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Schedule

Last time
Resampling methods

Today
A one-lecture introduction to machine-learning methods

Upcoming
The end is near. As is the final.
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What's different?
Machine-learning methods focus on prediction. What's different?

Up to this point, we've focused on causal identification/inference of , i.e.,

meaning we want an unbiased (consistent) and precise estimate .
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Prediction: What's the goal?

What's different?
Machine-learning methods focus on prediction. What's different?

Up to this point, we've focused on causal identification/inference of , i.e.,

meaning we want an unbiased (consistent) and precise estimate .

With prediction, we shift our focus to accurately estimating outcomes.

In other words, how can we best construct ?

β

Yi = Xiβ + ui

β̂

Ŷi
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Prediction: What's the goal?

... so?
So we want "nice"-performing estimates  instead of .

Q Can't we just use the same methods (i.e., OLS)?

ŷ β̂
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... so?
So we want "nice"-performing estimates  instead of .

Q Can't we just use the same methods (i.e., OLS)?

A It depends. How well does your linear-regression model approximate the
underlying data? (And how do you plan to select your model?)
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Prediction: What's the goal?

... so?
So we want "nice"-performing estimates  instead of .

Q Can't we just use the same methods (i.e., OLS)?

A It depends. How well does your linear-regression model approximate the
underlying data? (And how do you plan to select your model?)

Recall Least-squares regression is a great linear estimator.

ŷ β̂
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Data data be tricky†—as can understanding many relationships.

† "Tricky" might mean nonlinear... or many other things...



blah



Linear regression



Linear regression, linear regression (x4)



Linear regression, linear regression , KNN (100)(x4)



Linear regression, linear regression , KNN (100), KNN (10)(x4)



Linear regression, linear regression , KNN (100), KNN (10), random forest(x4)



Note That example only had one predictor...



What's the goal?

Tradeoffs
In prediction, we constantly face many tradeoffs, e.g.,

flexibility and parametric structure (and interpretability)
performance in training and test samples
variance and bias
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What's the goal?

Tradeoffs
In prediction, we constantly face many tradeoffs, e.g.,

flexibility and parametric structure (and interpretability)
performance in training and test samples
variance and bias

As your economic training should have predicted, in each setting, we need
to balance the additional benefits and costs of adjusting these tradeoffs.

Many machine-learning (ML) techniques/algorithms are crafted to optimize
with these tradeoffs, but the practitioner (you) still needs to be careful.
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Multi-class classification problems
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E.g., ER patients: {heart attack, drug overdose, stroke, nothing}
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What's the goal?
There are many reasons to step outside the world of linear regression...

Multi-class classification problems

Rather than {0,1}, we need to classify  into 1 of K classes
E.g., ER patients: {heart attack, drug overdose, stroke, nothing}

Text analysis and image recognition

Comb though sentences (pixels) to glean insights from relationships
E.g., detect sentiments in tweets or roof-top solar in satellite imagery

Unsupervised learning

You don't know groupings, but you think there are relevant groups
E.g., classify spatial data into groups

yi
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Flexibility is huge, but we still want to avoid overfitting.



Statistical learning

What is it good for?
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Statistical learning

What is it good for?
A lot of things. We tend to break statistical-learning into two(-ish) classes:

�. Supervised learning builds ("learns") a statistical model for predicting
an output  given a set of inputs , i.e., we want to build a
model/function 

that accurately describes  given some values of .

�. Unsupervised learning learns relationships and structure using only
inputs  without any supervising output—letting the data
"speak for itself."

(y) (x1, … , xp)

f

y = f(x1, … , xp)

y x1, … , xp

(x1, … , xp)
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Semi-supervised learning falls somewhere between these supervised and
unsupervised learning—generally applied to supervised tasks when labeled
outputs are incomplete.



Source

https://twitter.com/athena_schools/status/1063013435779223553


Statistical learning

Output
We tend to further break supervised learning into two groups, based upon
the output (the outcome we want to predict):
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Output
We tend to further break supervised learning into two groups, based upon
the output (the outcome we want to predict):

�. Classification tasks for which the values of  are discrete categories 
E.g., race, sex, loan default, hazard, disease, flight status

�. Regression tasks in which  takes on continuous, numeric values. 
E.g., price, arrival time, number of emails, temperature

Note1 The use of regression differs from our use of linear regression.
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Statistical learning

Output
We tend to further break supervised learning into two groups, based upon
the output (the outcome we want to predict):

�. Classification tasks for which the values of  are discrete categories 
E.g., race, sex, loan default, hazard, disease, flight status

�. Regression tasks in which  takes on continuous, numeric values. 
E.g., price, arrival time, number of emails, temperature

Note1 The use of regression differs from our use of linear regression.

Note2 Don't get tricked: Not all numbers represent continuous, numerical
values—e.g., zip codes, industry codes, social security numbers.†

y

y

† Q Where would you put responses to 5-item Likert scales?
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Statistical learning

The goal
As defined before, we want to learn a model to understand our data.
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Statistical learning

The goal
As defined before, we want to learn a model to understand our data.

�. Take our (numeric) output .
�. Imagine there is a function  that takes inputs  
and maps them, plus a random, mean-zero error term , to the output.

y

f X = x1, … , xp

ε

y = f(X) + ε
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Statistical learning

Learning from 
There are two main reasons we want to learn about 

�. Causal inference settings How do changes in  affect ? 
What we've done all quarter.

f̂

f

X y
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There are two main reasons we want to learn about 

�. Causal inference settings How do changes in  affect ? 
What we've done all quarter.

�. Prediction problems Predict  using our estimated , i.e.,

our black-box setting where we care less about  than .†

f̂

f

X y

y f

ŷ = f̂(X)

f ŷ

† You shouldn't actually treat your prediction methods as total black boxes.
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Statistical learning

Learning from 
There are two main reasons we want to learn about 

�. Causal inference settings How do changes in  affect ? 
What we've done all quarter.

�. Prediction problems Predict  using our estimated , i.e.,

our black-box setting where we care less about  than .†

Similarly, in causal-inference settings, we don't particulary care about .

f̂

f

X y

y f

ŷ = f̂(X)

f ŷ

† You shouldn't actually treat your prediction methods as total black boxes.

ŷ
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Statistical learning

Prediction errors
As tends to be the case in life, you will make errors in predicting .

The accuracy of  depends upon two errors:
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�. Reducible error The error due to  imperfectly estimating . 
Reducible in the sense that we could improve .

�. Irreducible error The error component that is outside of the model . 
Irreducible because we defined an error term  unexplained by .
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Statistical learning

Prediction errors
As tends to be the case in life, you will make errors in predicting .

The accuracy of  depends upon two errors:

�. Reducible error The error due to  imperfectly estimating . 
Reducible in the sense that we could improve .

�. Irreducible error The error component that is outside of the model . 
Irreducible because we defined an error term  unexplained by .

Note As its name implies, you can't get rid of irreducible error—but we can
try to get rid of reducible errors.

y

ŷ

f̂ f

f̂

f

ε f
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Statistical learning

Prediction errors
Why we're stuck with irreducible error

In less math:

If  exists, then  cannot perfectly explain .
So even if , we still have irreducible error.

E[{y − ŷ}
2] = E[{f(X) + ε + f̂ (X)}

2

]

= [f(X) − f̂ (X)]
2


Reducible

+ Var(ε)


Irreducible

ε X y

f̂ = f
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Statistical learning

Prediction errors
Why we're stuck with irreducible error

In less math:

If  exists, then  cannot perfectly explain .
So even if , we still have irreducible error.

Thus, to form our best predictors, we will minimize reducible error.

E[{y − ŷ}
2] = E[{f(X) + ε + f̂ (X)}

2

]

= [f(X) − f̂ (X)]
2


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+ Var(ε)
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Irreducible

ε X y

f̂ = f
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Model accuracy

MSE
Mean squared error (MSE) is the most common† way to measure model
performance in a regression setting.

Recall:  is our prediction error.

† Most common does not mean best—it just means lots of people use it.

MSE =
n

∑
i=1

[yi − f̂ (xi)]
21

n

yi − f̂ (xi) = yi − ŷ i
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Model accuracy

MSE
Mean squared error (MSE) is the most common† way to measure model
performance in a regression setting.

Recall:  is our prediction error.

Two notes about MSE

�. MSE will be (relatively) very small when prediction error is nearly zero.
�. MSE penalizes big errors more than little errors (the squared part).

† Most common does not mean best—it just means lots of people use it.

MSE =
n

∑
i=1

[yi − f̂ (xi)]
21

n

yi − f̂ (xi) = yi − ŷ i
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Model accuracy

Training or testing?
Low MSE (accurate performance) on the data that trained the model isn't
actually impressive—maybe the model is just overfitting our data.†

What we want: How well does the model perform on data it has never seen?

† Recall the kNN performance for k=1.
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Low MSE (accurate performance) on the data that trained the model isn't
actually impressive—maybe the model is just overfitting our data.†

What we want: How well does the model perform on data it has never seen?

This introduces an important distinction:

�. Training data: The observations  used to train our model .
�. Testing data: The observations  that our model has yet to see—
and which we can use to evaluate the performance of .

† Recall the kNN performance for k=1.

(yi, xi) f̂
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0
, x0)
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Model accuracy

Training or testing?
Low MSE (accurate performance) on the data that trained the model isn't
actually impressive—maybe the model is just overfitting our data.†

What we want: How well does the model perform on data it has never seen?

This introduces an important distinction:

�. Training data: The observations  used to train our model .
�. Testing data: The observations  that our model has yet to see—
and which we can use to evaluate the performance of .

Real goal: Low test-sample MSE (not the training MSE from before).

† Recall the kNN performance for k=1.

(yi, xi) f̂

(y
0
, x0)

f̂
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Model accuracy

Regression and loss
For regression settings, the loss is our prediction's distance from truth, i.e.,

Depending upon our ultimate goal, we choose loss/objective functions.

Whatever we're using, we care about test performance (e.g., test MSE),
rather than training performance.

errori = yi − ŷ i lossi = ∣∣yi − ŷ i
∣∣ = ∣∣errori∣∣

L1 loss = ∑
i

∣∣yi − ŷ i
∣∣ MAE = ∑

i

∣∣yi − ŷ i
∣∣

L2 loss = ∑
i

(yi − ŷ i)
2

MSE = ∑
i

(yi − ŷ i)
2

1

n

1

n
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Model accuracy

Classification
For classification problems, we often use the test error rate.

The Bayes classifier

�. predicts class  when  exceeds all other classes.

�. produces the Bayes decision boundary—the decision boundary with
the lowest test error rate.

�. is unknown: we must predict .

n

∑
i=1

I(yi ≠ ŷ i)
1

n

j Pr(y0 = j∣∣X = x0)

Pr(y0 = j∣∣X = x0)
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Flexibility

The bias-variance tradeoff
Finding the optimal level of flexibility highlights the bias-variance tradeoff.

Bias The error that comes from inaccurately estimating .

More flexible models are better equipped to recover complex
relationships , reducing bias. (Real life is seldom linear.)
Simpler (less flexible) models typically increase bias.

Variance The amount  would change with a different training sample

If new training sets drastically change , then we have a lot of
uncertainty about  (and, in general, ).
More flexible models generally add variance to .

f

(f)

f̂

f̂

f f̂ ≉ f

f
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Flexibility

The bias-variance tradeoff
The expected value† of the test MSE can be written

The tradeoff in terms of model flexibility

Increasing flexibility from total inflexibility generally reduces bias more
than it increases variance (reducing test MSE).

At some point, the marginal benefits of flexibility equal marginal costs.

Past this point (optimal flexibility), we increase variance more than we
reduce bias (increasing test MSE).

E[(y0 − f̂ (X0))
2

] = Var(f̂ (X0))


Variance

+ [Bias(f̂ (X0))]
2


Bias

+ Var(ε)

Irr. error
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U-shaped test MSE with respect to model flexibility (KNN here). 
Increases in variance eventually overcome reductions in (squared) bias.



Resampling refresher
Resampling methods help understand uncertainty in statistical modeling.

The process behind the magic of resampling methods:

�. Repeatedly draw samples from the training data.
�. Fit your model(s) on each random sample.
�. Compare model performance (or estimates) across samples.
�. Infer the variability/uncertainty in your model from (3).
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Resampling

Hold out
Recall: We want to find the model that minimizes out-of-sample test error.

If we have a large test dataset, we can use it (once).

Q1 What if we don't have a test set? 
Q2 What if we need to select and train a model? 
Q3 How can we avoid overfitting our training† data during model selection?

† Also relevant for testing data.
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Resampling

Hold out
Recall: We want to find the model that minimizes out-of-sample test error.

If we have a large test dataset, we can use it (once).

Q1 What if we don't have a test set? 
Q2 What if we need to select and train a model? 
Q3 How can we avoid overfitting our training† data during model selection?

A1,2,3 Hold-out methods (e.g., cross validation) use training data to estimate
test performance—holding out a mini "test" sample of the training data
that we use to estimate the test error.

† Also relevant for testing data.
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Hold-out methods

Option 1: The validation set approach
To estimate the test error, we can hold out a subset of our training data
and then validate (evaluate) our model on this held out validation set.

The validation error rate estimates the test error rate
The model only "sees" the non-validation subset of the training data.
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Initial training set

Hold-out methods

Option 1: The validation set approach
To estimate the test error, we can hold out a subset of our training data
and then validate (evaluate) our model on this held out validation set.

The validation error rate estimates the test error rate
The model only "sees" the non-validation subset of the training data.
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Validation (sub)set Training set: Model training

Hold-out methods

Option 1: The validation set approach
To estimate the test error, we can hold out a subset of our training data
and then validate (evaluate) our model on this held out validation set.

The validation error rate estimates the test error rate
The model only "sees" the non-validation subset of the training data.
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Validation (sub)set Training set: Model training

Hold-out methods

Option 1: The validation set approach
To estimate the test error, we can hold out a subset of our training data
and then validate (evaluate) our model on this held out validation set.

The validation error rate estimates the test error rate
The model only "sees" the non-validation subset of the training data.
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Hold-out methods

Option 1: The validation set approach
Example We could use the validation-set approach to help select the
degree of a polynomial for a linear-regression model.
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Q So what?
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Hold-out methods

Option 1: The validation set approach
Example We could use the validation-set approach to help select the
degree of a polynomial for a linear-regression model.

The goal of the validation set is to estimate out-of-sample (test) error.

Q So what?

Estimates come with uncertainty—varying from sample to sample.

Variability (standard errors) is larger with smaller samples.

Problem This estimated error is often based upon a fairly small sample
(<30% of our training data). So its variance can be large.
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Validation MSE for 10 different validation samples



True test MSE compared to validation-set estimates



Hold-out methods

Option 1: The validation set approach
Put differently: The validation-set approach has (≥) two major drawbacks:

�. High variability Which observations are included in the validation set
can greatly affect the validation MSE.

�. Inefficiency in training our model We're essentially throwing away the
validation data when training the model—"wasting" observations.
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Hold-out methods

Option 1: The validation set approach
Put differently: The validation-set approach has (≥) two major drawbacks:

�. High variability Which observations are included in the validation set
can greatly affect the validation MSE.

�. Inefficiency in training our model We're essentially throwing away the
validation data when training the model—"wasting" observations.

(2) ⟹ validation MSE may overestimate test MSE.

Even if the validation-set approach provides an unbiased estimator for test
error, it is likely a pretty noisy estimator.
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Hold-out methods

Option 2: Leave-one-out cross validation
Cross validation solves the validation-set method's main problems.

Use more (= all) of the data for training (lower variability; less bias).
Still maintains separation between training and validation subsets.
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Hold-out methods

Option 2: Leave-one-out cross validation
Cross validation solves the validation-set method's main problems.

Use more (= all) of the data for training (lower variability; less bias).
Still maintains separation between training and validation subsets.

Leave-one-out cross validation (LOOCV) is perhaps the cross-validation
method most similar to the validation-set approach.

Your validation set is exactly one observation.
New You repeat the validation exercise for every observation.
New Estimate MSE as the mean across all observations.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set, 
while the other n-1 observations get to train the model. 

Observation 1's turn for validation produces MSE1.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set, 
while the other n-1 observations get to train the model. 

Observation 2's turn for validation produces MSE2.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set, 
while the other n-1 observations get to train the model. 

Observation 3's turn for validation produces MSE3.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set, 
while the other n-1 observations get to train the model. 

Observation 4's turn for validation produces MSE4.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set, 
while the other n-1 observations get to train the model. 

Observation 5's turn for validation produces MSE5.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set, 
while the other n-1 observations get to train the model. 

Observation n's turn for validation produces MSEn.
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Hold-out methods

Option 2: Leave-one-out cross validation
Because LOOCV uses n-1 observations to train the model,† MSEi (validation
MSE from observation i) is approximately unbiased for test MSE.

Problem MSEi is a terribly noisy estimator for test MSE (albeit ≈unbiased).

† And because often n-1 ≈ n.
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Hold-out methods

Option 2: Leave-one-out cross validation
Because LOOCV uses n-1 observations to train the model,† MSEi (validation
MSE from observation i) is approximately unbiased for test MSE.

Problem MSEi is a terribly noisy estimator for test MSE (albeit ≈unbiased).
Solution Take the mean!

† And because often n-1 ≈ n.

CV(n) =
n

∑
i=1

MSEi

1

n
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Hold-out methods

Option 2: Leave-one-out cross validation
Because LOOCV uses n-1 observations to train the model,† MSEi (validation
MSE from observation i) is approximately unbiased for test MSE.

Problem MSEi is a terribly noisy estimator for test MSE (albeit ≈unbiased).
Solution Take the mean!

�. LOOCV reduces bias by using n-1 (almost all) observations for training.
�. LOOCV resolves variance: it makes all possible comparison

(no dependence upon which validation-test split you make).

† And because often n-1 ≈ n.

CV(n) =
n

∑
i=1

MSEi

1

n
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True test MSE and LOOCV MSE compared to validation-set estimates



Hold-out methods

Option 3: k-fold cross validation
Leave-one-out cross validation is a special case of a broader strategy: 
k-fold cross validation.

�. Divide the training data into  equally sized groups (folds).
�. Iterate over the  folds, treating each as a validation set once

(training the model on the other  folds).
�. Average the folds' MSEs to estimate test MSE.

k

k

k − 1
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Option 3: k-fold cross validation
Leave-one-out cross validation is a special case of a broader strategy: 
k-fold cross validation.

�. Divide the training data into  equally sized groups (folds).
�. Iterate over the  folds, treating each as a validation set once

(training the model on the other  folds).
�. Average the folds' MSEs to estimate test MSE.

Benefits?

�. Less computationally demanding (fit model  5 or 10 times; not ).

k

k

k − 1

k = n
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Hold-out methods

Option 3: k-fold cross validation
Leave-one-out cross validation is a special case of a broader strategy: 
k-fold cross validation.

�. Divide the training data into  equally sized groups (folds).
�. Iterate over the  folds, treating each as a validation set once

(training the model on the other  folds).
�. Average the folds' MSEs to estimate test MSE.

Benefits?

�. Less computationally demanding (fit model  5 or 10 times; not ).
�. Greater accuracy (in general) due to bias-variance tradeoff!
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Option 3: k-fold cross validation
Leave-one-out cross validation is a special case of a broader strategy: 
k-fold cross validation.

�. Divide the training data into  equally sized groups (folds).
�. Iterate over the  folds, treating each as a validation set once

(training the model on the other  folds).
�. Average the folds' MSEs to estimate test MSE.

Benefits?

�. Less computationally demanding (fit model  5 or 10 times; not ).
�. Greater accuracy (in general) due to bias-variance tradeoff!

Somewhat higher bias, relative to LOOCV:  vs. .
Lower variance due to high-degree of correlation in LOOCV MSEi.🤯
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

Our  5 folds.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k =
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

Each fold takes a turn at validation. The other  folds train.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k − 1
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=1.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k = 5 1
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=2.
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=3.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k = 5 3
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=4.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k = 5 4
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=5.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k = 5 5
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE ask

CV(k) =
k

∑
i=1

MSEi

1

k
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Test MSE vs. estimates: LOOCV, 5-fold CV (20x), and validation set (10x)



Note: Each of these methods extends to classification settings, e.g., LOOCV

CV(n) =
n

∑
i=1

I(yi ≠ ŷ i)
1

n



Hold-out methods

Caveat
So far, we've treated each observation as separate/independent from each
other observation.

The methods that we've defined so far actually need this independence.
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Hold-out methods

Goals and alternatives
You can use CV for either of two important modeling tasks:

Model selection Choosing and tuning a model

Model assessment Evaluating a model's accuracy
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Alternative approach: Shrinkage methods
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Goals and alternatives
You can use CV for either of two important modeling tasks:

Model selection Choosing and tuning a model

Model assessment Evaluating a model's accuracy

Alternative approach: Shrinkage methods

fit a model that contains all  predictors
simultaneously: shrink† coefficients toward zero

Idea: Penalize the model for coefficients as they move away from zero.

p

† Synonyms for shrink: constrain or regularize
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Shrinkage

Why?
Q How could shrinking coefficients twoard zero help or predictions?
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Shrinkage

Why?
Q How could shrinking coefficients twoard zero help or predictions?

A Remember we're generally facing a tradeoff between bias and variance.

Shrinking our coefficients toward zero reduces the model's variance.†

Penalizing our model for larger coefficients shrinks them toward zero.
The optimal penalty will balance reduced variance with increased bias.

† Imagine the extreme case: a model whose coefficients are all zeros has no variance.
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Shrinkage

Why?
Q How could shrinking coefficients twoard zero help or predictions?

A Remember we're generally facing a tradeoff between bias and variance.

Shrinking our coefficients toward zero reduces the model's variance.†

Penalizing our model for larger coefficients shrinks them toward zero.
The optimal penalty will balance reduced variance with increased bias.

Now you understand shrinkage methods.

Ridge regression

Lasso

Elasticnet

† Imagine the extreme case: a model whose coefficients are all zeros has no variance.
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Ridge regression

Back to least squares (again)
Recall Least-squares regression gets 's by minimizing RSS, i.e.,β̂j

min
β̂

RSS = min
β̂

n

∑
i=1

e2
i = min

β̂

n

∑
i=1

(yi − [β̂0 + β̂1xi,1 + ⋯ + β̂pxi,p]


=ŷ i

)
2
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Ridge regression makes a small change

adds a shrinkage penalty = the sum of squared coefficents 
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Ridge regression Least squares

Ridge regression

 is a tuning parameter for the harshness of the penalty. 
 implies no penalty: we are back to least squares.

min
β̂

R

n

∑
i=1

(yi − ŷ i)
2

+ λ

p

∑
j=1

β2
j min

β̂

n

∑
i=1

(yi − ŷ i)
2

λ (≥ 0)

λ = 0
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Ridge regression
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Each value of  produces a new set of coefficents.
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Ridge regression Least squares

Ridge regression

 is a tuning parameter for the harshness of the penalty. 
 implies no penalty: we are back to least squares.

Each value of  produces a new set of coefficents.

Ridge's approach to the bias-variance tradeoff: Balance

reducing RSS, i.e., 
reducing coefficients (ignoring the intercept)

 determines how much ridge "cares about" these two quantities.†

min
β̂

R

n

∑
i=1

(yi − ŷ i)
2

+ λ

p

∑
j=1

β2
j min

β̂

n

∑
i=1

(yi − ŷ i)
2

λ (≥ 0)

λ = 0

λ

∑
i
(yi − ŷ i)

2

λ

† With , least-squares regression only "cares about" RSS.λ = 0
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Ridge regression

 and penalization
Choosing a good value for  is key.

If  is too small, then our model is essentially back to OLS.
If  is too large, then we shrink all of our coefficients too close to zero.

λ

λ

λ

λ
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Q So what do we do?
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Ridge regression

 and penalization
Choosing a good value for  is key.

If  is too small, then our model is essentially back to OLS.
If  is too large, then we shrink all of our coefficients too close to zero.

Q So what do we do?
A Cross validate!

(You saw that coming, right?)

λ

λ

λ

λ
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Ridge regression

Penalization and standardization
Important Predictors' units can drastically affect ridge regression results.

Why?
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Penalization and standardization
Important Predictors' units can drastically affect ridge regression results.

Why? Because 's units affect , and ridge is very sensitive to .

Example Let  denote distance.

Least-squares regression 
If  is meters and , then when  is km, . 
The scale/units of predictors do not affect least squares' estimates.

xj βj βj

x1

x1 β1 = 3 x1 β1 = 3, 000
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Ridge regression

Penalization and standardization
Important Predictors' units can drastically affect ridge regression results.

Why? Because 's units affect , and ridge is very sensitive to .

Example Let  denote distance.

Least-squares regression 
If  is meters and , then when  is km, . 
The scale/units of predictors do not affect least squares' estimates.

Ridge regression pays a much larger penalty for  than . 
You will not get the same (scaled) estimates when you change units.

Solution Standardize your variables, i.e., x_stnd = (x - mean(x))/sd(x) .

xj βj βj

x1

x1 β1 = 3 x1 β1 = 3, 000

β1 = 3, 000 β1 = 3
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Lasso

Intro
Lasso simply replaces ridge's squared coefficients with absolute values.
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Lasso

Intro
Lasso simply replaces ridge's squared coefficients with absolute values.

Ridge regression

Lasso

Everything else will be the same—except one aspect...

min
β̂

R

n

∑
i=1

(yi − ŷ i)
2

+ λ

p

∑
j=1

β2
j

min
β̂

L

n

∑
i=1

(yi − ŷ i)
2

+ λ

p

∑
j=1

∣∣βj∣∣
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Lasso

Shrinkage
Unlike ridge, lasso's penalty does not increase with the size of .

You always pay  to increase  by one unit.

βj

λ ∣∣βj∣∣
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Lasso

Shrinkage
Unlike ridge, lasso's penalty does not increase with the size of .

You always pay  to increase  by one unit.

The only way to avoid lasso's penalty is to set coefficents to zero.

This feature has two benefits

�. Some coefficients will be set to zero—we get "sparse" models.
�. Lasso can be used for subset/feature selection.
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Lasso

Shrinkage
Unlike ridge, lasso's penalty does not increase with the size of .

You always pay  to increase  by one unit.

The only way to avoid lasso's penalty is to set coefficents to zero.

This feature has two benefits

�. Some coefficients will be set to zero—we get "sparse" models.
�. Lasso can be used for subset/feature selection.

We will still need to carefully select .

βj

λ ∣∣βj∣∣

λ
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Ridge regression coefficents for  between 0.01 and 100,000λ



Lasso coefficents for  between 0.01 and 100,000λ



Machine learning

Wrap up
Now you understand the basic tenants of machine learning:

How prediction differs from causal inference
Bias-variance tradeoff (the benefits and costs of flexibility)
Cross validation: Performance and tuning
In- vs. out-of-sample performance
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Sources
Sources (articles) of images

Deep learning and radiology
Parking lot detection
New Yorker writing
Gender Shades

I pulled the comic from Twitter.
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https://www.smart2zero.com/news/algorithm-beats-radiologists-diagnosing-x-rays
https://www.smart2zero.com/news/algorithm-beats-radiologists-diagnosing-x-rays
https://www.newyorker.com/magazine/2019/10/14/can-a-machine-learn-to-write-for-the-new-yorker
http://gendershades.org/overview.html
https://twitter.com/athena_schools/status/1063013435779223553/photo/1

