
Instrumental Variables
EC 607, Set 8

Edward Rubin
Spring 2020



ProloguePrologue



Schedule

Last time
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Overlap

Today
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Selection on observables and/or unobservables
We've been focusing on selection-on-observables designs, i.e.,

for observable variables .
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Research designs

Selection on observables and/or unobservables
We've been focusing on selection-on-observables designs, i.e.,

for observable variables .

Selection-on-unobservable designs replace this assumption with two new
(but related) assumptions

�. 

�. 

(Y0i, Y1i) ⊥⊥ Di|Xi

Xi

(Y0i, Y1i) ⊥ Zi

Cov(Zi, Di) ≠ 0
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Research designs

Selection on observables and/or unobservables
Our main goal in causal-inference minded (applied) econometrics boils
down to isolating "good" variation in  (exogenous/as-good-as-random)
from "bad" variation (the part of  correlated with  and ).
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Research designs

Selection on observables and/or unobservables
Our main goal in causal-inference minded (applied) econometrics boils
down to isolating "good" variation in  (exogenous/as-good-as-random)
from "bad" variation (the part of  correlated with  and ).

(We want to avoid selection bias.)

Selection-on-observables designs assume that we can control for all
bad variation (selection) in  through a known (observed) .

Selection-on-unobservables designs assume that we can extract part
of the good variation in  (generally using some ) and then use this
good part of  to estimate the effect of  on . We throw away the
bad variation in  (it's bad).

Di

Di Y0i Y1i

Di Xi

Di Zi

Di Di Yi

Di
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Research designs

Which route?
Which set of research designs is more palatable?
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Research designs

Which route?
Which set of research designs is more palatable?

�. There are plenty of bad applications of both sets.
Violated assumptions, bad controls, etc.

�. Selection on observables assumes we know everything about selection
into treatment—we can identify all of the good (or bad) variation in .
Tough in non-experimental settings. Difficult to validate in practice.

�. Selection on unobservables assumes we can isolate some good/clean
variation in , which we then use to estimate the effect of  on .
Seems more plausible. Possible to validate. May be underpowered.

Di

Di Di Yi
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Instrumental variables

Introduction
Instrumental variables (IV)† is the canonical selection-on-unobservables
design—isolating good variation in  via some magical instrument .Di Zi

† For the moment, we're lumping together IV and two-stage least squares (2SLS) together—as many
people do—even though they are technically different.

8 / 60



Instrumental variables

Introduction
Instrumental variables (IV)† is the canonical selection-on-unobservables
design—isolating good variation in  via some magical instrument .

Consider some model (structural equation)

To guarantee consistent OLS estimates for , want . 
In general, this is a heroic assumption.

Di Zi

† For the moment, we're lumping together IV and two-stage least squares (2SLS) together—as many
people do—even though they are technically different.
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Instrumental variables

Introduction
Instrumental variables (IV)† is the canonical selection-on-unobservables
design—isolating good variation in  via some magical instrument .

Consider some model (structural equation)

To guarantee consistent OLS estimates for , want . 
In general, this is a heroic assumption.

Alternative: Estimate  via instrumental variables.

Di Zi

† For the moment, we're lumping together IV and two-stage least squares (2SLS) together—as many
people do—even though they are technically different.

Yi = β0 + β1Di + εi (1)

β1 Cov(Di, εi) = 0

β1
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Instrumental variables

Definition
For our model

A valid instrument is a variable  such that

�. 

Yi = β0 + β1Di + εi (1)

Zi

Cov(Zi, Di) ≠ 0
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Instrumental variables

Definition
For our model

A valid instrument is a variable  such that

�. 
our instrument correlates with treatment (so we can keep part of )

�. 
our instrument is uncorrelated with other (non- ) determinants of ,
i.e.,  is excludable from equation . (exclusion restriction)

Yi = β0 + β1Di + εi (1)

Zi

Cov(Zi, Di) ≠ 0

Di

Cov(Zi, εi) = 0

Di Yi

Zi (1)
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OLS is likely biased.
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Let  denote an indicator for whether  won a lottery scholarship.†
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Instrumental variables

Example
Back to the returns to a college degree,

OLS is likely biased.

What if that state conducts a (random) lottery for scholarships?

Let  denote an indicator for whether  won a lottery scholarship.†

�.   if scholarships increase grad. rates.

�.  since the lottery is randomized.

Incomei = β0 + β1Gradi + εi

Lotteryi i

† We'll have to focus on families who were eligible/who applied.

Cov(Lotteryi, Gradi) ≠ 0 (> 0)

Cov(Lotteryi, εi) = 0
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Instrument variables

The IV estimator
The IV estimator for our model

with (valid) instrument  is

Yi = β0 + β1Di + εi (1)

Zi

β̂ IV = (Z′D)
−1

(Z′Y)
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Instrument variables

The IV estimator
The IV estimator for our model

with (valid) instrument  is

If you have no covariates, then

Yi = β0 + β1Di + εi (1)

Zi

β̂ IV = (Z′D)
−1

(Z′Y)

β̂
IV

=
Cov(Zi, Yi)

Cov(Zi, Di)
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Instrument variables

The IV estimator
The IV estimator for our model

with (valid) instrument  is

If you have additional (exogenous) covariates , then

Yi = β0 + β1Di + εi (1)

Zi

β̂ IV = (Z′D)
−1

(Z′Y)

Xi

Z = [ Zi Xi ]

D = [ Di Xi ]
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Instrumental variables

Proof: Consistency
With a valid instrument ,  is a consistent estimator for  inZi β̂ IV β1

Yi = β0 + β1Xi + εi (1)

plim(β̂IV )
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Proof: Consistency
With a valid instrument ,  is a consistent estimator for  inZi β̂ IV β1

Yi = β0 + β1Xi + εi (1)

plim(β̂IV )

= plim((Z′D)
−1

(Z′Y))

= plim((Z′D)
−1
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Instrumental variables

Proof: Consistency
With a valid instrument ,  is a consistent estimator for  in

  ✔

Zi β̂ IV β1

Yi = β0 + β1Xi + εi (1)

plim(β̂IV )

= plim((Z′D)
−1

(Z′Y))

= plim((Z′D)
−1

(Z′Dβ + Z′ε))

= plim((Z′D)
−1

(Z′D)β) + plim( Z′D)
−1

plim( Z′ε)
1

N

1

N

= β
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Two-stage least squares

Setup
You'll commonly see IV implemented as a two-stage process known as
two-stage least squares (2SLS).
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Two-stage least squares

Setup
You'll commonly see IV implemented as a two-stage process known as
two-stage least squares (2SLS).

First stage Estimate the effect of the instrument  on our endogenous
variable  and (predetermined) covariates . Save .

Second stage Estimate the model we wanted—but only using the variation
in  that correlates with , i.e., .

Note The controls  must match in the first and second stages.

Zi

Di Xi D̂i

Di = γ1Zi + γ2Xi + ui

Di Zi D̂i

Yi = β1D̂i + β2Xi + εi

Xi
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Two-stage least squares

IV estimation
This two-step procedure, with a valid instrument, produces an estimator 
that is consistent for .

where  is a matrix of our treatment and predetermined covariates 
and  is a matrix of our instrument and our predetermined covariates.

β̂1

β1

β̂2SLS
= (D′PZD)−1 (D′PZY)

PZ = Z(Z′Z)−1
Z′

D (Xi)

Z
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Two-stage least squares

IV estimation
Important notes

The controls  must match in the first and second stages.

Related: Nonlinear first stages can mess things up.

If you have exactly one instrument and exactly one endogenous
variable, then 2SLS and IV are identical.

Your second-stage standard errors are not correct.

(Xi)
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Two-stage least squares

The reduced form
In addition to the regressions within the two stages of 2SLS

�. 
�. 

there is a third important and related regression: the reduced form.

Di = γ1Zi + γ2Xi + ui

Yi = β1D̂i + β2Xi + εi
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Two-stage least squares

The reduced form
In addition to the regressions within the two stages of 2SLS

�. 
�. 

there is a third important and related regression: the reduced form.

The reduced form regresses the outcome  (LHS of the second stage) on
our instrument  and covariates  (RHS of the first stage).

Thus, the reduced form provides a consistent estimate of the causal effect
of our instrument on the outcome.

Di = γ1Zi + γ2Xi + ui

Yi = β1D̂i + β2Xi + εi

Yi

Zi Xi

Yi = π1Zi + π2Xi + ui
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Two-stage least squares

The reduced form, continued
While the reduced form estimates the causal effect of the instrument on
our outcome, we're often actually interested in the effect of treatment .(Di)
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Two-stage least squares

The reduced form, continued
While the reduced form estimates the causal effect of the instrument on
our outcome, we're often actually interested in the effect of treatment .

That said, the reduced form is still incredibly helpful/important:

Clarifies your source of identifying variation.
Does not suffer from weak instruments problems.
Only requires .
Offers insights into your estimates

when you have exactly one instrument.

(Di)

Cov(Zi, εi) = 0

β̂
2SLS

1
=

π̂1

γ̂
1
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Two-stage least squares

The reduced form, intuition
This expression for the 2SLS (and IV) estimator can be very helpful.

β̂
2SLS

1
= =

π̂1

γ̂
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Reduced-form estimate

First-stage estimate
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This expression for the 2SLS (and IV) estimator can be very helpful.

What's the interpretation/intuition?

Back to our example:  est. effect of college graduation on income.

 gives the estimated causal effect of the scholarship lottery on income,
but what share of lottery winners graduate? We need to rescale if  100%.
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Two-stage least squares

The reduced form, intuition
This expression for the 2SLS (and IV) estimator can be very helpful.

What's the interpretation/intuition?

Back to our example:  est. effect of college graduation on income.

 gives the estimated causal effect of the scholarship lottery on income,
but what share of lottery winners graduate? We need to rescale if  100%.

 estimates the effect of winning the scholarship lottery on graduation—
the share of winners who graduated due to winning.
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Two-stage least squares

The reduced form, intuition
This expression for the 2SLS (and IV) estimator can be very helpful.

What's the interpretation/intuition?

Back to our example:  est. effect of college graduation on income.

 gives the estimated causal effect of the scholarship lottery on income,
but what share of lottery winners graduate? We need to rescale if  100%.

 estimates the effect of winning the scholarship lottery on graduation—
the share of winners who graduated due to winning. We can scale with !

β̂
2SLS

1
= =

π̂1

γ̂
1

Reduced-form estimate

First-stage estimate

β̂ 1 =

π̂1

<

γ̂1

γ̂1
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Two-stage least squares

The reduced form, example
To see why this scaling makes sense, imagine that 50% of lottery winners
graduate from college due to the lottery, i.e.,  0.50.†γ̂1 =

† Imagine none of the applicants would have graduated otherwise
21 / 60
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Two-stage least squares

The reduced form, example
To see why this scaling makes sense, imagine that 50% of lottery winners
graduate from college due to the lottery, i.e.,  0.50.†

Our reduced-form estimate of  $5,000 says that lottery winners make
$5,000 more than the control group, on average.

However, half of the winners did not graduate, so  "underestimates" the
effect of college graduation by combining graduates by nongraduates.

Thus, we want to double , i.e., divide by :  = $5,000/0.5 = $10,000.

γ̂1 =

† Imagine none of the applicants would have graduated otherwise

π̂1 =

π̂1

π̂1 γ̂1 π̂1/γ̂1
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Two-stage least squares

Q How do we get this magical expression? 

Derivation

   applying FWL to reduce  and  to vectors.
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Two-stage least squares

Q How do we get this magical expression? 

Derivation

   applying FWL to reduce  and  to vectors.

 

(β̂
IV

1 = )
π̂1

γ̂1

β̂
IV

1 = (Z′D)
−1

(Z′Y)

β̂
IV

1 = (Z̃
′
D̃)

−1

(Z̃
′
Y) D Z

β̂
IV

1 =
Cov(Z̃i, Yi)

Cov(Z̃i, D̃i)
=

Cov(Z̃i, Yi)/ Var(Z̃i)

Cov(Z̃i, D̃i)/ Var(Z̃i)

22 / 60



Two-stage least squares

Q How do we get this magical expression? 

Derivation

   applying FWL to reduce  and  to vectors.

 

  ✔
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π̂1

γ̂1

β̂
IV

1 = (Z′D)
−1

(Z′Y)

β̂
IV

1 = (Z̃
′
D̃)

−1

(Z̃
′
Y) D Z

β̂
IV

1 =
Cov(Z̃i, Yi)

Cov(Z̃i, D̃i)
=

Cov(Z̃i, Yi)/ Var(Z̃i)

Cov(Z̃i, D̃i)/ Var(Z̃i)

β̂
IV

1 =
π̂1

γ̂1
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Let's push a bit deeper into IV's mechanics and intuition.



IV: Mechanics and intuition

Setup
In this section, we'll use medical trials as a working example.†

† Credit/thanks go to Michael Anderson for this example—and much of these notes.
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IV: Mechanics and intuition

Setup
In this section, we'll use medical trials as a working example.†

We are interested in the regression model for the effect of some treatment
(e.g., blood-pressure medication) on medical outcome 

 indicates whether  takes the treatment (medication).  captures all
other factors that affect . Or in potential-outcomes framework:

† Credit/thanks go to Michael Anderson for this example—and much of these notes.

Yi

Yi = β0 + β1Di + εi

Di i εi

Yi

Yi = Y1iDi + Y0i(1 − Di)

Y0i = β0 + εi

Y1i = Y0i + β1

24 / 60
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Research design
Goal Estimate the effect of blood-pressure medication on blood pressure.

Challenge Selection bias: Even if treatment reduces blood pressure,
selection bias will fights against the estimated effect.

Solution Randomized medical trial: Ask randomly chosen individuals in
treatment group to take the pill. Controls get placebo (or nothing).

Analysis 1 Intention to treat (ITT): 

ITT problem Bias from noncompliance: People don't always follow rules. 
E.g., treated folks who don't take pills; control folks who take pills.

Analysis 2 IV! Instrument medication  with intention to treat .

β̂
ITT

1 =
¯̄¯̄
YTrt −

¯̄¯̄
YCtrl

Di Zi
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IV: Mechanics and intuition

The IV solution
First question: Is  a valid instrument for ?

�.  as  was randomly assigned (exclusion restriction).

�.  if assignment to treatment changes the likelihood you
take the pills (first stage).

∴  is a valid instrument for  and IV consistently estimates .

Zi Di

Cov(Zi, εi) = 0 Zi

Cov(Zi, Di) ≠ 0

Zi Di β1
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IV: Mechanics and intuition

Noncompliance
Noncompliant individuals do not abide by their treatment assignment.

Let's see how IV "solves" this problems.

First, assume noncompliance only affects treated individuals—i.e., treated
folks sometimes don't take their pills; control folks never take pills.
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IV: Mechanics and intuition

Noncompliance, continued
The first stage recovers the share of treatment individuals who take the pill

i.e., if 50% of treated individuals take the medication,  0.50.

The reduced form estimates the ITT

which we know IV rescales using the first stage

Di = γ1Zi + ui

γ̂1 =

Yi = π1Zi + vi

β̂
IV

1
= = = 2 × π̂1

π̂1

γ̂
1

π̂1

0.50
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Further example  = 10; trt. compliance = 50%; ctrl. compliance = 100%.

 and .

So our reduced-form estimate (the ITT) is  (half the true effect).

γ̂1 = 1 β̂
IV

1 = π̂1/1 = β̂
ITT

1

NTrt

¯̄¯̄
YTrt = = β0 +

5(β0 + β1) + 5(β0)

10

β1

2
¯̄¯̄
YCtrl = β0

γ̂1 =
β1

2

29 / 60



IV: Mechanics and intuition

Noncompliance, continued
IV solves the noncompliance issue by rescaling by the rate of compliance.

If everyone perfectly complies, then  and .

Further example  = 10; trt. compliance = 50%; ctrl. compliance = 100%.

 and .

So our reduced-form estimate (the ITT) is  (half the true effect).

IV consistently estimates  via rescaling the ITT by the rate of compliance

γ̂1 = 1 β̂
IV

1 = π̂1/1 = β̂
ITT

1

NTrt

¯̄¯̄
YTrt = = β0 +

5(β0 + β1) + 5(β0)

10

β1

2
¯̄¯̄
YCtrl = β0

γ̂1 =
β1

2

β1

β̂
IV

1
= = = β1

π

γ

β1/2

1/2
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IV: Mechanics and intuition

Takeaways
Main points

�. IV rescales the causal effect of  on  by the causal effect of  on .

�. IV does not compare treated compliers to untreated compliers.
Such a comparison/estimator would re-introduce selection bias.

Zi Yi Zi Di

30 / 60



Thus far, we assumed homogeneous treatment effects.

Q What happens when treatment effects are heterogeneous?



A Let's recall what our instruments are doing (with Venn diagrams!).

Credit Glen Waddell introduced me to IV via Venn.

http://www.glenwaddell.com/
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IV + heterogeneity

Recap
Throughout the course, we've discussed two concepts of treatment effects.

�. Average treatment e�ect (ATE) The average treatment effect for an
individual randomly drawn from our sample.

�. Treatment on the treated (TOT) The average treatment effect for a
treated individual randomly drawn from our sample.

When we assume homogeneous/constant treatment effects, ATE = TOT.

Q If treatment effects vary, then what do IV and 2SLS estimate?

A Not ATE. And not TOT. They estimate the LATE.†

† See Angrist, Imbens, and Rubin (1996).
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�. Never-takers  .
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Never take pills. 
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The LATE
IV generally estimates the LATE—the Local Average Treatment E�ect.

Recall IV "works" by isolating variation in  induced by our instrument .

In other words: IV focuses on the individuals whose  changes due to .
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The LATE
Because IV only uses variation in  that correlates with , IV mechanically
drops always-takers and never-takers.

Most IV derivations/applications assume away the existence of defiers.

Thus, IV estimates a treatment effect using only compliers.

Hence the "local" in local average treatment effect.

Di Zi
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The LATE: Medical-trial example
Imagine treatment works for some  and not for others .

Suppose individuals know their response to blood-pressure medication.

 individuals always take the pill.
 individuals only take the pill when treated.

Then our compliers will be individuals for whom .

Thus, IV's LATE will indicate no treatment effect .

(β1,i < 0) (β1,j = 0)

β1,i < 0

β1,j = 0

β1,j = 0

(β̂
IV

1 = 0)
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The LATE
Q So is IV actually inconsistent?

A It depends what you are trying to estimate (and how you interpret it).

IV doesn't estimate the ATE or TOT, so it would be inconsistent for them.†

IV estimates the local average treatment effect.

Takeaway Because IV identifies off of compliers, it estimates an average
treatment effect for these individuals (who comply with the instrument).

Takeaway2 Different instruments have different LATEs.

† Just as the TOT is not consistent for the ATE.
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IV + heterogeneity

Monotonicity
We've already written down the two classical IV/2SLS assumptions

First stage: 
Exclusion restriction: 

but we need a third assumption to get ensure IV's complier-based LATE
interpretation.

Monotonicity (Uniformity):  or  
Heckman: Uniformity of responses across persons. 
Imbens and Angrist (1994): Instrument has monotone effect on .

Cov(Zi, Di) > 0

Cov(Zi, εi) = 0

Di(z) ≥ Di(z
′) Di(z) ≤ Di(z

′) ∀i

Di

43 / 60
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IV + heterogeneity

Monotonicity
If "defiers" exist, then monotonicity/uniformity is violated.

In this case, the IV estimand is

which is not bound between  and .

Example  1 and  2.  2/3 and  1/3.

Then the "LATE" is 0.†

τc Pr(complier) − τd Pr(defier)

Pr(complier) − Pr(defier)

τc τd

τc = τd = Pr(complier) = Pr(defier) =

† Some people would instead say that there is no LATE when you violate monotonicity.
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Until now, we've focused on using a single instrument.

The 2SLS estimator accomodates multiple instruments.†

† Whether you can find multiple valid instruments is another question.
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Multiple instruments

Motivation
Q Why include multiple instruments?

A Multiple instruments can capture more variation in  (efficiency).

Using terminology from the system-of-equations literature,

one instrument for one endogenous variable: just identi�ed

multiple instruments for one endogenous variable: over identi�ed

Di
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In practice
With (valid) instruments  and , or first stage becomes

while our second stage is still

Z1i Z2i

Di = γ0 + γ1Z1i + γ2Z2i + γ3Xi + ui

Yi = β0 + β1D̂i + β2Xi + vi
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Multiple instruments

Example: Quarter of birth
Back to our quest to estimate the returns to education.

Angrist and Krueger (1991) proposed quarter of birth as a set of instruments
for years of schooling.

Accordingly, their first stage looks something like†

† We need to drop one of the quarter-of-birth indicators to avoid perfect collinearity.

Schoolingi = γ0 + γ1I(Born Q1)i + γ2I(Born Q2)i
+ γ3I(Born Q3)i + γ4I(Born Q4)i
+ γ5Xi + ui

49 / 60
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Multiple instruments

Example: Quarter of birth
Q Is quarter of birth a valid instrument?

Q1 Why would quarter of birth affect schooling? (First stage)

A1 Students cannot drop out of school until a certain age, and quarter of
birth affects your age at the time you begin school.

Example Some states require students to stay in school until they are 16.

Students who start school at age 6 drop out after 10 years of schooling.
Students who start school at age 5 drop out after 11 years of schooling.
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If students must begin school in calendar year in which they turn 6

December birthdates: begin school at 5.75; drop out with 10.25 yrs.
January birthdates: begin school at 6.75; drop out with 9.25 yrs.

For some group, quarter of birth may affect the number of years in school.
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Multiple instruments

Example: Quarter of birth
It turns out that the first stage is also pretty weak in this setting.

Weak instruments can cause several problems for 2SLS/IV:

�. Our estimator is a ratio of the reduced form and the first stage, so a
weak first stage can blow up reduced-form estimates (amplifying
reduced-form noise/bias).

�. Many weak instruments lead to a finite-sample issue in which 2SLS is
biased toward OLS—our first stage is essentially overfitting.

What about our other requirements for a valid instrument?
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Multiple instruments

Example: Quarter of birth
Q2 Is quarter of birth uncorrelated with  (excludable)?

A2 While quarter of birth may be fairly arbitrary for some families, other
families might time births.

If these birth timers differ from other couples along other dimensions (e.g.,
income or education), then quarter of birth may correlate with .

εi

εi
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Multiple instruments

Example: Quarter of birth
Q3 Is the effect monotone?

A3 Some† argue that monotonicity may be violated in this setting.

Consider December births.

Original idea: December birthdates will start school at age 5.7, inducing
more years of education before 16.

Redshirting idea: Parents hold back December kids so they can be older
(i.e., 6.7), inducing fewer years of education before 16.

† E.g., Aliprantis (2012)
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2SLS and R

estimatr

You can implement 2SLS/IV in many ways in R.

Today: esitmatr  and iv_robust() .

Specifically, we give iv_robust()  the relationship that we want separted
from the instrument by |  , e.g.,

# Estimate 2SLS
iv_robust(Y ~ D | Z, data = sample_df, se_type = "classical") %>%
  tidy() %>% select(1:5)

#>          term estimate std.error statistic      p.value
#> 1 (Intercept) 5.786204 2.9744230  1.945320 0.0546020456
#> 2           D 1.107801 0.3043264  3.640173 0.0004372703
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2SLS and R

Now in two stages!
Of course, we can estimate 2SLS in two stages.

# First stage
stage1 = lm_robust(D ~ Z, data = sample_df, se_type = "classical")
# First�stage results
stage1 %>% tidy() %>% select(1:5)

#>          term  estimate std.error statistic      p.value
#> 1 (Intercept) 8.8226148 0.3169568 27.835389 2.486413e-48
#> 2           Z 0.3257347 0.1031506  3.157857 2.112927e-03

56 / 60



2SLS and R

Second stage
We just need to add  to our dataset.

# Add fitted (first�stage) values to data
sample_df %��% mutate(D_hat = stage1$fitted.values)
# Second stage
stage2 = lm_robust(Y ~ D_hat, data = sample_df, se_type = "classical")
# Second�stage results
stage2 %>% tidy() %>% select(1:5)

#>          term estimate std.error statistic    p.value
#> 1 (Intercept) 5.786204 5.4132099  1.068904 0.28773854
#> 2       D_hat 1.107801 0.5538496  2.000184 0.04824759

D̂i
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D hat 1.108 0.554 2.00 0.0482
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2SLS and R

Standard errors
However, recall that our second-stage standard errors are not correct.

Second-stage results
Term Est. S.E. t stat. p-Value

Int 5.786 5.413 1.07 0.2877

D hat 1.108 0.554 2.00 0.0482

2SLS results
Term Est. S.E. t stat. p-Value

Int 5.786 2.974 1.95 0.0546

D 1.108 0.304 3.64 0.0004
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IV and 2SLS

Conclusions
�. IV/2SLS focus on isolating some "good" variation in  via .

�. Important requirements: strong first stage, excludability, monotonicity.

�. IV and 2SLS rescale the reduced form with the first stage.

�. Estimates are LATE from compliers.

�. Different instruments can produce different LATEs.

�. A weak first stage can lead to problems.

Di Zi
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