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Part 1/3: CEFs and regression
Let's start with generating data. We want a nonlinear CEF, define our data-generating process (DGP) as

where

 denotes an indicator function that takes a value of 1 whenever  is true
 is distributed as a discrete uniform random variable taking on integers in 
 is a heteroskedastic disturbance that follows a continuous uniform distribution 

Notice that this DGP is really just two separate DGPs determined by whether  is above or below 4 (plus the
disturbance ).

01. Time to generate data. Given this is the first problem of your first problem set, I'll give you some code (for free).

# Load packages
library(pacman)
p_load(tidyverse, estimatr, huxtable, magrittr, here)
# Set a seed
set.seed(12345)
# Set sample size to 1,000
n = 1e3
# Generate data
dgp_df = tibble(
    x = sample(x = -15:15, size = n, replace = T),
    u = runif(n = n, min = �abs(x), max = abs(x)),
    y = 3 + if_else(x < 4, exp(x), 41 + 10 * log(x)) + u
)
# Summarize the dataset
dgp_df %>% summary()

#>        x                 u                 y         
#>  Min.   :-15.000   Min.   :-14.138   Min.   :-11.14  
#>  1st Qu.: -8.000   1st Qu.: -2.718   1st Qu.:  3.15  
#>  Median : -1.000   Median :  0.000   Median :  9.53  
#>  Mean   : -0.352   Mean   :  0.361   Mean   : 28.18  
#>  3rd Qu.:  8.000   3rd Qu.:  3.579   3rd Qu.: 61.64  
#>  Max.   : 15.000   Max.   : 14.383   Max.   : 85.46

Run this code.

Make sure your output is pretty close to my output (and that you have a sense of what's going on).

yi = 3 + I(xi < 4) exp(xi) + I(xi ≥ 4) (41 + 10log(xi)) + ui

I(x) x

xi [−15, 15]

ui [−|x|, |x|]

xi

vi

2 / 16



02. Create a scatter plot of your dataset (e.g., using geom_point  from ggplot2 ).

Answer:

ggplot(dgp_df, aes(x = x, y = y)) +
geom_point(alpha = 0.3) +
theme_minimal(base_size = 12)
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https://ggplot2.tidyverse.org/reference/geom_point.html


03. Calculate the CEF and add it to your scatter plot. You can calculate the CEF by hand or with a function.

Hint: You can plot a function in ggplot2  using stat_function .

Note: You can plot the CEF as a continuous function even though  is discrete.

Answer:

# The CEF function
cef = function(x) 3 + if_else(x < 4, exp(x), 41 + 10 * log(x))
# Plot it
ggplot(dgp_df, aes(x = x, y = y)) +
geom_point(alpha = 0.3) +
stat_function(fun = cef, color = "blue") +
theme_minimal(base_size = 12)

04. Regress  on . Report your results.

Answer:

# 'Classical' standard errors
lm_robust(y ~ x, data = dgp_df, se_type = "classical")

#>             Estimate Std. Error t value   Pr(>|t|) CI Lower CI Upper  DF
#> (Intercept)   29.225    0.46413   62.97  0.000e+00   28.314   30.136 998
#> x              2.957    0.05124   57.71 3.207e-320    2.856    3.057 998

x

y x
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https://ggplot2.tidyverse.org/reference/stat_function.html


05. Do heteroskedasticity-robust standard errors matter here? Should they? Explain your reasoning.

Answer: As the table below illustrates, heteroskedasticity-robust standard errors may matter a bit here. That said,
the significance level of the point estimates does not really change. More generally: We may expect
heteroskedasticity to matter here due to the fact that the OLS regression residuals relative to the CEF are
heteroskedastic.

# Het�robust standard errors
est_ols = lm_robust(y ~ x, data = dgp_df, se_type = "classical")
est_hc2 = lm_robust(y ~ x, data = dgp_df, se_type = "HC2")
# Table
list("Classical" = est_ols, "Het. Robust" = est_hc2) %>% huxreg()

Classical Het. Robust
(Intercept) 29.225 *** 29.225 ***

(0.464)    (0.462)   
x 2.957 *** 2.957 ***

(0.051)    (0.043)   
N 1000         1000        
R2 0.769     0.769    

*** p < 0.001; ** p < 0.01; * p < 0.05.
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06. Add your regression line to your scatter plot. You can do this in ggplot2  using geom_abline()  and
geom_smooth()  (among other options).

Answer:

# The CEF function
cef = function(x) 3 + if_else(x < 4, exp(x), 41 + 10 * log(x))
# Plot it
ggplot(dgp_df, aes(x = x, y = y)) +
geom_point(alpha = 0.3) +
stat_function(fun = cef, color = "blue") +
geom_smooth(method = lm, se = F, color = "red") +
theme_minimal(base_size = 12)
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https://ggplot2.tidyverse.org/reference/geom_abline.html
https://ggplot2.tidyverse.org/reference/geom_smooth.html


07. For each of our 31 values of  (-15 through 15), calculate the sample mean of  conditional on  and the number
of observations for each .

Now run a regression using this sample-based CEF: Regress the conditional mean of  on , weighting by the
number of observations. Do your results from this CEF regression match your results in 04? Should they for this
sample?

Hint: You can use the weights  argument in lm()  and lm_robust()  to run a weighted regression.

Answer:

# Build the sample�based CEF
cef_df = dgp_df %>% group_by(x) %>% summarize(y = mean(y), n = n())
# Run the regression
est_cef = lm_robust(y ~ x, data = cef_df, weights = n)
# Table
list("Classical" = est_ols, "Het. Robust" = est_hc2, "Aggregated" = est_cef) %>% huxreg()

Classical Het. Robust Aggregated
(Intercept) 29.225 *** 29.225 *** 29.225 ***

(0.464)    (0.462)    (2.497)   
x 2.957 *** 2.957 *** 2.957 ***

(0.051)    (0.043)    (0.224)   
N 1000         1000         31        
R2 0.769     0.769     0.791    

*** p < 0.001; ** p < 0.01; * p < 0.05.

The point estimates do match. The standard errors do not. These results are expected: The aggregated datasets,
when weighted, produces the same OLS estimates (since the OLS estimator can be written as weighted sums of
aggregated sample moments). The standard errors differ because the aggregated observations do not produce the
same residuals or sample size as the micro-data.

08. Does OLS provide a decent linear approximation to the CEF in this setting? Under what conditions would this
linear approximation of the CEF be helpful? Under what conditions would it be less helpful?

Answer: Maybe... OLS is doing what we asked it to do: providing a linear approximation to the conditional
expectation function. In this case, the linear approximation differs quite a bit from the CEF. We might want to
model this process a bit more flexibly (obviously still possible with OLS).

Part 2/3: R loops and functions
09. To make sure you are comfortable writing loops and functions (an important part of simulations): complete
your new assignment on DataCamp: Intermediate R.

You will need to register for DataCamp if you have not done so already.

Answer: On DataCamp.

x y x

x

y ∣ x x
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https://www.datacamp.com/groups/shared_links/b31fbe9257b51273fd142ab04a151c124fe5e4a0ea1ee4dc3605d69a2775197f


Part 3/3: Inference and simulation
Now it's time for a good, old-fashioned simulation.

Now imagine you're working on a project, and it occurs to you that

�. You have a pretty small sample size (but could spend a lot of money to get bigger ).
�. It's unlikely that your disturbance is actually normally distributed.
�. You might have an endogenous treatment  but have a sense of how treatment comes about.

Given that the small-sample properties of OLS generally use well-behaved disturbanced and the large-sample
properties are, by definition, for big , you are wondering how well OLS is going to perform. Plus, you are really
concerned about the endogenous treatment but optimistic that you know how the treatment is endogenous. Can
we recover the true treatment effect?

This is the perfect scenario for a simulation.

I'll walk you through some of the steps of the simulation. But you have to write your own code.

Let's start by defining the DGP (using notation from class)

where

 Normal with mean 10 and standard devation 3
 Normal with mean 3 and standard devation 2

 Uniform 
 Uniform 
 Uniform 

10. Derive an expression for  (individual 's treatment effect).

Answer: As defined in class,  is equal to the difference in treated and untreated outcomes for individual , i.e.,

11. What assumptions does the expression for the treatment effect in 10 depend upon?

Answer: None. If you really want to name an assumption, it is that we can define the causal effect of some
arbitrary treatment as the difference between  and .

You might also be able to say that our definition of the treatment effect assumes that individual 's treatment
effect does not depend upon other individuals' treatment statuses. This second assumption is the stable unit
treatment value assumption (SUTVA), which is safe in our setting (we know the DGP).

n

Di

n

Y0i = Xi + ui

Y1i = Y0i + Wi + vi

Di = I(Xi + εi > 10)

Yi = Y0i + Diτi

Xi ∼

Wi ∼

ui ∼ ∈ [−10, 10]

vi ∼ ∈ [−5, 5]

εi ∼ ∈ [−1, 1]

τi i

τi i

τi = Y1i − Y0i

= (Y0i + Wi + vi) − Y0i

= Wi + vi

Y1i Y0i

i

8 / 16



12. Based upon 10, what is the average treatment effect in this population? (Your answer should be a number.)

Answer: The ATE is

13. If we regress  on  should we expect to recover the average causal effect of treatment ? Explain.

Answer: No. Our potential outcomes are correlated with treatment: they all depend upon . In other words: We
have selection bias, since .

14. Would conditioning on  and/or  help the regression in 13? Explain.

Answer: Yes: Because selection is entering through , if we can control for , we will remove the selection bias.

15. Now back to R: Write some R code that generates a 1,000-observation sample from the DGP.

Answer:

# Set seed
set.seed(123)
# Sample size
n = 1e3
# Generate data
dgp_sample = tibble(
    u = runif(n, -10, 10),
    v = runif(n, -5, 5),
    e = runif(n, -1, 1),
    x = rnorm(n, mean = 10, sd = 3),
    w = rnorm(n, mean = 3, sd = 2),
    y0 = x + u,
    y1 = y0 + w + v,
    t = y1 - y0,
    d = (x + e > 10) %>% as.numeric(),
    # d = (x + w + e > 13) %>% as.numeric(),
    y = y0 + d * t
)

16. For your sample, what is the correlation between  and ? What about  and ? What do these
correlations tell you?

Answer: The correlation between  and  is 0.317, and correlation between  and  is 0.319. This correlation
suggests that we have substantial selection into treatment (and thus bias from selection).

# Correlation matrix for Y0, Y1, and D
dgp_sample %>% select(y0, y1, d) %>% cor()

#>        y0     y1      d
#> y0 1.0000 0.8722 0.3173
#> y1 0.8722 1.0000 0.3189
#> d  0.3173 0.3189 1.0000

¯̄¯τi = E[τi]

= E[Wi + vi]

= E[Wi] + E[vi]

= 3 + 0

= 3

Yi Di (Di)

Xi

E[Y
0i|Di = 1] ≠ E[Y

0i|Di = 0]

X W

Xi Xi

Y0i Di Y1i Di

Y0i Di Y1i Di
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17. Using your sample, calculate the average treatment effect (ATE), the average treatment effect on the treated
(TOT or ATT), and the average treatment effect for the untreated. Why do these quantities differ?

Answer:

# ATE
ate = dgp_sample %>% summarize(ate = mean(y1 - y0))
# ATET
atet = dgp_sample %>% filter(d �� 1) %>% summarize(ate_t = mean(y1 - y0))
# ATEC
atec = dgp_sample %>% filter(d �� 0) %>% summarize(ate_c = mean(y1 - y0))

The sample's ATE is approximately 2.984, the ATET is approximately 3.237, and the ATEC is approximately 2.740.

The average treatment effects differ across groups because (1) the treatment effect is heterogeneous, and (2) we
are only observing a small sample (i.e., we have sampling variation). If you allow the size of the sample to get large
enough, the difference in the group's means will disappear.
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18. Run four regressions:

�. Regress  on 
�. Regress  on  and 
�. Regress  on  and 
�. Regress  on , , and 

Do the results of these regressions match your expectation for recovering the ATE or ATT? Explain.

Answer:

# The four regressions
r1 = lm_robust(y ~ d, data = dgp_sample)
r2 = lm_robust(y ~ d + x, data = dgp_sample)
r3 = lm_robust(y ~ d + w, data = dgp_sample)
r4 = lm_robust(y ~ d + x + w, data = dgp_sample)
# A table
list(r1, r2, r3, r4) %>% huxreg()

(1) (2) (3) (4)
(Intercept) 7.965 *** 0.645     6.696 *** -0.590    

(0.271)    (0.864)    (0.403)    (0.888)   
d 7.263 *** 2.873 *** 7.197 *** 2.820 ***

(0.406)    (0.625)    (0.402)    (0.620)   
x          0.948 ***          0.945 ***

         (0.107)             (0.106)   
w                   0.434 *** 0.429 ***

                  (0.098)    (0.094)   
N 1000         1000         1000         1000        
R2 0.243     0.299     0.257     0.313    

*** p < 0.001; ** p < 0.01; * p < 0.05.

The results for the regressions that do not control for  are clearly biased, as we expected from the fact that  is
causing selection into treatment.

Conditional on , treatment is independent of the conditional outcomes, so we should be able to recover an
unbiased estimate. The regression, as we've specified, estimates the ATE. Further, because dimensions of
treatment-effect heterogeneity  are uncorrelated with treatment, the ATE and the ATT are equal.

Finally, because regressions that include  allow us to model the treatment-effect heterogeneity and modestly
reduce residual variation (increasing precision; reducing standard errors)—but they also use up an additional
degree of freedom (could matter for small-ish samples).

Yi Di

Yi Di Xi

Yi Di Wi

Yi Di Xi Wi

Xi Xi

Xi

(Wi + vi)

Wi
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19. Now wrap your code from 15 and 18 into a function. This function will be a single iteration of the simulation.
The function should output the estimated treatment effect in each of the four regressions in 18.

Hint 1: Help your future self by writing this function so that you can easily change the sample size.

Hint 2: Use tidy()  from the broom  package to easily convert regression results into a data frame.

Hint 3: Label the output of the four regressions so that you can distinguish between each specification.

Answer:

# Function for one iteration
one_iter = function(n) {
    # Generate data
    dgp_it = tibble(
        u = runif(n, -10, 10),
        v = runif(n, -5, 5),
        e = runif(n, -1, 1),
        x = rnorm(n, mean = 10, sd = 3),
        w = rnorm(n, mean = 3, sd = 2),
        y0 = x + u,
        y1 = y0 + w + v,
        t = y1 - y0,
        d = (x + e > 10) %>% as.numeric(),
        # d = (x + w + e > 13) %>% as.numeric(),
        y = y0 + d * t
    )
    # Regression time
    bind_rows(
        lm(y ~ d, data = dgp_it) %>% broom��tidy() %>% filter(term �� "d"),
        lm(y ~ d + x, data = dgp_it) %>% broom��tidy() %>% filter(term �� "d"),
        lm(y ~ d + w, data = dgp_it) %>% broom��tidy() %>% filter(term �� "d"),
        lm(y ~ d + x + w, data = dgp_it) %>% broom��tidy() %>% filter(term �� "d")
    ) %>% mutate(controls = c("none", "x", "w", "x + w"))
}
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https://github.com/tidymodels/broom


20. Run a simulation with at least 500 iterations. Each iteration should

take a new 15-observation sample from our DGP
output four treatment-effect estimates (one for each regression in 18)
output four standard errors (one for each estimate)

Summarize your results with a figure (e.g., geom_density() ) and/or a table.

Hints: The apply()  family (e.g., lapply() ) works well for tasks like this, as does the map  family from the purrr
package (see the future_map  family from the furrr  package for parallelization). Also: The notes from class.

Answer:

# Load 'furrr'
p_load(furrr)
# Run the simulation
set.seed(1234)
# Set up the parallelization
plan(multiprocess, workers = 12, .progress = T)
invisible(future_options(seed = 1234L))
# Run the simulation
small_df = future_map_dfr(rep(15, 5000), one_iter)

# Plot simulation
ggplot(data = small_df, aes(x = estimate, fill = controls)) +
geom_density(color = NA, alpha = 0.6) +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 3, linetype = "dashed") +
labs(x = "Estimate", y = "Density") +
scale_fill_viridis_d("Controls", option = "magma", end = 0.9) +
theme_minimal(base_size = 12) +
theme(legend.position = "bottom")
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https://ggplot2.tidyverse.org/reference/geom_density.html
https://purrr.tidyverse.org/
https://github.com/DavisVaughan/furrr
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# Table of summaries
small_df %>%
  group_by(controls) %>%
  summarize(
    "Mean Coef." = mean(estimate),
    "Median Coef." = median(estimate),
    "Std. Dev. Coef" = sd(estimate),
    "Rejection Rate" = mean(p.value < 0.05)
  ) %>%
  hux() %>% add_colnames()

controls Mean Coef. Median Coef. Std. Dev. Coef Rejection Rate
none 7.66 7.64 3.51 0.511 
w 7.66 7.74 3.62 0.486 
x 3    2.98 5.97 0.0766
x + w 3.03 3.01 6.13 0.076 

21. Are any of the estimation strategies (the four regressions) providing reasonable estimates of the average
treatment effect?

Answer: As we discussed before, the methods that do not control for  are hopelessly biased. On the other hand,
the methods that control for  are appear to be producing unbiased estimates for the ATE.

22. With 15 observations, do you think think you have enough power to detect a treatment effect? Explain.

Answer: Our sample size seems to be hurting us quite a bit. As the summary table above shows: For the
specifications that control for , we reject the null hypothesis about 7.5% of the time (using a 5% significance
level). The null hypothesis is indeed false, so we would hope to reject the null way more than 7.5% of the time—
ideally at least 80% of the time. We need more power.

Xi

Xi

Xi
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23. Increase the sample size to 1,000 observations per sample and repeat the simulation (including graphical/table
summary). Does anything important change for causal estimates (e.g., centers of the distributions) or inference
(e.g., rejection rates)?

Answer:

# Run the simulation
set.seed(1234)
# Set up the parallelization
plan(multiprocess, workers = 12, .progress = T)
invisible(future_options(seed = 1234L))
# Run the simulation
big_df = future_map_dfr(rep(1000, 5000), one_iter)

# Plot simulation
ggplot(data = big_df, aes(x = estimate, fill = controls)) +
geom_density(color = NA, alpha = 0.6) +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 3, linetype = "dashed") +
labs(x = "Estimate", y = "Density") +
scale_fill_viridis_d("Controls", option = "magma", end = 0.9) +
theme_minimal(base_size = 12) +
theme(legend.position = "bottom")

15 / 16



# Table of summaries
big_df %>%
  group_by(controls) %>%
  summarize(
    "Mean Coef." = mean(estimate),
    "Median Coef." = median(estimate),
    "Std. Dev. Coef" = sd(estimate),
    "Rejection Rate" = mean(p.value < 0.05)
  ) %>%
  hux() %>% add_colnames()

controls Mean Coef. Median Coef. Std. Dev. Coef Rejection Rate
none 7.7 7.7  0.418 1    
w 7.7 7.7  0.413 1    
x 3   3.01 0.64  0.997
x + w 3   3    0.633 0.997

Increasing the size of the sample

24. Would getting even bigger data help the regressions that appear to be biased? Related: Is it worth paying for a
bigger sample in this setting? Explain.

Answer: No: Getting more data does not help us with the bias. The selection bias is not a function of the sample
size. Bigged data do not generally get rid of biased coefficients.

However, it may be worth paying for a bigger sample if we can remove the selection bias. Our rejection rates jump
from 7.5% to 99.9% by increasing our sample size from 15 to 1,000.

In general: You pay for sample size to increase precision—not to reduce bias.

25. Should we control for ? Explain.

Answer: Controlling for  does nothing for the selection bias. It does allow you to model the treatment-effect
hetergeneity and slightly increases your precision (with this larger sample size). So it's probably worth it. That said:
Our conditional-independence assumption does not require it, so it is not necessary.

Bonus
B01. Does anything important change if ?

B02. Repeat the simulation steps—but use a Normal distribution for , , and  (try to match the mean and
variance). What changes (now that we're using a very well-behaved distribution)?

B03. Repeat the simulation steps—but use a very poorly behaved distribution for , , and  (try to match the
mean and variance, if they are defined). What changes?

B04. When we regress  on  (and potentially controls), are we estimating the ATE or the ATT?

Wi

Wi

Di = I(Xi + Wi + εi > 13)

u v ε

u v ε

Yi Di
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