Inference and Simulation

EC 607, Set 04

Edward Rubin Spring 2021

Prologue

Schedule

Last time

The CEF and least-squares regression

Today

Inference

Read MHE 3.1

Upcoming

Lab (as usual) on Friday. Class project, step 1 due on April 15th

Why?

Q What's the big deal with inference?

Why?

Q What's the big deal with inference?

A We rarely know the CEF or the population (and its regression vector).

We *can* draw statistical inferences about the population using samples.

Why?

Q What's the big deal with inference?

A We rarely know the CEF or the population (and its regression vector).

We *can* draw statistical inferences about the population using samples.

Important The issue/topic of statistical inference is separate from causality.

Separate questions

- 1. How do we interpret the estimated coefficient $\hat{\beta}$?
- 2. What is the sampling distribution of $\hat{\beta}$?

Moving from population to sample

Recall The population-regression function gives us the best linear approximation to the CEF.

Moving from population to sample

Recall The population-regression function gives us the best linear approximation to the CEF.

We're interested in the (unknown) population-regression vector

$$eta = E\left[\mathrm{X}_i \mathrm{X}_i'
ight]^{-1} E[\mathrm{X}_i \mathrm{Y}_i]$$

Moving from population to sample

Recall The population-regression function gives us the best linear approximation to the CEF.

We're interested in the (unknown) population-regression vector

$$eta = E\left[\mathrm{X}_i \mathrm{X}_i'
ight]^{-1} E[\mathrm{X}_i \mathrm{Y}_i]$$

which we estimate via the ordinary least squares (OLS) estimator[†]

$$\hat{eta} = \left(\sum_i \mathrm{X}_i \mathrm{X}_i'
ight)^{-1} \left(\sum_i \mathrm{X}_i \mathrm{Y}_i
ight)$$

+ *MHE* presents a method-of-moments motivation for this derivation, where $\frac{1}{n} \sum_{i} X_i X'_i$ is our samplebased estimated for $E[X_i X'_i]$. You've also seen others, *e.g.*, minimizing MSE of Y_i given X_i .

A classic

However you write it, this OLS estimator

$$egin{aligned} \hat{eta} &= ig(\mathbf{X}'\mathbf{X}ig)^{-1}\mathbf{X}'\mathbf{y} \ &= ig(\sum_i \mathbf{X}_i\mathbf{X}_i'ig)^{-1}ig(\sum_i \mathbf{X}_i\mathbf{Y}_iig) \ &= eta + ig[\sum_i \mathbf{X}_i\mathbf{X}_i'ig]^{-1}\sum_i \mathbf{X}_ie_i \end{aligned}$$

is the same estimator you've been using since undergrad.

A classic

However you write it, this OLS estimator

1

$$egin{aligned} \hat{eta} &= ig(\mathrm{X}'\mathrm{X}ig)^{-1}\mathrm{X}'\mathrm{y} \ &= ig(\sum_i \mathrm{X}_i\mathrm{X}_i'ig)^{-1}ig(\sum_i \mathrm{X}_i\mathrm{Y}_iig) \ &= eta + ig[\sum_i \mathrm{X}_i\mathrm{X}_i'ig]^{-1}\sum_i \mathrm{X}_ie_i \end{aligned}$$

is the same estimator you've been using since undergrad.

Note I'm following MHE in defining $e_i = Y_i - X'_i\beta$.

A classic

As you've learned, the OLS estimator

$$\hat{eta} = \left(\sum_i \mathrm{X}_i \mathrm{X}_i'
ight)^{-1} \left(\sum_i \mathrm{X}_i \mathrm{Y}_i
ight) = eta + \left[\sum_i \mathrm{X}_i \mathrm{X}_i'
ight]^{-1} \sum_i \mathrm{X}_i e_i$$

has asymptotic covariance

$$E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}e_{i}^{2}
ight]E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}$$

A classic

As you've learned, the OLS estimator

$$\hat{eta} = \left(\sum_i \mathrm{X}_i \mathrm{X}_i'\right)^{-1} \left(\sum_i \mathrm{X}_i \mathrm{Y}_i
ight) = eta + \left[\sum_i \mathrm{X}_i \mathrm{X}_i'
ight]^{-1} \sum_i \mathrm{X}_i e_i$$

has asymptotic covariance

$$E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}e_{i}^{2}
ight]E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}$$

which we estimate by (**1**) replacing e_i with $\hat{e}_i = Y_i - X'_i \hat{\beta}$ and (**2**) replacing expectations with sample means, *e.g.*, $E[X_i X'_i e_i^2]$ becomes $\frac{1}{n} \sum [X_i X'_i \hat{e}_i^2]$.

A classic

As you've learned, the OLS estimator

$$\hat{eta} = \left(\sum_{i} \mathrm{X}_{i} \mathrm{X}'_{i}
ight)^{-1} \left(\sum_{i} \mathrm{X}_{i} \mathrm{Y}_{i}
ight) = eta + \left[\sum_{i} \mathrm{X}_{i} \mathrm{X}'_{i}
ight]^{-1} \sum_{i} \mathrm{X}_{i} e_{i}$$

has asymptotic covariance

$$E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}e_{i}^{2}
ight]E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}$$

which we estimate by (**1**) replacing e_i with $\hat{e}_i = Y_i - X'_i \hat{\beta}$ and (**2**) replacing expectations with sample means, *e.g.*, $E[X_i X'_i e_i^2]$ becomes $\frac{1}{n} \sum [X_i X'_i \hat{e}_i^2]$.

Standard errors of this flavor are known as heteroskedasticity-consistent (or -robust) standard errors (or Eicker-Huber-White).

Defaults

Statistical packages default to assuming homoskedasticity, *i.e.*, $E[e_i^2 \mid \mathbf{X}_i] = \sigma^2$ for all *i*.

Defaults

Statistical packages default to assuming homoskedasticity, *i.e.*, $E[e_i^2 \mid \mathbf{X}_i] = \sigma^2$ for all *i*. With homoskedasticity,

 $Eig[\mathrm{X}_i\mathrm{X}_i'e_i^2ig] = Eig[Eig[\mathrm{X}_i\mathrm{X}_i'e_i^2\mid\mathrm{X}_iig]ig] = Eig[\mathrm{X}_i\mathrm{X}_i'Eig[e_i^2\mid\mathrm{X}_iig]ig] = \sigma^2\,Eig[\mathrm{X}_i\mathrm{X}_i'ig]$

Defaults

Statistical packages default to assuming homoskedasticity, *i.e.*, $E[e_i^2 \mid \mathbf{X}_i] = \sigma^2$ for all *i*. With homoskedasticity,

$$Eig[\mathrm{X}_i\mathrm{X}_i'e_i^2ig] = Eig[Eig[\mathrm{X}_i\mathrm{X}_i'e_i^2\mid\mathrm{X}_iig]ig] = Eig[\mathrm{X}_i\mathrm{X}_i'Eig[e_i^2\mid\mathrm{X}_iig]ig] = \sigma^2\,Eig[\mathrm{X}_i\mathrm{X}_i'ig]$$

Now, returning to to the asym. covariance matrix of $\hat{\beta}$,

$$E \begin{bmatrix} \mathbf{X}_i \mathbf{X}_i' \end{bmatrix}^{-1} E \begin{bmatrix} \mathbf{X}_i \mathbf{X}_i' e_i^2 \end{bmatrix} E \begin{bmatrix} \mathbf{X}_i \mathbf{X}_i' \end{bmatrix}^{-1} = E \begin{bmatrix} \mathbf{X}_i \mathbf{X}_i' \end{bmatrix}^{-1} \sigma^2 E \begin{bmatrix} \mathbf{X}_i \mathbf{X}_i' \end{bmatrix} E \begin{bmatrix} \mathbf{X}_i \mathbf{X}_i' \end{bmatrix}^{-1} \\ = \sigma^2 E \begin{bmatrix} \mathbf{X}_i \mathbf{X}_i' \end{bmatrix}^{-1}$$

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

$$E\Big[ig(\mathrm{Y}_i - \mathrm{X}_i^\primeetaig)^2 \mid \mathrm{X}_i\Big]$$

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

$$egin{aligned} & E\Big[ig(\mathbf{Y}_i - \mathbf{X}_i'etaig)^2 \mid \mathbf{X}_i\Big] \ & = Eigg[igg(\{\mathbf{Y}_i - E[\mathbf{Y}_i \mid \mathbf{X}_i]\} + ig\{\,E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'etaig\}igg)^2igg|\mathbf{X}_i\Big] \end{aligned}$$

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

$$egin{aligned} &E\Big[ig(\mathbf{Y}_i-\mathbf{X}_i'etaig)^2\mid\mathbf{X}_i\Big]\ &=Eigg[ig(\{\mathbf{Y}_i-E[\mathbf{Y}_i\mid\mathbf{X}_i]\}+ig\{E[\mathbf{Y}_i\mid\mathbf{X}_i]-\mathbf{X}_i'etaig\}ig)^2\Big|\mathbf{X}_i\Big]\ &=\mathrm{Var}(\mathbf{Y}_i\mid\mathbf{X}_i)+ig(E[\mathbf{Y}_i\mid\mathbf{X}_i]-\mathbf{X}_i'etaig)^2 \end{aligned}$$

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

If the CEF is nonlinear, then our linear approximation (linear regression) generates heteroskedasticity.

$$egin{aligned} &E\Big[ig(\mathbf{Y}_i-\mathbf{X}_i'etaig)^2\mid\mathbf{X}_i\Big]\ &=E\Bigg[ig(ig\{\mathbf{Y}_i-E[\mathbf{Y}_i\mid\mathbf{X}_i]ig\}+ig\{E[\mathbf{Y}_i\mid\mathbf{X}_i]-\mathbf{X}_i'etaig\}ig)^2ig|\mathbf{X}_i\Big]\ &=\mathrm{Var}(\mathbf{Y}_i\mid\mathbf{X}_i)+ig(E[\mathbf{Y}_i\mid\mathbf{X}_i]-\mathbf{X}_i'etaig)^2 \end{aligned}$$

Thus, even if $Y_i | X_i$ has contant variance, $e_i | X_i$ is heteroskedastic.

Two notes

1. Heteroskedasticity is **not our biggest concern** in inference.

...as an empirical matter, heteroskedasticity may matter very little... If heteroskedasticity matters a lot, say, more than a 30 percent increase or any marked decrease in standard errors, you should worry about possible programming errors or other problems. (*MHE*, p.47)

2. Notice that we've **avoided "standard" stronger assumptions**, *e.g.*, normality, fixed regressors, linear CEF, homoskedasticity.

Two notes

1. Heteroskedasticity is **not our biggest concern** in inference.

...as an empirical matter, heteroskedasticity may matter very little... If heteroskedasticity matters a lot, say, more than a 30 percent increase or any marked decrease in standard errors, you should worry about possible programming errors or other problems. (*MHE*, p.47)

2. Notice that we've **avoided "standard" stronger assumptions**, *e.g.*, normality, fixed regressors, linear CEF, homoskedasticity.

Following (2): We only have large-sample, asymptotic results (consistency) rather than finite-sample results (unbiasedness).

Warning

Because many of properties we care about for the inference are **largesample** properties, they may not always apply to **small samples**.

Warning

Because many of properties we care about for the inference are **largesample** properties, they may not always apply to **small samples**.

One practical way we can study the behavior of an estimator: **simulation**.

Warning

Because many of properties we care about for the inference are **largesample** properties, they may not always apply to **small samples**.

One practical way we can study the behavior of an estimator: **simulation**.

Note You need to make sure your simulation can actually test/respond to the question you are asking (*e.g.*, bias *vs.* consistency).

Simulation

Let's compare false- and true-positive rates[†] for

- 1. Homoskedasticity-assuming standard errors $(Var[e_i|X_i] = \sigma^2)$
- 2. Heteroskedasticity-robust standard errors

Simulation

Let's compare false- and true-positive rates[†] for

- 1. Homoskedasticity-assuming standard errors $(Var[e_i|X_i] = \sigma^2)$
- 2. Heteroskedasticity-robust standard errors

Simulation outline

- 1. Define data-generating process (DGP).
- 2. Choose sample size n.
- 3. Set seed.
- 4. Run 10,000 iterations of
 - a. Draw sample of size n from DGP.
 - b. Conduct inference.
 - c. Record inferences' outcomes.

+ The false-positive rate goes by many names; another common name: type-I error rate.

Data-generating process

First, we'll define our DGP.

Data-generating process

First, we'll define our DGP.

We've been talking a lot about nonlinear CEFs, so let's use one.

Let's keep the disturbances well behaved.

Data-generating process

First, we'll define our DGP.

We've been talking a lot about nonlinear CEFs, so let's use one.

Let's keep the disturbances well behaved.

$$\mathrm{Y}_i = 1 + e^{0.5\mathrm{X}_i} + arepsilon_i$$

where $X_i \sim \text{Uniform}(0, 10)$ and $\varepsilon_i \sim N(0, 1)$.

Data-generating process

$$\mathrm{Y}_i = 1 + e^{0.5\mathrm{X}_i} + arepsilon_i$$

where $X_i \sim \text{Uniform}(0, 10)$ and $\varepsilon_i \sim N(0, 15^2)$.

Data-generating process

$$\mathrm{Y}_i = 1 + e^{0.5\mathrm{X}_i} + arepsilon_i$$

where $X_i \sim \text{Uniform}(0, 10)$ and $\varepsilon_i \sim N(0, 15^2)$.

Data-generating process

$$\mathrm{Y}_i = 1 + e^{0.5\mathrm{X}_i} + arepsilon_i$$

where $X_i \sim \text{Uniform}(0, 10)$ and $\varepsilon_i \sim N(0, 15^2)$.

library (pacman)							
p_load(dplyr)							
# Choose a size							
n ← 1000							
<i># Generate data</i>							
dgp_df ← tibble(
ε = rnorm(n, sd = 15),							
x = runif(n, min = 0, max = 10),							
$y = 1 + exp(0.5 * x) + \epsilon$							
)							

# /	# ~	CIDDIC	1 ,00	
#>		3	Х	У
#>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	8.78	9.53	127.
#>	2	10.6	6.22	34.0
#>	3	-1.64	5.32	13.6
#>	4	-6.80	8.92	80.7
#>	5	9.09	1.96	12.8
#>	6 -	-27.3	8.84	57.0
#>	7	9.45	2.18	13.4
#>	8	-4.14	3.78	3.47
#>	9	-4.26	3.52	2.54
#>	10 -	-13.8	9.88	127.
#>	#	with 9	990 moi	re rows

 $\# \times \# \wedge + i h h] \circ \cdot 1 0 0 0 \times 3$

Our CEF

Our population

The population least-squares regression line

Iterating

To make iterating easier, let's wrap our DGP in a function.

```
fun_iter ← function(iter, n = 30) {
    # Generate data
    iter_df ← tibble(
        ε = rnorm(n, sd = 15),
        x = runif(n, min = 0, max = 10),
        y = 1 + exp(0.5 * x) + ε
    )
}
```

We still need to run a regression and draw some inferences.

Note We're defaulting to size-30 samples.

We will use lm_robust() from the estimatr package for OLS and inference.⁺

- se_type = "classical" provides homoskedasticity-assuming SEs
- se_type = "HC2" provides heteroskedasticity-robust SEs

lm_robust(y ~ x, data = dgp_df, se_type = "classical") %>% tidy() %>% select(1:5)

#>		term	estimate	std.error	statistic	p.value
#>	1	(Intercept)	-21.14183	1.473496	-14.34807	1.383951e-42
#>	2	Х	10.48074	0.257810	40.65294	6.560626e-214

lm_robust(y ~ x, data = dgp_df, se_type = "HC2") %>% tidy() %>% select(1:5)

#> term estimate std.error statistic p.value
#> 1 (Intercept) -21.14183 1.4335274 -14.74812 1.112039e-44
#> 2 x 10.48074 0.3097606 33.83495 8.788638e-168

t lm() works for "spherical" standard errors but cannot calculate het.-robust standard errors.

Inference

Now add these estimators to our iteration function...

```
fun iter \leftarrow function(iter, n = 30) {
  # Generate data
  iter df \leftarrow tibble(
    \varepsilon = rnorm(n, sd = 15),
    x = runif(n, min = 0, max = 10),
    y = 1 + \exp(0.5 + x) + \epsilon
  # Estimate models
  lm1 \leftarrow lm robust(y \sim x, data = iter df, se type = "classical")
  lm2 \leftarrow lm robust(y \sim x, data = iter df, se type = "HC2")
  # Stack and return results
  bind rows(tidy(lm1), tidy(lm2)) %>%
    select(1:5) %>% filter(term = "x") %>%
    mutate(se_type = c("classical", "HC2"), i = iter)
```

Run it

Now we need to actually run our fun_iter() function 10,000 times.

Run it

Now we need to actually run our fun_iter() function 10,000 times.

There are a lot of ways to run a single function over a list/vector of values.

- lapply(), *e.g.*, lapply(X = 1:3, FUN = sqrt)
- for(), *e.g.*, for (x in 1:3) sqrt(x)
- map() from purrr, e.g., map(1:3, sqrt)

Run it

Now we need to actually run our fun_iter() function 10,000 times.

There are a lot of ways to run a single function over a list/vector of values.

- lapply(), *e.g.*, lapply(X = 1:3, FUN = sqrt)
- for(), *e.g.*, for (x in 1:3) sqrt(x)
- map() from purrr, e.g., map(1:3, sqrt)

We're going to go with map() from the purr package because it easily parallelizes across platforms using the furr package.

Run it!

Run our function 10,000 times

Packages
p_load(purrr)
Set seed
set.seed(12345)
Run 10,000 iterations
sim_list ← map(1:1e4, fun_iter)

Run it!

Run our function 10,000 times

Parallelized 10,000 iterations

```
# Packages
p_load(purr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multiprocess)
# Run 10,000 iterations
sim_list 		future_map(
    1:1e4, fun_iter,
    .options = future_options(seed = T)
)
```

Run it!

Run our function 10,000 times

Parallelized 10,000 iterations

The furrr package (future + purrr) makes parallelization easy and fun!

Run it‼

Our fun_iter() function returns a data.frame, and future_map() returns a list (of the returned objects).

So sim_list is going to be a list of data.frame objects. We can bind them into one data.frame with bind_rows().

Bind list together
sim_df ← bind_rows(sim_list)

Run it‼

Our fun_iter() function returns a data.frame, and future_map() returns a list (of the returned objects).

So sim_list is going to be a list of data.frame objects. We can bind them into one data.frame with bind_rows().

Bind list together
sim_df ← bind_rows(sim_list)

So what are the results?

Comparing the distributions of standard errors for the coefficient on \boldsymbol{x}

Comparing the distributions of t statistics for the coefficient on x

Q All of these test are for a false H_0 . How would the simulation change to enforce a *true* null hypothesis?

Updating to enforce the null

Let's update our simulation function to take arguments γ and δ such that

$$\mathrm{Y}_i = 1 + e^{\gamma \mathrm{X}_i} + arepsilon_i$$

where $arepsilon_i \sim \mathrm{N}(0,\sigma^2 \mathrm{X}_i^\delta)$.

Updating to enforce the null

Let's update our simulation function to take arguments γ and δ such that

$$\mathrm{Y}_i = 1 + e^{\gamma \mathrm{X}_i} + arepsilon_i$$

where $arepsilon_i \sim \mathrm{N}(0,\sigma^2 \mathrm{X}_i^\delta)$.

In other words,

- $\gamma = 0$ implies no relationship between \mathbf{Y}_i and \mathbf{X}_i .
- $\delta = 0$ implies homoskedasticity.

Updating to enforce the null

Updating the function...

```
flex iter \leftarrow function(iter, \gamma = 0, \delta = 1, n = 30) {
  # Generate data
  iter df \leftarrow tibble(
    x = runif(n, min = 0, max = 10),
     \varepsilon = \operatorname{rnorm}(n, sd = 15 * x^{\delta}),
    v = 1 + \exp(v \star x) + \varepsilon
  # Estimate models
  lm1 \leftarrow lm robust(y \sim x, data = iter df, se type = "classical")
  lm2 \leftarrow lm robust(y \sim x, data = iter df, se type = "HC2")
  # Stack and return results
  bind rows(tidy(lm1), tidy(lm2)) %>%
     select(1:5) %>% filter(term = "x") %>%
    mutate(se_type = c("classical", "HC2"), i = iter)
```

Run again!

Now we run our new function flex_iter() 10,000 times

```
# Packages
p load(purrr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multiprocess)
# Run 10,000 iterations
null df \leftarrow future map(
  1:1e4, flex iter,
  # Enforce the null hypothesis
  \vee = 0.
  # Specify heteroskedasticity
  \delta = 1,
  .options = future options(seed = T)
) %>% bind_rows()
```

Comparing the distributions of standard errors for the coefficient on \boldsymbol{x}

Comparing the distributions of t statistics for the coefficient on x

Distributions of *p*-values: both methods slightly over-reject the (true) null

Table of contents

Admin

1. Schedule

Inference

- 1. Why?
- 2. OLS
- 3. Heteroskedasticity
- 4. Small-sample warning
- 5. Simulation
 - Outline
 - DGP
 - Iterating
 - Parallelization
 - Results
 - Under the null