Inference and Simulation

EC 607, Set 04

Edward Rubin Spring 2021

Prologue

Schedule

Last time

The CEF and least-squares regression

Today

Inference

Read MHE 3.1

Upcoming

Lab (as usual) on Friday. Class project, step 1 due on April 15th

Why?

Q What's the big deal with inference?

A We rarely know the CEF or the population (and its regression vector).

We can draw statistical inferences about the population using samples.

Important The issue/topic of statistical inference is separate from causality.

Separate questions

- 1. How do we interpret the estimated coefficient $\hat{\beta}$?
- 2. What is the sampling distribution of $\hat{\beta}$?

Moving from population to sample

Recall The population-regression function gives us the best linear approximation to the CEF.

We're interested in the (unknown) population-regression vector

$$eta = E\left[\mathrm{X}_i \mathrm{X}_i'
ight]^{-1} E[\mathrm{X}_i \mathrm{Y}_i]$$

which we estimate via the ordinary least squares (OLS) estimator[†]

$$\hat{eta} = \left(\sum_i \mathrm{X}_i \mathrm{X}_i'
ight)^{-1} \left(\sum_i \mathrm{X}_i \mathrm{Y}_i
ight)^{-1}$$

† MHE presents a method-of-moments motivation for this derivation, where $\frac{1}{n}\sum_i \mathbf{X}_i \mathbf{X}_i'$ is our sample-based estimated for $E[\mathbf{X}_i \mathbf{X}_i']$. You've also seen others, e.g., minimizing MSE of \mathbf{Y}_i given \mathbf{X}_i .

A classic

However you write it, this OLS estimator

$$egin{aligned} \hat{eta} &= \left(\mathbf{X}'\mathbf{X}
ight)^{-1}\mathbf{X}'\mathbf{y} \ &= \left(\sum_{i}\mathbf{X}_{i}\mathbf{X}_{i}'
ight)^{-1}\left(\sum_{i}\mathbf{X}_{i}\mathbf{Y}_{i}
ight) \ &= eta + \left[\sum_{i}\mathbf{X}_{i}\mathbf{X}_{i}'
ight]^{-1}\sum_{i}\mathbf{X}_{i}e_{i} \end{aligned}$$

is the same estimator you've been using since undergrad.

Note I'm following MHE in defining $e_i = \mathbf{Y}_i - \mathbf{X}_i' \beta$.

A classic

As you've learned, the OLS estimator

$$\hat{eta} = \left(\sum_i \mathrm{X}_i \mathrm{X}_i'
ight)^{-1} \left(\sum_i \mathrm{X}_i \mathrm{Y}_i
ight) = eta + \left[\sum_i \mathrm{X}_i \mathrm{X}_i'
ight]^{-1} \sum_i \mathrm{X}_i e_i$$

has asymptotic covariance

$$E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}e_{i}^{2}
ight]E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}$$

which we estimate by (1) replacing e_i with $\hat{e}_i = Y_i - X_i'\hat{\beta}$ and (2) replacing expectations with sample means, e.g., $E\left[X_iX_i'e_i^2\right]$ becomes $\frac{1}{n}\sum\left[X_iX_i'\hat{e}_i^2\right]$.

Standard errors of this flavor are known as heteroskedasticity-consistent (or -robust) standard errors (or Eicker-Huber-White).

Defaults

Statistical packages default to assuming homoskedasticity, i.e.,

$$Eig[e_i^2\mid \mathrm{X}_iig] = \sigma^2$$
 for all i . With homoskedasticity,

$$Eig[\mathrm{X}_i\mathrm{X}_i'e_i^2ig] = Eig[Eig[\mathrm{X}_i\mathrm{X}_i'e_i^2\mid\mathrm{X}_iig]ig] = Eig[\mathrm{X}_i\mathrm{X}_i'Eig[e_i^2\mid\mathrm{X}_iig]ig] = \sigma^2\,Eig[\mathrm{X}_i\mathrm{X}_i'ig]$$

Now, returning to to the asym. covariance matrix of $\hat{\beta}$,

$$egin{aligned} E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}e_{i}^{2}
ight]E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1} &=E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}\sigma^{2}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1} \ &=\sigma^{2}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1} \end{aligned}$$

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

If the CEF is nonlinear, then our linear approximation (linear regression) generates heteroskedasticity.

$$egin{aligned} E\Big[ig(\mathrm{Y}_i - \mathrm{X}_i'etaig)^2 \mid \mathrm{X}_i\Big] \ &= E\Big[\Big(ig\{\mathrm{Y}_i - E[\mathrm{Y}_i \mid \mathrm{X}_i]ig\} + ig\{E[\mathrm{Y}_i \mid \mathrm{X}_i] - \mathrm{X}_i'etaig\}\Big)^2\Big|\mathrm{X}_i\Big] \ &= \mathrm{Var}(\mathrm{Y}_i \mid \mathrm{X}_i) + ig(E[\mathrm{Y}_i \mid \mathrm{X}_i] - \mathrm{X}_i'etaig)^2 \end{aligned}$$

Thus, even if $Y_i \mid X_i$ has contant variance, $e_i \mid X_i$ is heteroskedastic.

Two notes

1. Heteroskedasticity is **not our biggest concern** in inference.

...as an empirical matter, heteroskedasticity may matter very little... If heteroskedasticity matters a lot, say, more than a 30 percent increase or any marked decrease in standard errors, you should worry about possible programming errors or other problems. (MHE, p.47)

2. Notice that we've **avoided "standard" stronger assumptions**, *e.g.*, normality, fixed regressors, linear CEF, homoskedasticity.

Following (2): We only have large-sample, asymptotic results (consistency) rather than finite-sample results (unbiasedness).

Warning

Because many of properties we care about for the inference are **large-sample** properties, they may not always apply to **small samples**.

One practical way we can study the behavior of an estimator: **simulation**.

Note You need to make sure your simulation can actually test/respond to the question you are asking (e.g., bias vs. consistency).

Simulation

Let's compare false- and true-positive rates[†] for

- 1. Homoskedasticity-assuming standard errors $\left(\operatorname{Var}[e_i | \mathbf{X}_i] = \sigma^2 \right)$
- 2. Heteroskedasticity-robust standard errors

Simulation outline

- Define data-generating process (DGP).
 Choose sample size n.
- 3. Set seed.
- 4. Run 10,000 iterations of
 - a. Draw sample of size n from DGP.
 - b. Conduct inference.
 - c. Record inferences' outcomes.

[†] The false-positive rate goes by many names; another common name: type-I error rate.

Data-generating process

First, we'll define our DGP.

We've been talking a lot about nonlinear CEFs, so let's use one.

Let's keep the disturbances well behaved.

$$\mathbf{Y}_i = 1 + e^{0.5\mathbf{X}_i} + arepsilon_i$$

where $\mathrm{X}_i \sim \mathrm{Uniform}(0,10)$ and $\varepsilon_i \sim N(0,1)$.

Data-generating process

$$\mathbf{Y}_i = 1 + e^{0.5\mathbf{X}_i} + \varepsilon_i$$

where $\mathrm{X}_i \sim \mathrm{Uniform}(0,10)$ and $arepsilon_i \sim N(0,15^2)$.

```
library(pacman)

p_load(dplyr)

# Choose a size

n ← 1000

# Generate data

dgp_df ← tibble(

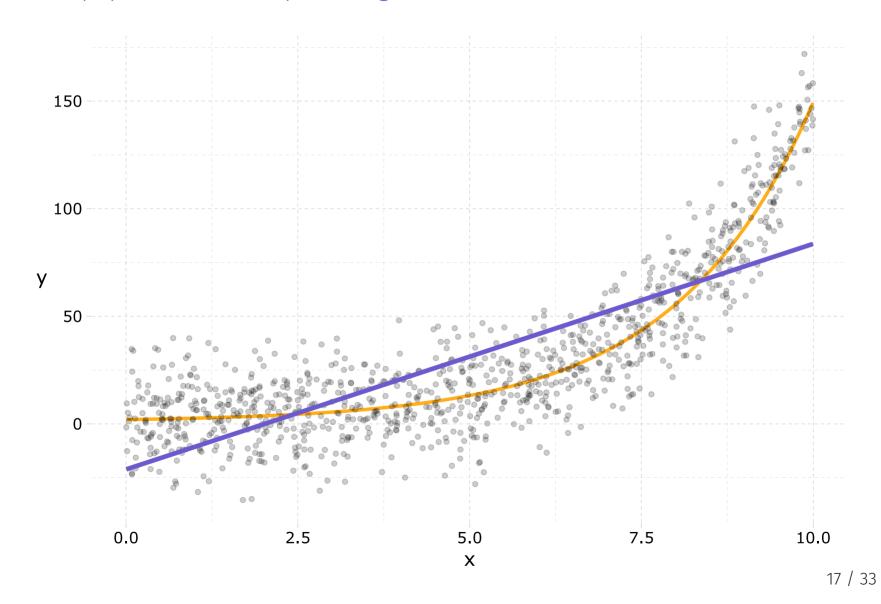
ε = rnorm(n, sd = 15),

x = runif(n, min = 0, max = 10),

y = 1 + exp(0.5 * x) + ε

)
```

The population least-squares regression line



Iterating

To make iterating easier, let's wrap our DGP in a function.

```
fun_iter ← function(iter, n = 30) {
    # Generate data
    iter_df ← tibble(
        ε = rnorm(n, sd = 15),
        x = runif(n, min = 0, max = 10),
        y = 1 + exp(0.5 * x) + ε
    )
}
```

We still need to run a regression and draw some inferences.

Note We're defaulting to size-30 samples.

We will use Im_robust() from the estimatr package for OLS and inference.

- se_type = "classical" provides homoskedasticity-assuming SEs
- se_type = "HC2" provides heteroskedasticity-robust SEs

† lm() works for "spherical" standard errors but cannot calculate het.-robust standard errors.

Inference

Now add these estimators to our iteration function...

```
fun iter \leftarrow function(iter, n = 30) {
  # Generate data
  iter df \leftarrow tibble(
    \varepsilon = rnorm(n, sd = 15),
    x = runif(n, min = 0, max = 10),
    y = 1 + \exp(0.5 * x) + \epsilon
  # Estimate models
  lm1 \leftarrow lm \ robust(y \sim x, data = iter df, se type = "classical")
  lm2 \leftarrow lm \text{ robust}(y \sim x, data = iter df, se type = "HC2")
  # Stack and return results
  bind rows(tidy(lm1), tidy(lm2)) %>%
    select(1:5) \%>\% filter(term = "x") \%>\%
    mutate(se_type = c("classical", "HC2"), i = iter)
```

Run it

Now we need to actually run our fun_iter() function 10,000 times.

There are a lot of ways to run a single function over a list/vector of values.

- lapply(), e.g., lapply(X = 1:3, FUN = sqrt)
- for(), *e.g.*, for (x in 1:3) sqrt(x)
- map() from purrr, e.g., map(1:3, sqrt)

We're going to go with map() from the purrr package because it easily parallelizes across platforms using the furrr package.

Run it!

Run our function 10,000 times

```
# Packages
p_load(purrr)
# Set seed
set.seed(12345)
# Run 10,000 iterations
sim_list \( \sim \) map(1:1e4, fun_iter)
```

Parallelized 10,000 iterations

```
# Packages
p_load(purrr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multiprocess)
# Run 10,000 iterations
sim_list 	— future_map(
    1:1e4, fun_iter,
    .options = future_options(seed = T)
)
```

The furrr package (future + purrr) makes parallelization easy and fun!

Run it!!

Our fun_iter() function returns a data.frame, and future_map() returns a list (of the returned objects).

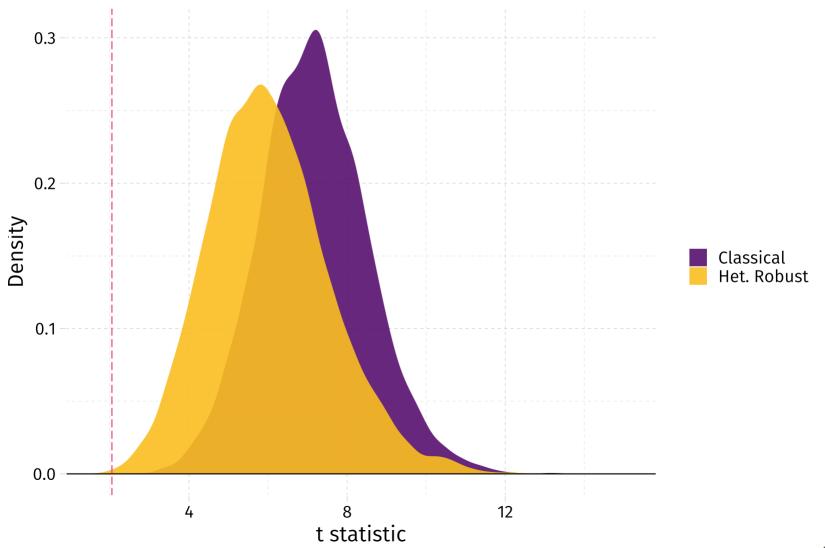
So sim_list is going to be a list of data.frame objects. We can bind them into one data.frame with bind_rows().

```
# Bind list together
sim_df ← bind_rows(sim_list)
```

So what are the results?

Comparing the distributions of standard errors for the coefficient on \boldsymbol{x}

Comparing the distributions of t statistics for the coefficient on x



 \mathbf{Q} All of these test are for a false \mathbf{H}_0 . How would the simulation change to enforce a *true* null hypothesis?

Updating to enforce the null

Let's update our simulation function to take arguments γ and δ such that

$$\mathbf{Y}_i = 1 + e^{\gamma \mathbf{X}_i} + arepsilon_i$$

where $arepsilon_i \sim \mathrm{N}(0, \sigma^2 \mathrm{X}_i^\delta)$.

In other words,

- $\gamma = 0$ implies no relationship between Y_i and X_i .
- $\delta = 0$ implies homoskedasticity.

Updating to enforce the null

Updating the function...

```
flex iter \leftarrow function(iter, y = 0, \delta = 1, n = 30) {
  # Generate data
  iter df \leftarrow tibble(
    x = runif(n, min = 0, max = 10).
     \varepsilon = \text{rnorm}(n, \text{sd} = 15 * x^{\delta}),
    v = 1 + exp(v * x) + \varepsilon
  # Estimate models
  lm1 \leftarrow lm \ robust(y \sim x, data = iter df, se type = "classical")
  lm2 \leftarrow lm \text{ robust}(y \sim x, data = iter df, se type = "HC2")
  # Stack and return results
  bind rows(tidy(lm1), tidy(lm2)) %>%
     select(1:5) \%>\% filter(term = "x") \%>\%
    mutate(se_type = c("classical", "HC2"), i = iter)
```

Run again!

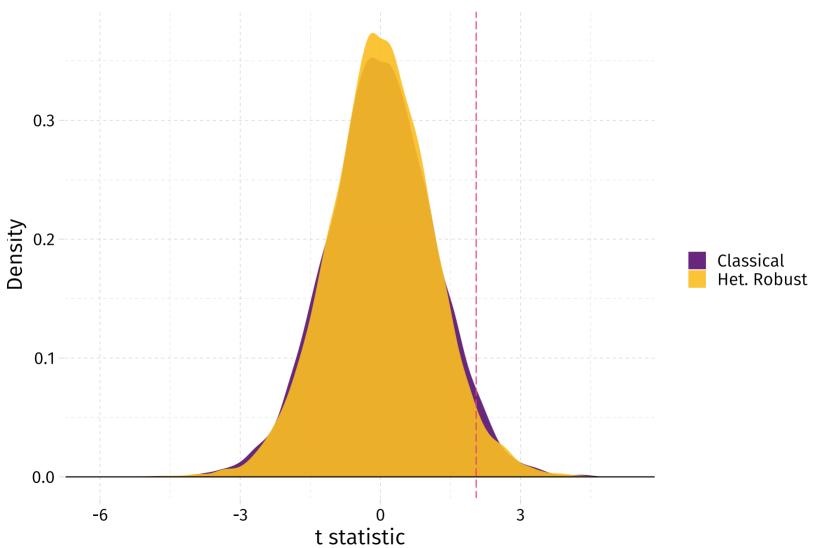
Now we run our new function flex_iter() 10,000 times

```
# Packages
p load(purrr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multiprocess)
# Run 10,000 iterations
null df \leftarrow future map(
  1:1e4, flex iter,
  # Enforce the null hypothesis
  \vee = 0.
  # Specify heteroskedasticity
  \delta = 1,
  .options = future options(seed = T)
) %>% bind_rows()
```

Comparing the distributions of standard errors for the coefficient on $oldsymbol{x}$



Comparing the distributions of t statistics for the coefficient on x



Distributions of p-values: both methods slightly over-reject the (true) null

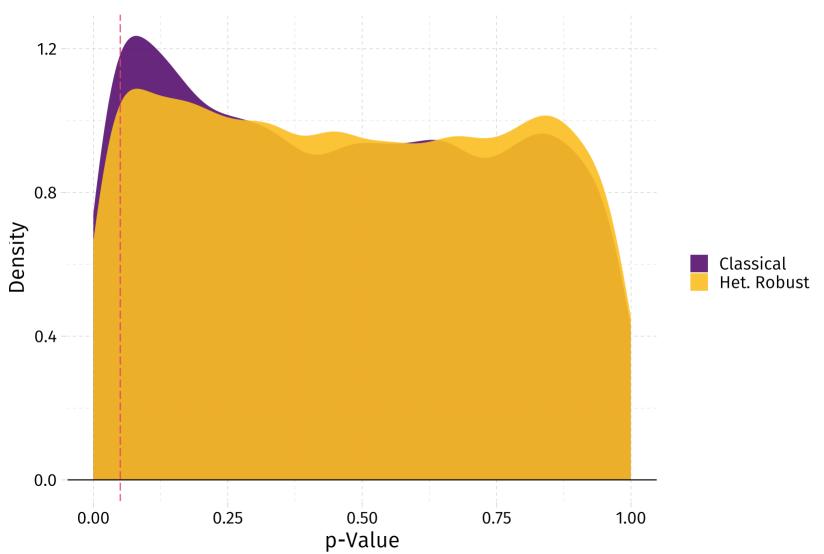


Table of contents

Admin

1. Schedule

Inference

- 1. Why?
- 2. OLS
- 3. Heteroskedasticity
- 4. Small-sample warning
- 5. Simulation
 - Outline
 - o DGP
 - Iterating
 - Parallelization
 - Results
 - Under the null