling.

Omitted-variable bias

Example

Table 3.2.1, The returns to schooling

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4
Schooling	0.132	0.131	0.114	0.087
	(0.007)	(0.007)	(0.007)	(0.009)
Controls	None	Age Dum.	$2+$ Add'l $^{\prime}$	$3+$ AFQT

Column 3 (column 2 controls plus parents' ed. and self demographics) suggests a 11.4% increase in wages for an additional year of schooling.

Omitted-variable bias

Example

Table 3.2.1, The returns to schooling

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4
Schooling	0.132	0.131	0.114	0.087
	(0.007)	(0.007)	(0.007)	(0.009)
Controls	None	Age Dum.	$2+$ Add'l	$3+$ AFQT

Column 4 (column 3 controls plus AFQT ${ }^{\dagger}$ score) suggests a 8.7% increase in wages for an additional year of schooling.

Omitted-variable bias

Example

Table 3.2.1, The returns to schooling

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4
Schooling	0.132	0.131	0.114	0.087
	(0.007)	(0.007)	(0.007)	(0.009)
Controls	None	Age Dum.	$2+$ Add'l	$3+$ AFQT

As we ratchet up controls, the estimated returns to schooling drop by 4.5 percentage points (34\% drop in the coefficient) from Column 1 to Column 4.

Omitted-variable bias

Example

Table 3.2.1, The returns to schooling

	$\mathbf{1}$	$\mathbf{2}$	3	4
Schooling	0.132	0.131	0.114	0.087
	(0.007)	(0.007)	(0.007)	(0.009)

Controls None Age Dum. 2 + Add'l 3 + AFQT

As we ratchet up controls, the estimated returns to schooling drop by 4.5 percentage points (34\% drop in the coefficient) from Column 1 to Column 4.

$$
\frac{\operatorname{Cov}\left(\mathrm{Y}_{i}, \mathrm{~s}_{i}\right)}{\operatorname{Var}\left(\mathrm{s}_{i}\right)}=\rho+\gamma^{\prime} \delta_{A s}
$$

Omitted-variable bias

Example

Table 3.2.1, The returns to schooling

	$\mathbf{1}$	$\mathbf{2}$	3	4
Schooling	0.132	0.131	0.114	0.087
	(0.007)	(0.007)	(0.007)	(0.009)

Controls None Age Dum. 2 + Add'l 3 + AFQT

As we ratchet up controls, the estimated returns to schooling drop by 4.5 percentage points (34% drop in the coefficient) from Column 1 to Column 4.

$$
\frac{\operatorname{Cov}\left(\mathrm{Y}_{i}, \mathrm{~s}_{i}\right)}{\operatorname{Var}\left(\mathrm{s}_{i}\right)}=\rho+\gamma^{\prime} \delta_{A s}
$$

If we think ability positively affects wages, then it looks like we also have positive selection into schooling.

Omitted: X_{2} and X_{3}

Omitted-variable bias

Note

This OVB formula does not require either of the models to be causal.
The formula compares the regression coefficient in a short model to the regression coefficient on the same variable in a long model. ${ }^{\dagger}$

Omitted-variable bias

The OVB formula and the CIA ${ }^{\dagger}$

In addition to helping us think through and sign OVB, the formula

$$
\frac{\operatorname{Cov}\left(\mathrm{Y}_{i}, \mathrm{~s}_{i}\right)}{\operatorname{Var}\left(\mathrm{s}_{i}\right)}=\rho+\gamma^{\prime} \delta_{A s}
$$

drives home the point that we're leaning very hard on the conditional independence assumption to be able to interpret our coefficients as causal.

Omitted-variable bias

The OVB formula and the CIA ${ }^{\dagger}$

In addition to helping us think through and sign OVB, the formula

$$
\frac{\operatorname{Cov}\left(\mathrm{Y}_{i}, \mathrm{~s}_{i}\right)}{\operatorname{Var}\left(\mathrm{s}_{i}\right)}=\rho+\gamma^{\prime} \delta_{A s}
$$

drives home the point that we're leaning very hard on the conditional independence assumption to be able to interpret our coefficients as causal.

Q When is the CIA plausible?

Omitted-variable bias

The OVB formula and the CIA^{\dagger}

In addition to helping us think through and sign OVB, the formula

$$
\frac{\operatorname{Cov}\left(\mathrm{Y}_{i}, \mathrm{~s}_{i}\right)}{\operatorname{Var}\left(\mathrm{s}_{i}\right)}=\rho+\gamma^{\prime} \delta_{A s}
$$

drives home the point that we're leaning very hard on the conditional independence assumption to be able to interpret our coefficients as causal.

Q When is the CIA plausible?
A Two potential answers

1. Randomized experiments
2. Programs with arbitrary cutoffs/Lotteries

Control variables play an enormous role in our quest for causality (the CIA).
Q Are "more controls" always better (or at least never worse)?

A No. There are such things as...

Bad controls

Bad controls

Defined

Q What's a bad control-when can a control make a bad situation worse?

Bad controls

Defined

Q What's a bad control-when can a control make a bad situation worse?
A Bad controls are variables that are (also) affected by treatment.

Bad controls

Defined

Q What's a bad control-when can a control make a bad situation worse?
A Bad controls are variables that are (also) affected by treatment. Note There are other types of bad controls too. More soon (DAGs).

Bad controls

Defined

Q What's a bad control-when can a control make a bad situation worse?
A Bad controls are variables that are (also) affected by treatment. Note There are other types of bad controls too. More soon (DAGs).

Q Okay, so why is it bad to control using a variable affected by treatment?

Bad controls

Defined

Q What's a bad control-when can a control make a bad situation worse?
A Bad controls are variables that are (also) affected by treatment. Note There are other types of bad controls too. More soon (DAGs).

Q Okay, so why is it bad to control using a variable affected by treatment?
Hint It's a flavor of selection bias.

Bad controls

Defined

Q What's a bad control-when can a control make a bad situation worse?
A Bad controls are variables that are (also) affected by treatment. Note There are other types of bad controls too. More soon (DAGs).

Q Okay, so why is it bad to control using a variable affected by treatment?
Hint It's a flavor of selection bias.
Let's consider an example...

Bad controls

Example

Suppose we want to know the effect of college graduation on wages.

1. There are only two types of jobs: blue collar and white collar.
2. White-collar jobs, on average, pay more than blue-collar jobs.
3. Graduating college increases the likelihood of a white-collar job.

Bad controls

Example

Suppose we want to know the effect of college graduation on wages.

1. There are only two types of jobs: blue collar and white collar.
2. White-collar jobs, on average, pay more than blue-collar jobs.
3. Graduating college increases the likelihood of a white-collar job.

Q Should we control for occupation type when considering the effect of college graduation on wages? (Will occupation be an omitted variable?)

Bad controls

Example

Suppose we want to know the effect of college graduation on wages.

1. There are only two types of jobs: blue collar and white collar.
2. White-collar jobs, on average, pay more than blue-collar jobs.
3. Graduating college increases the likelihood of a white-collar job.

Q Should we control for occupation type when considering the effect of college graduation on wages? (Will occupation be an omitted variable?)

A No.

Bad controls

Example

Suppose we want to know the effect of college graduation on wages.

1. There are only two types of jobs: blue collar and white collar.
2. White-collar jobs, on average, pay more than blue-collar jobs.
3. Graduating college increases the likelihood of a white-collar job.

Q Should we control for occupation type when considering the effect of college graduation on wages? (Will occupation be an omitted variable?)

A No. Imagine college degrees are randomly assigned.

Bad controls

Example

Suppose we want to know the effect of college graduation on wages.

1. There are only two types of jobs: blue collar and white collar.
2. White-collar jobs, on average, pay more than blue-collar jobs.
3. Graduating college increases the likelihood of a white-collar job.

Q Should we control for occupation type when considering the effect of college graduation on wages? (Will occupation be an omitted variable?)

A No. Imagine college degrees are randomly assigned. When we condition on occupation,

Bad controls

Example

Suppose we want to know the effect of college graduation on wages.

1. There are only two types of jobs: blue collar and white collar.
2. White-collar jobs, on average, pay more than blue-collar jobs.
3. Graduating college increases the likelihood of a white-collar job.

Q Should we control for occupation type when considering the effect of college graduation on wages? (Will occupation be an omitted variable?)

A No. Imagine college degrees are randomly assigned. When we condition on occupation, we compare degree-earners who chose blue-collar jobs to non-degree-earners who chose blue-collar jobs.

Bad controls

Example

Suppose we want to know the effect of college graduation on wages.

1. There are only two types of jobs: blue collar and white collar.
2. White-collar jobs, on average, pay more than blue-collar jobs.
3. Graduating college increases the likelihood of a white-collar job.

Q Should we control for occupation type when considering the effect of college graduation on wages? (Will occupation be an omitted variable?)

A No. Imagine college degrees are randomly assigned. When we condition on occupation, we compare degree-earners who chose blue-collar jobs to non-degree-earners who chose blue-collar jobs. Our assumption of random degrees says nothing about random job selection.

Bad controls can undo valid randomizations.

Bad controls

Formal-ish derivation

More formally, let

- W_{i} be a dummy for whether i has a white-collar job
- Y_{i} denote i 's earnings
- C_{i} refer to i 's randomly assigned college-graduation status

Bad controls

Formal-ish derivation

More formally, let

- W_{i} be a dummy for whether i has a white-collar job
- Y_{i} denote i 's earnings
- C_{i} refer to i 's randomly assigned college-graduation status

$$
\begin{aligned}
\mathrm{Y}_{i} & =\mathrm{C}_{i} \mathrm{Y}_{1 i}+\left(1-\mathrm{C}_{i}\right) \mathrm{Y}_{0 i} \\
\mathrm{~W}_{i} & =\mathrm{C}_{i} \mathrm{~W}_{1 i}+\left(1-\mathrm{C}_{i}\right) \mathrm{W}_{0 i}
\end{aligned}
$$

Bad controls

Formal-ish derivation

More formally, let

- W_{i} be a dummy for whether i has a white-collar job
- Y_{i} denote i 's earnings
- C_{i} refer to i 's randomly assigned college-graduation status

$$
\begin{aligned}
\mathrm{Y}_{i} & =\mathrm{C}_{i} \mathrm{Y}_{1 i}+\left(1-\mathrm{C}_{i}\right) \mathrm{Y}_{0 i} \\
\mathrm{~W}_{i} & =\mathrm{C}_{i} \mathrm{~W}_{1 i}+\left(1-\mathrm{C}_{i}\right) \mathrm{W}_{0 i}
\end{aligned}
$$

Becuase we've assumed C_{i} is randomly assigned, differences in means yield causal estimates, i.e.,

$$
\begin{aligned}
E\left[\mathrm{Y}_{i} \mid \mathrm{C}_{i}=1\right]-E\left[\mathrm{Y}_{i} \mid \mathrm{C}_{i}=0\right] & =E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i}\right] \\
E\left[\mathrm{~W}_{i} \mid \mathrm{C}_{i}=1\right]-E\left[\mathrm{~W}_{i} \mid \mathrm{C}_{i}=0\right] & =E\left[\mathrm{~W}_{1 i}-\mathrm{W}_{0 i}\right]
\end{aligned}
$$

Bad controls

Formal-ish derivation, continued

Let's see what happens when we throw in some controls-e.g., focusing on the the wage-effect of college graduation for white-collar jobs.

Bad controls

Formal-ish derivation, continued

Let's see what happens when we throw in some controls-e.g., focusing on the the wage-effect of college graduation for white-collar jobs.

$$
E\left[\mathrm{Y}_{i} \mid \mathrm{W}_{i}=1, \mathrm{C}_{i}=1\right]-E\left[\mathrm{Y}_{i} \mid \mathrm{W}_{i}=1, \mathrm{C}_{i}=0\right]
$$

Bad controls

Formal-ish derivation, continued

Let's see what happens when we throw in some controls-e.g., focusing on the the wage-effect of college graduation for white-collar jobs.

$$
\begin{aligned}
& E\left[\mathrm{Y}_{i} \mid \mathrm{W}_{i}=1, \mathrm{C}_{i}=1\right]-E\left[\mathrm{Y}_{i} \mid \mathrm{W}_{i}=1, \mathrm{C}_{i}=0\right] \\
& \quad=E\left[\mathrm{Y}_{1 i} \mid \mathrm{W}_{1 i}=1, \mathrm{C}_{i}=1\right]-E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{0 i}=1, \mathrm{C}_{i}=0\right]
\end{aligned}
$$

Bad controls

Formal-ish derivation, continued

Let's see what happens when we throw in some controls-e.g., focusing on the the wage-effect of college graduation for white-collar jobs.

$$
\begin{aligned}
& E\left[\mathrm{Y}_{i} \mid \mathrm{W}_{i}=1, \mathrm{C}_{i}=1\right]-E\left[\mathrm{Y}_{i} \mid \mathrm{W}_{i}=1, \mathrm{C}_{i}=0\right] \\
& \quad=E\left[\mathrm{Y}_{1 i} \mid \mathrm{W}_{1 i}=1, \mathrm{C}_{i}=1\right]-E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{0 i}=1, \mathrm{C}_{i}=0\right] \\
& \quad=E\left[\mathrm{Y}_{1 i} \mid \mathrm{W}_{1 i}=1\right]-E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{0 i}=1\right]
\end{aligned}
$$

Bad controls

Formal-ish derivation, continued

Let's see what happens when we throw in some controls-e.g., focusing on the the wage-effect of college graduation for white-collar jobs.

$$
\begin{aligned}
& E\left[\mathrm{Y}_{i} \mid \mathrm{W}_{i}=1, \mathrm{C}_{i}=1\right]-E\left[\mathrm{Y}_{i} \mid \mathrm{W}_{i}=1, \mathrm{C}_{i}=0\right] \\
& \quad=E\left[\mathrm{Y}_{1 i} \mid \mathrm{W}_{1 i}=1, \mathrm{C}_{i}=1\right]-E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{0 i}=1, \mathrm{C}_{i}=0\right] \\
& \quad=E\left[\mathrm{Y}_{1 i} \mid \mathrm{W}_{1 i}=1\right]-E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{0 i}=1\right] \\
& \quad=E\left[\mathrm{Y}_{1 i} \mid \mathrm{W}_{1 i}=1\right]-E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{1 i}=1\right] \\
& \quad+E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{1 i}=1\right]-E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{0 i}=1\right]
\end{aligned}
$$

Bad controls

Formal-ish derivation, continued

Let's see what happens when we throw in some controls-e.g., focusing on the the wage-effect of college graduation for white-collar jobs.

$$
\begin{aligned}
E[& \left.\mathrm{Y}_{i} \mid \mathrm{W}_{i}=1, \mathrm{C}_{i}=1\right]-E\left[\mathrm{Y}_{i} \mid \mathrm{W}_{i}=1, \mathrm{C}_{i}=0\right] \\
\quad & E\left[\mathrm{Y}_{1 i} \mid \mathrm{W}_{1 i}=1, \mathrm{C}_{i}=1\right]-E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{0 i}=1, \mathrm{C}_{i}=0\right] \\
& =E\left[\mathrm{Y}_{1 i} \mid \mathrm{W}_{1 i}=1\right]-E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{0 i}=1\right] \\
= & E\left[\mathrm{Y}_{1 i} \mid \mathrm{W}_{1 i}=1\right]-E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{1 i}=1\right] \\
& +E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{1 i}=1\right]-E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{0 i}=1\right] \\
= & \underbrace{E\left[\mathrm{Y}_{1 i}-\mathrm{Y}_{0 i} \mid \mathrm{W}_{1 i}=1\right]}_{\text {Causal effect on white-collar workers }}+\underbrace{E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{1 i}=1\right]-E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{0 i}=1\right]}_{\text {Selection bias }}
\end{aligned}
$$

Bad controls

Formal-ish derivation, continued

By introducing a bad control, we introduced selection bias into a setting that did not have selection bias without controls.

Bad controls

Formal-ish derivation, continued

By introducing a bad control, we introduced selection bias into a setting that did not have selection bias without controls.

Specifically, the selection bias term

$$
E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{1 i}=1\right]-E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{0 i}=1\right]
$$

describes how college graduation changes the composition of the pool of white-collar workers.

Bad controls

Formal-ish derivation, continued

By introducing a bad control, we introduced selection bias into a setting that did not have selection bias without controls.

Specifically, the selection bias term

$$
E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{1 i}=1\right]-E\left[\mathrm{Y}_{0 i} \mid \mathrm{W}_{0 i}=1\right]
$$

describes how college graduation changes the composition of the pool of white-collar workers.

Note Even if the causal effect is zero, this selection bias need not be zero.

Bad controls

A trickier example

A timely/trickier example: Wage gaps (e.g., female-male or black-white).

Bad controls

A trickier example

A timely/trickier example: Wage gaps (e.g., female-male or black-white).
Q Should we control for occupation when we consider wage gaps?

Bad controls

A trickier example

A timely/trickier example: Wage gaps (e.g., female-male or black-white).
Q Should we control for occupation when we consider wage gaps?

- What are we trying to capture?
- If we're concerned about discrimination, it seems likely that discrimination also affects occupational choice and hiring outcomes.
- Some motivate occupation controls with groups' differential preferences.

Bad controls

A trickier example

A timely/trickier example: Wage gaps (e.g., female-male or black-white).
Q Should we control for occupation when we consider wage gaps?

- What are we trying to capture?
- If we're concerned about discrimination, it seems likely that discrimination also affects occupational choice and hiring outcomes.
- Some motivate occupation controls with groups' differential preferences.

What's the answer?

Bad controls

Proxy variables

Angrist and Pischke bring up an interesting scenario that intersects omitted-variable bias and bad controls.

- We want to estimate the returns to education.
- Ability is omitted.
- We have a proxy for ability-a test taken after schooling finishes.

Bad controls

Proxy variables

Angrist and Pischke bring up an interesting scenario that intersects omitted-variable bias and bad controls.

- We want to estimate the returns to education.
- Ability is omitted.
- We have a proxy for ability-a test taken after schooling finishes.

We're a bit stuck.

1. If we omit the test altogether, we've got omitted-variable bias.
2. If we include our proxy, we've got a bad control.

Bad controls

Proxy variables

Angrist and Pischke bring up an interesting scenario that intersects omitted-variable bias and bad controls.

- We want to estimate the returns to education.
- Ability is omitted.
- We have a proxy for ability-a test taken after schooling finishes.

We're a bit stuck.

1. If we omit the test altogether, we've got omitted-variable bias.
2. If we include our proxy, we've got a bad control.

With some math/luck, we can bound the true effect with these estimates.

Bad controls

Example

Returning to our OVB-motivated example, we control for occupation.

Table 3.2.1, The returns to schooling

	1	2	3	4	5
Schooling	0.132	0.131	0.114	0.087	0.066
	(0.007)	(0.007)	(0.007)	(0.009)	(0.010)

Controls None Age Dum. 2 + Add'l 3 + AFQT 4 + Occupation

Schooling likely affects occupation; how do we interpret the new results?

Bad controls

Conclusion

Timing matters.
The right controls can help tremendously, but bad controls hurt.

Table of contents

Admin

1. Schedule

Controls

1. Omitted-variable bias

- The formula
- Example
- OVB Venn
- OVB and the CIA

2. Bad controls

- Defined
- Example
- Formalization(ish)
- Trickier example
- Bad proxy conundrum
- Empirical example

