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Schedule

Last time

The Experimental Ideal
Fundamentals of R

Today

What's so great about linear regression and OLS?  
Read MHE 3.1

Upcoming

Assignment1 Custom OLS function fun.  
Assignment2 First step of project proposal.
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Regression

Why?
In our previous discussion, we began moving from simple differences to a
regression framework.

Q Why do we† care so much about linear regression and OLS?

A As we discussed, regression allows us to control for covariates that can
assist with (1) causal identi�cation and (2) inference.

There's a deeper reason that we care about linear regression and ordinary
least squares (OLS): the conditional expectation function (CEF).

† we = empirically inclined applied economists
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Regression

Why?
Even ignoring causality, we can show important relationships between

1. the CEF (the conditional expectation function),

2. the population regression function,

3. and the sampling distribution of regression estimates.
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Regression

The CEF
De�nition The conditional expectation function for a dependent variable 

, given a  vector of covariates , tells us the expected value
(population average) of  with  held constant.

Written as , the CEF is a function of .†

Examples

Yi K × 1 Xi

Yi Xi

E[Yi ∣ Xi] Xi

† We'll generally assume  is a random variable, which implies that  is also a random variable.Xi E[Yi ∣ Xi]

E[Incomei ∣ Educationi]

E[Wagei ∣ Genderi]

E[Birth weighti ∣ Air qualityi]
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Regression

The CEF
Formally, for continuous  with conditional density ,

and for discrete  with conditional p.m.f. ,

Notice We are focusing on the population. We want to build our intuition
about the parameters that we will eventually estimate.

Yi fy(t|Xi = x)

E[Yi ∣ Xi = x] = ∫ tfy(t|Xi = x)dt

Yi Pr(Yi = t|Xi = x)

E[Yi ∣ Xi = x] = ∑
t

tPr(Yi = t|Xi = x)
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Graphically...
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The conditional distributions of  for  in 8, ..., 22.Yi Xi = x
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The CEF, , connects these conditional distributions' means.E[Yi ∣ Xi]
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Focusing in on the CEF, ...E[Yi ∣ Xi]
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Q How does the CEF relate to/inform regression?
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Regression

The CEF
As we derive the properties and relationships associated with the CEF,
regression, and a host of other estimators, we will frequently rely upon 
the Law of Iterated Expectations (LIE).

which says that the unconditional expectation is equal to the
unconditional average of the conditional expectation function.

E[Yi] = E(E[Yi ∣ Xi])
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Regression
A proof of the LIE

First, we need notation...

Let  denote the joint density for continuous RVs .

Let  denote the conditional distribution of  given .

And let  and  denote the marginal densities of  and .

fx,y(u, t) (Xi, Yi)

fy|x(t ∣ Xi = u) Yi Xi = u

gy(t) gx(u) Yi Xi
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Regression
A proof of the LIE

 

   

   

   

   

   

   

    🥳

E(E[Yi ∣ Xi])

= ∫ E[Yi ∣ Xi = u] gx(u)du

= ∫ [∫ t fy|x(t ∣ Xi = u)dt] gx(u)du

= ∫ ∫ t fy|x(t ∣ Xi = u) gx(u)du dt

= ∫ t [∫ fy|x(t ∣ Xi = u) gx(u)du] dt

= ∫ t [∫ fx,y(u, t)du] dt

= ∫ t gy(t) dt

= E[Yi]
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Great. What's the point?
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Regression

The LIE and the CEF
Theorem The CEF decomposition property (3.1.1)

The LIE allows us to decompose random variables into two pieces

1. the conditional expectation function
2. a residual with special powers†  

 i.   is mean independent of , i.e., .  
 ii.   is uncorrelated with any function of .

Important It might not seem like much, but these results are huge for
building intuition, theory, and application. Put a ⭐ here!

Yi = E[Yi ∣ Xi] + εi

εi Xi E[εi ∣ Xi] = 0

εi Xi

† Angrist and Pischke go with special properties.
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Mean independence, Zero correlation btn.  and 

Regression

The LIE and the CEF
Proof The CEF decomposition property (properties i. and ii. of )εi

E[εi ∣ Xi] = 0

E[εi ∣ Xi]

= E(Yi − E[Yi ∣ Xi]
∣∣
∣
Xi)

= E[Yi ∣ Xi] − E(E[Yi ∣ Xi]
∣∣
∣
Xi)

= E[Yi ∣ Xi] − E[Yi ∣ Xi]

= 0

εi h(Xi)

E[h(Xi)εi]

= E(E[h(Xi)εi ∣ Xi])

= E(h(Xi)E[εi ∣ Xi])

= E[h(Xi) × 0]

= 0
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Regression

The LIE and the CEF
The CEF decomposition property  
says that we can decompose any random variable (e.g., ) into

1. a part that is explained by  (i.e., the CEF ),
2. a part that is orthogonal to† any function of  (i.e., ).

Why the CEF?  
The CEF also presents an intuitive summary of the relationship between 
and , since we are often use means to characterize random variables.

But (of course) there are more reasons to use the CEF...

Yi

Xi E[Yi ∣ Xi]

Xi εi

† "orthogonal to" = "uncorrelated with"

Yi

Xi
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Regression

The LIE and the CEF
Theorem The CEF prediction property (3.1.2)

Let  be any function of . The CEF solves

In other words, the CEF is the minimum mean-squared error (MMSE)
predictor of  given .

Notice

1. We haven't restricted  to any class of functions—it can be nonlinear.
2. We're talking about prediction (speci�cally predicting ).

m(Xi) Xi

E[Yi ∣ Xi] = arg min
m(Xi)

E[(Yi − m(Xi))
2]

Yi Xi

m

Yi
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(1)

(a)

(b)

(c)

Proof The CEF prediction property

  

   

      

       

     

Recall: We want to choose the  that minimizes (1) in expectation. 
 (a) is irrelevant, i.e., it does not depend upon . 
 (b) equals zero in expectation: . 
 (c) is minimized by , i.e., when  is the CEF.

(Yi − m(Xi))
2

= ({Yi − E[Yi ∣ Xi]} + {E[Yi ∣ Xi] − m(Xi)})
2

= (Yi − E[Yi ∣ Xi])
2

+2(E[Yi ∣ Xi] − m(Xi)) × (Yi − E[Yi ∣ Xi])

+(E[Yi ∣ Xi] − m(Xi))
2

m(Xi)

m(Xi)

E[h(Xi) × εi] = 0

m(Xi) = E[Yi ∣ Xi] m(Xi)
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Regression

The LIE and the CEF
∴ the CEF is the function that minimizes the mean-squared error (MSE)

E[Yi ∣ Xi] = arg min
m(Xi)

E[(Yi − m(Xi))
2]
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Regression

The LIE and the CEF
One �nal property of the CEF (very similar to the decomposition property)

Theorem The ANOVA theorem (3.1.3)

which says that we can decompose the variance in  into

1. the variance in the CEF
2. the variance of the residual

Example Decomposing wage variation into (1) variation explained by
workers' characteristics and (2) unexplained (residual) variation

The proof centers on the independence from the decomposition property
of the CEF.

Var(Yi) = Var(E[Yi ∣ Xi]) + E[Var(Yi ∣ Xi)]

Yi
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We now understand the CEF a bit better.  
But how does the CEF actually relate to regression?
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Regression

The CEF and regression
We've discussed how the CEF summarizes empirical relationships.

Previously we discussed how regression provides simple empirical insights.

Let's link these two concepts.
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Regression

The CEF and regression
Population least-squares regression

We will focus on , the vector (a  matrix) of population, least-squares
regression coef�cients, i.e.,

where  and  are also , and  is a scalar.

Taking the �rst-order condition gives

β K × 1

β = arg min
b

E[(Yi − X′
ib)

2
]

b Xi K × 1 Yi

E[Xi (Yi − X′
ib)] = 0
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Regression

The CEF and regression
From the �rst-order condition

we can solve for . We've de�ned the optimum as . Thus,

Note The �rst-order conditions tell us that our least-squares population
regression residuals  are uncorrelated with .

E[Xi (Yi − X′
ib)] = 0

b β

β = E [XiX
′
i]

−1
E[XiYi]

(ei = Yi − X′
iβ) Xi
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Regression

Anatomy
Our "new" result: 

In simple linear regression (an intercept and one regressor ),

For multivariate regression, the coef�cient on the kth regressor  is

where  is the residual from a regression of  on all other covariates.

β = E [XiX
′
i]

−1
E[XiYi]

xi

β1 = β0 = E[Yi] − β1 E[xi]
Cov(Yi, xi)

Var(xi)

xki

βk =
Cov(Yi, x̃ki)

Var(x̃ki)

x̃ki xki
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Regression

Anatomy
This alternative formulation of least-squares coef�cients is quite powerful.

Why? This expression illustrates how each coef�cient in a least-squares
regression represents the bivariate slope coef�cient after controlling for
the other covariates.

βk =
Cov(Yi, x̃ki)

Var(x̃ki)
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Regression

Anatomy
In fact, we can re-write our coef�cients to further emphasize this point

 denotes the residual from regressing  on all regressors except .

βk =
Cov(Ỹi, x̃ki)

Var(x̃ki)

Ỹi Yi xki
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Graphical example
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 gives the relationship between  and  after controlling for β1 y x1 x2
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Now that we've refreshed/deepened our regression knowledge, let's
connect regression and the CEF.
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Regression

Regression and the CEF
Angrist and Pischke make the case that

... you should be interested in regression parameters if you are
interested in the CEF. (MHE, p.36)

Q What is the reasoning/connection?

A We'll cover three reasons.

1. If the CEF is linear, then the population regression line is the CEF.

2. The function  is the min. MSE linear predictor of  given .

3. The function  gives the min. MSE linear approximation to the CEF.

X′
iβ Yi Xi

X′
iβ
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Regression

Regression and the CEF
Theorem The linear CEF theorem (3.1.4)

If the CEF is linear, then the population regression is the CEF.

Proof Let the CEF equal some linear function, i.e., .

From the CEF decomposition property, we know .

 , our population regression coef�cients.

E[Yi ∣ Xi] = X′
iβ

⋆

E[Xiεi] = 0

⟹ E[Xi (Yi − E[Yi ∣ Xi])] = 0

⟹ E[Xi (Yi − X′
iβ

⋆)] = 0

⟹ E[XiYi] − E[XiX
′
iβ

⋆] = 0

⟹ β⋆ = E [XiX
′
i]

−1
E[XiYi] = β

36 / 49



Regression

Regression and the CEF
Theorem The linear CEF theorem (3.1.4)

If the CEF is linear, then the population regression is the CEF.

Linearity can be a strong assumption. When might we expect linearity?

1. Situations in which  follows a multivariate normal distribution.  
Concern Might be limited—especially when  or  are not continuous.

2. Saturated regression models  
Example A model with two binary indicators and their interaction.

(Yi, Xi)

Yi Xi
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Regression

Regression and the CEF
Theorem The best linear predictor theorem (3.1.5)

 is the best linear predictor of  given  (minimizes MSE).

Proof We de�ned  as the vector that minimizes MSE, i.e.,

so  is literally de�ned as the minimum MSE linear predictor of .

The population-regression function  is the best (min. MSE) linear
predictor of  given .
The CEF  is the best predictor (min. MSE) of  given 
across all classes of functions.

X′
iβ Yi Xi

β

β = arg min
b

E[(Yi − X′
ib)

2
]

X′
iβ Yi

(X′
iβ)

Yi Xi

(E[Yi ∣ Xi]) Yi Xi
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Regression

Regression and the CEF
Q If  is the best linear predictor of  given , then why is there so
much interest machine learning for prediction (opposed to regression)?

A A few reasons

1. Relax linearity
2. Model selection

choosing  is not always obvious
over�tting is bad (bias-variance tradeoff)

3. It's fancy, shiny, and new
4. Some ML methods boil down to regression
5. Others?

Counter Q Why are we (still) using regression?

X′
iβ Yi Xi

Xi
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Regression

Regression and the CEF
Theorem The regression CEF theorem (3.1.6)

The population regression function  provides the minimum MSE linear
approximation to the CEF , i.e.,

Put simply Regression gives us the best linear approximation to the CEF.

X′
iβ

E[Yi ∣ Xi]

β = arg min
b

E{(E[Yi ∣ Xi] − X′
ib)

2

}
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(1)

(a)

(b)

(c)

Proof First, recall that, in expectation,  is the  that minimizes 

  

   

    

    

  

We want to minimize (b), and we know  minimizes (1). 
 (a) is irrelevant, i.e., it does not depend upon . 
 (c) can be written as , which equals zero in expectation.

∴ (In expectation) If  minimizes (1), then  minimizes (b).

β b (Yi − X′
ib)

2

(Yi − X′
ib)

2∣∣∣

= ( {Yi − E[Yi ∣ Xi]} + {E[Yi ∣ Xi] − X′
ib})

2

= (Yi − E[Yi ∣ Xi])
2

= +(E[Yi ∣ Xi] − X′
ib)

2

= +2(Yi − E[Yi ∣ Xi])(E[Yi ∣ Xi] − X′
ib)

β

b

2εi h(Xi)

b = β b = β
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Regression

Regression and the CEF
Let's review our new(-ish) regression results

1. When the CEF is linear, the regression function is the CEF.  
Too small Very speci�c circumstances—or big assumptions.

2. Regression gives us the best linear predictor of  (given )  
Off point We're often interested in —not .

3. Regression provides the best linear approximation of the CEF.  
Just right? (Depends on your goals)

Yi Xi

β Ŷi
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Regression

Regression and the CEF
Motivation (3) tends to be the most compelling.

Even when the CEF is not linear, regression recovers the best linear
approximation to the CEF.

The statement that regression approximates the CEF lines up with
our view of empirical work as an effort to describe the essential
features of statistical relationships without necessarily trying to
pin them down exactly. (MHE, p.39, emphasis added)
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Let's dig into this linear-approximate to the CEF a little more...
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Returning to our CEF
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Adding the population regression function
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Regression

Regression and the CEF
As the previous �gure suggests, one way to think about least-squares
regression is estimating a weighted regression on the CEF rather than the
individual observations.

TLDR Use  as the outcome, rather than , and properly weight.

Suppose  is discrete with pmf 

i.e.,  can be expressed as weighted-least squares regression of 
 on  (the values of ) weighted by .

E[Yi ∣ Xi] Yi

Xi gx(u)

E[(E[Yi ∣ Xi] − X′
ib)

2
] = ∑

u

(E[Yi ∣ Xi = u] − u′b)
2
gx(u)

β

E[Yi ∣ Xi = u] u Xi gx(u)
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Regression

Regression and the CEF
We can also use LIE here

 
 

Pro Useful for aggregated data when microdata are sensitive/big.

Con You will not get the same standard errors.

β

= E [XiX
′
i]

−1
E[XiYi]

= E [XiX
′
i
]

−1
E[XiE(Yi ∣ Xi)]
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