
002: Regression and matching
EC 607

Solutions



01. Download and load two datasets: (1) data from the randomized employment program (we'll call this the NSW
data) and (2) data on 2,490 potential 'control' individuals from the PSID (Panel Study of Income Dynamics) (we'll
call this the PSID data).

Answer:

# Load packages
library(pacman)
p_load(
  ggplot2, gridExtra, ggthemes, latex2exp, kableExtra,
  tidyverse, broom, knitr, haven,
  estimatr, pdist, StatMatch, purrr,
  huxtable, magrittr
)
# Load LaLonde's experimental data
nsw_df = read_dta("http:��users.nber.org/~rdehejia/data/nsw.dta")
# Load PSID potential controls
psid_df = read_dta("http:��users.nber.org/~rdehejia/data/psid_controls.dta")

The last page of the problem set describes the variables in these data.

Note Questions 02–07 use the NSW data.

02. Regress real earnings in 1975 (the year before treatment) on treatment (and an intercept, which we will always
assume should be included unless otherwise stated). Why/how is this regression (and its outcome) informative?
What does it tell us?

Answer:

lm_robust(re75 ~ treat, data = nsw_df) %>% huxreg()

(1)
(Intercept) 3026.683 ***

(252.298)   
treat 39.415    

(379.037)   
N 722        
R2 0.000    
*** p < 0.001; ** p < 0.01; * p < 0.05.

The results of this regression tell us whether there were significant differences between the treatment and control
groups before the program began. Because the program (at some level) was randomized, we should find no
significant differences. We find no significant difference in earnings before the program.
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03. The program rolled out in 1976 and ended (at least for our purposes) in 1978, so we'll use earnings in 1978 to
estimate whether the program had any sustained effect on earnings.

Regress 1978 earnings on treatment. What do you find?

Answer:

lm_robust(re78 ~ treat, data = nsw_df) %>% huxreg()

(1)
(Intercept) 5090.048 ***

(277.368)   
treat 886.304    

(488.205)   
N 722        
R2 0.005    
*** p < 0.001; ** p < 0.01; * p < 0.05.

Answer We find marginally significant evidence (p-value of approximately 0.07) that earnings in 1978 (earnings at
the end of the program) were higher for program participants. The estimated effet of the program is approximately
$886 with a 95% confidence interval [-$72, $1,844].

04. What is required for us to interpret the estimated in 03. as causal? Does our setting meet this requirement?

Answer: To interpret these estimates as causal, we must believe that treatment was randomly assigned. In other
words, we must believe that potential outcomes  and  are uncorrelated with treatment.

Note: Because we are not conditioning on covariates, we must believe that treatment is exogenous (rather than
conditionally exogenous).

Y0i Y1i
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05. Add controls for age, education, race (black and Hispanic). How does your estimated treatment effect and its
standard change. Why do you think this happense?

Answer: Our point estimate decreases slightly—and is less significant (p-value of approx. 0.1).

lm_robust(
  re78 ~ treat + age + education + black + hispanic + married + nodegree,
  data = nsw_df
) %>% huxtable��huxreg()

(1)
(Intercept) 4268.577  

(2631.003) 
treat 793.609  

(487.142) 
age 20.105  

(35.062) 
education 205.879  

(166.752) 
black -1765.638 *

(776.401) 
hispanic -133.947  

(992.171) 
married 540.991  

(681.557) 
nodegree -522.315  

(757.487) 
N 722      
R2 0.025  
*** p < 0.001; ** p < 0.01; * p < 0.05.

06. What is a "bad control"? Are any of the controls we added in 05. "bad"? Briefly explain.

Answer: A "bad control" is a covariate that is affected by treatment. The best controls are "fixed" prior to treatment,
which seems to be the case for all of our control (with one potentical exception for marriage).

07. Since we have an experiment, can we interpret the coefficient on nodegree (not having a high-school
diploma) as causal? What about its interaction with treatment? Briefly explain.

Answer: Nope. We would need degree status to be as-good-as randomly assigned (uncorrelated with potential
outcomes), which is likely not the case. Lots of things are correlated with degree status (think omitted-variable
bias). Same issue with the interaction.
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08. Compare a simple difference in means to your results in the regression results in 03..

Hint The dplyr  functions group_by()  and summarize()  could be helpful.

Answer:

nsw_df %>%
  group_by(Trt = treat) %>%
  summarize("Mean '78 Earnings" = mean(re78)) %>%
  hux(add_colnames = T) %>%
  set_number_format(0) %>%
  set_bold(1, everywhere, T) %>%
  set_bottom_border(1, everywhere, 0.01)

Trt Mean '78 Earnings
0 5090
1 5976

The difference in means here is exactly equal to the point estimate from 03.

09. Create a new dataset that combines treated individuals from the NSW data and control individuals from the
PSID data. We'll refer to this dataset as our mixed dataset.

Hint Remember our old friends filter()  and bind_rows()  from dplyr .

Answer:

mixed_df = bind_rows(
  filter(nsw_df, treat �� 1),
  psid_df
)

Note Questions from 10–13 use this mixed dataset, focusing on earnings in 1978.
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10. Compare the difference in means from the mixed dataset to the difference from the NSW dataset.

Answer:

# Group means
group_means = bind_cols(
  nsw_df %>% group_by(treat) %>% summarize(NSW = mean(re78)),
  mixed_df %>% group_by(treat) %>% summarize(Mixed = mean(re78))
) %>% select(�treat,�treat1) %>% as.data.frame()
# Difference
group_means[3,] = apply(X = group_means, FUN = diff, MARGIN = 2)
group_means %��% mutate("Comparison" = c("Ctrl", "Trt", "Diff"))
# Results
group_means %>%
  hux(add_colnames = T) %>%
  set_number_format(0) %>%
  set_bottom_border(1, everywhere, 0.01) %>%
  set_bold(c(1,4), everywhere, T)

NSW Mixed Comparison
5090 21554 Ctrl
5976 5976 Trt
886 -15578 Diff

In the mixed dataset, the treatment group mean is much smaller than that the control group—the difference is
negative, as opposed the positive difference between treatment and control in the NSW dataset.

11. Use our potential-outcomes (Rubin causal model) notation to explain how the difference with the mixed
dataset may be biased. Does the sign of the difference across the two differences-in-means match what you would
expect from our model of selection bias? Briefly explain.

Answer: We should be concerned that program participation correlates with potential outcomes (since the
program targeted individuals with low expected employment outcomes). So we're concerned that  (participation
in the program) correlates negatively with , meaning individuals who are not in the program likely have higher
expected  outcomes than folks who are in the program. Thus, we will have selection bias equal to

If the selection bias is sufficiently larget, it will flip the sign of a positive treatment effect, as we likely observe in
the mixed dataset.

Di

Y0i

Y0i

E[Y0i|Di = 1] − E[Y0i|Di = 0] < 0
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12. Time for nearest-neighbor matching. Use all six covariates. You must write write the code for this matching
yourself. You can use basic pre-written functions (e.g., mean ), but do not use matching-estimation packages that
do all of the matching for you.

12A. Estimate the average treatment effect on the treated by matching treated individuals to their nearest
neighbor using a Euclidean metric.

Answer:

# Create covariate matrices of treatment and control
trt = mixed_df %>% filter(treat �� 1)
ctrl = mixed_df %>% filter(treat �� 0)
trt_cov = trt %>% select(age, education, black, hispanic, married, nodegree)
ctrl_cov = ctrl %>% select(age, education, black, hispanic, married, nodegree)
# Calculate Euclidean distances using pdist()
dist_mat = pdist(X = trt_cov, Y = ctrl_cov) %>% as.matrix()
# Calculate individual�level treatment effects from nearest neighbor(s)
trt_12a = map_dbl(1:nrow(trt), function(i) {
  # Find which individuals are the nearest neighbors
  i_nn = dist_mat[i,] �� min(dist_mat[i,], na.rm = T)
  # Return the difference (allow for ties; take the mean)
  trt$re78[i] - mean(ctrl$re78[i_nn], na.rm = T)
})

Based upon Euclidean-distance-based nearest neighbor matching, our estimate for the treatment effect on the
treated is approximately -6,781.

12B. Estimate the average treatment effect on the treated by matching treated individuals to their nearest
neighbor using a Mahalanobis metric. Hint: The StatMatch  package has a function named
mahalanobis.dist()  that finds the Mahalanobis distance between observations of two datasets.

Answer:

# Calculate Mahalanobis distances
mdist_mat = mahalanobis.dist(data.x = trt_cov, data.y = ctrl_cov) %>% as.matrix()
# Calculate individual�level treatment effects from nearest neighbor(s)
trt_12b = map_dbl(1:nrow(trt), function(i) {
  # Find which individuals are the nearest neighbors
  i_nn = mdist_mat[i,] �� min(mdist_mat[i,], na.rm = T)
  # Return the difference (allow for ties; take the mean)
  trt$re78[i] - mean(ctrl$re78[i_nn], na.rm = T)
})

Based upon Mahalanobis-distance-based nearest neighbor matching, our estimate for the treatment effect on the
treated is approximately -3,986.

12C. How do your estimates in 12A. and 12B. compare to your previous estimates?

Answer: Our experiment-based estimate was a positive (approximately) $886. The simple difference in means on
the mixed data resulted in -$15,578. Matching on covariates via the Euclidean distance moved us to -$6,781, and
matching on Mahalanobis distance moved us to -$3,986. So things seem to be getting better (if we take the NSW
experiment-based estimate as truth), but we're still getting estimates with the wrong magnitude and sign—still
likely biased from selection.

Extra credit Use kernel matching (any kernel) to estimate the treatment effect.
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13. Now for propensity-score methods. Again: Do not use pre-written propensity-score packages. Write the code
for the steps. You can use the glm()  function to estimate a logit regression (more below in 13A).

13A. Estimate the propensity score for each treated individual using the covariates using a logit model that
is linear in the covariates. Which variables are predictive of treatment?

Hint: The function glm()  with family = binomial  estimates a logit model.

Answer:

# Estimate logit model for propensity scores, linear in covariates
pscore_logit = glm(
  treat ~ age + education + black + hispanic + married + nodegree,
  family = "binomial",
  data = mixed_df
)
pscore_logit %>% huxreg()

(1)
(Intercept) 0.643    

(0.872)   
age -0.101 ***

(0.012)   
education -0.044    

(0.054)   
black 2.170 ***

(0.227)   
hispanic 2.404 ***

(0.383)   
married -2.567 ***

(0.190)   
nodegree 1.302 ***

(0.254)   
N 2787        
logLik -445.193    
AIC 904.385    
*** p < 0.001; ** p < 0.01; * p < 0.05.

Each covariate, excluding education, appears to be significantly predictive of treatment.
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13B. Add the estimated propensity scores  to the mixed dataset. Is there overlap? Explain.

Hint: You can access predictions from a model using $fitted.values . 
Another hint: Try histograms grouped/filled by treatment status.

Answer:

We do not have overlap: The minimum  in control is less than the minimum in the treatment group. The
maximum  in the treatment group exceeds the maximum in the control group. That said, it's not too bad.

# Add propensity scores
mixed_df$p_score = pscore_logit$fitted.values
# Plot overlap
ggplot(
  data = mixed_df,
  aes(x = factor(treat, labels = c("Ctrl", "Trt")), y = p_score)
) +
geom_boxplot() +
theme_pander() +
xlab("") +
ylab("Estimated propensity score") +
ggtitle("Checking overlap") +
coord_flip()

# Summary table
mixed_df %>%
  group_by(treat) %>%
  summarize(min(p_score), max(p_score)) %>%
  hux(add_colnames = T)

treat min(p_score) max(p_score)
0 0.000262 0.873
1 0.00261  0.903

(p̂i)

p̂

p̂
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13C. Enforce overlap using the minimum  observed in the treated group and the maximum  observed
in the control group.

Answer:

# Find min p�score in trt and max in control
lo_pscore = filter(mixed_df, treat �� 1)$p_score %>% min()
hi_pscore = filter(mixed_df, treat �� 0)$p_score %>% max()
# New dataset with overlap enforced
overlap_df = filter(mixed_df, between(p_score, lo_pscore, hi_pscore))
# Plot overlap
ggplot(
  data = overlap_df,
  aes(x = factor(treat, labels = c("Ctrl", "Trt")), y = p_score)
) +
geom_boxplot() +
theme_pander() +
xlab("") +
ylab("Estimated propensity score") +
ggtitle("Overlap enforced") +
coord_flip()

]

p̂i p̂i
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13D. Estimate the treatment effect using a regression that conditions on . What happens if you also
include  interacted with treatment?

Answer:

# Conditioning on estimated propensity score
reg_13d_1 = lm_robust(re78 ~ treat + p_score, data = overlap_df)
# Conditioning on estimated propensity score and interacted trt.
reg_13d_2 = lm_robust(re78 ~ treat * p_score, data = overlap_df)
# Results
huxreg(reg_13d_1, reg_13d_2)

(1) (2)
(Intercept) 20737.722 *** 21190.568 ***

(333.337)    (346.729)   
treat -7039.786 *** -13660.094 ***

(730.901)    (959.454)   
p_score -14388.692 *** -20829.885 ***

(1100.947)    (1395.096)   
treat:p_score          18313.371 ***

         (1995.966)   
N 2119         2119        
R2 0.139     0.151    
*** p < 0.001; ** p < 0.01; * p < 0.05.

We're back to large, negative, and statistically significant estimates (for both specifications).

p̂i

p̂i
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13E. Now estimate the treatment effect by blocking on .

Answer: I'm going to opt for 20 blocks

# Define how many blocks we want
n_blocks = 20
# Find the spacing that will give us n_blocks blocks
block_step = (hi_pscore - lo_pscore) / n_blocks
# Create the blocks' breaks
block_breaks = seq(from = lo_pscore, to = hi_pscore, by = block_step)
# Cut the p�scores into 10, equally spaced blocks (using breaks above)
overlap_df %��% mutate(
  block = cut(p_score, breaks = block_breaks, labels = F, include.lowest = T)
)
# Iterate over blocks, calculating (1) the trt. effect and (2) N
est_blocks = map_dfr(1:20, function(b) {
  # Subset to the block's data
  block_df = overlap_df %>% filter(block �� b)
  # Estimate the block's treatment effect
  t_b = mean(filter(block_df, treat �� 1)$re78) - mean(filter(block_df, treat �� 0)$re78)
  # The number of individuals in block b
  n_b = nrow(block_df)
  # Return a data.frame of the two answers
  data.frame(est = t_b, n = n_b)
})
# Weighted average of the individual blocks' treatment effects
t_block = weighted.mean(
  x = est_blocks$est,
  w = est_blocks$n
)

Blocking on propensity scores (20 blocks), we estimate a treatment effect of approximately -$11,394.32.

Extra credit Use the doubly robust method that combines regression and blocking.

14. Compare the various treatment effects that you've estimated in 10–13. How do they compare to the effects
you estimated 03.? Which estimates should we trust? Why?

Answer: Your call here... just make sure you justify your answer well.

p̂i
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Data description

Variable Description
data_id Dataset identifier.
treat Treatment indicator (select to be part of NSW).
age Age (years).
education Education (years).
black Indicator for whether the individual is black.
hispanic Indicator for whether the individual is Hispanic.
married Indicator for whether the individual is married.
nodegree Indicator for individuals without a high-school diploma.
re74 Real earnings in 1974 (1982 dollars).
re75 Real earnings in 1975 (1982 dollars).
re78 Real earnings in 1978 (1982 dollars).

Note: The NSW dataset does not include re74.
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