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Schedule

Last time
The conditional independence assumption: 
Omitted variable bias
Good vs. bad controls

Today
Return first round of project proposals.
Matching estimators (MHE 3.2 and Cameron and Trivedi 25.4).

Upcoming
Admin: Assignment(s)
No midterm
Next round of the project proposal

(Y0i, Y1i) ⊥⊥ Di∣∣Xi
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Matching

The gist
Remember the conditional independence assumption† in a setting—i.e.,
treatment is as-good-as random conditional on a known set of covariates?

Matching estimators take us at our word.

If we really believe , then we can just calculate a bunch
of treatment effects conditional on , i.e.,

The idea: Estimate a treatment effect only using observations with (nearly?)
identical values of . The CIA buys us causality within these groups.

† AKA "selection on observables"

(Y1i, Y0i) ⊥⊥ Di|Xi

Xi

τ(x) = E[Y1i − Y0i ∣ Xi = x]

Xi

5 / 51



Matching

Goals
Let's return to the fundamental problem of causal inference for a moment.

�. We want/need to know .
�. We cannot simultaneously observe both  and .

Most empirical strategies boil to strategies to estimate  for treated
individuals—the unobservable counterfactual for the treatment group.

Matching is no different.

We match untreated observations to treated observations using , i.e.,
calculate a  for each , based upon "matched" untreated individuals.

τi = Y1i − Y0i

Y1i Y0i

Y0i

Xi

Ŷ0i Y1i
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Matching

More formally
We want to construct a counterfactual for each individual with .

The counterfactual for  should only use individuals that match .

Let there be  treated individuals and  control individuals. We want

 sets of weights
with  weights in each set: 

Assume . Our estimate for the counterfactual of treated  is

Di = 1

i Xi

NT NC

NT

NC wi(j) (i = 1, … , NT ; j = 1, … , NC)

∑j wi(j) = 1 i

Ŷ0i = ∑
j∈(D=0)

wi(j)Yj
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Matching

More formally
If our estimated counterfactual for treated individual  is

then our estimated treatment effect (for individual ) is

∴ a generic matching estimator for the treatment effect on the treated is

i

Ŷ0i = ∑
j

wi(j)Yj

i

τ̂ i = Y1i − Ŷ0i = Y1i −∑
j

wi(j)Yj

τ̂ M = ∑
i∈(D=1)

(Y1i − Ŷ0i) = ∑
i∈(D=1)

⎛

⎝
Y1i − ∑

j∈(D=0)

wi(j)Yj

⎞

⎠

1

NT

1

NT
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Matching

Weight for it†

So all we need is those weights and we're done.††

Q Where does one find these handy weights?

A You've got options, but you need to choose carefully/responsibly.

E.g., if  for all , then we're back to a difference in means. 
This weighting doesn't abide by our conditional independence assumption.

The plan Choose weights  that indicate how close  is to .

† 🤦  †† Plus an interesting, policy-relevant setting with valid conditional independence. And data.

wi(j) = 1
NC

(i, j)

wi(j) Xj Xi
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Matching

Proximity
Our weights  should be a measure of how close  is to .

If  is discrete, then we can consider equality, i.e., ,
scaling as necessary to get .

wi(j) Xj Xi

X wi(j) = I(Xi = Xj)

∑j wi(j) = 1
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Matching

Proximity
Our weights  should be a measure of how close  is to .

If  is continuous, then we need proximity rather than equality.

Nearest-neighbor matching chooses the single closest control observation
using the Euclidean distance between  and , i.e.,

, where  is 's nearest neighbor in the control group.
Estimator: 
Produces causal estimates if CIA is valid and we have sufficient overlap.
Suffers from arbitrary choices of units.

wi(j) Xj Xi

X

Xi Xj

di,j = (Xi − Xj)
′ (Xi − Xj)

τ̂ i = Y1i − Yi
0j Yi

0j i

τ̂ M = ∑i τ̂ i
1

NT
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Matching

Proximity
Our weights  should be a measure of how close  is to .

If  is continuous, then we need proximity rather than equality.

Nearest-neighbor matching with Mahalanobis distance chooses the single
closest control using Mahalanobis distance between  and , i.e.,

where  is the covariance matrix of .

Estimator:  where 
Produces causal estimates if CIA is valid and we have sufficient overlap.
Does not suffer from arbitrary choices of units.

wi(j) Xj Xi

X

Xi Xj

di,j = (Xi − Xj)
′
Σ−1

X
(Xi − Xj)

Σ−1
X X

τ̂ M = ∑i τ̂ i
1

NT
(τ̂ i = Y1i − Yi

0j)
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Matching

More neighbors?
Why limit ourselves to a single "best" match?

If we're going to let a function/algorithm choose the nearest match, can't
we also let the function/algorithm choose how many matches?

Furthermore, if , it we're throwing away a lot of information.

We could instead use this information and be more efficient.

NC ≫ NT
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Matching

More neighbors!
Kernel matching gives positive weight to all control observations within
some bandwidth , with higher weight for closer matches determined by
some kernel function ,

Example The Epanechnikov kernel is defined as

h

K(⋅)

wi(j) =

K( )
Xj − Xi

h

∑j∈(D=0) K( )
Xj − Xi

h

K(z) = (1 − z2) × I(|z| < 1)
3

4
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The Epanechnikov kernel K(z) = (1 − z2) × I(|z| < 1)3
4
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The Epanechnikov kernel K(z) = (1 − z2) × I(|z| < 1)3
4
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The Triangle kernel K(z) = (1 − |z|) × I(|z| < 1)
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The Uniform kernel K(z) = × I(|z| < 1)1
2
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The Gaussian kernel K(z) = (2π)−1/2 exp(−z2/2)
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Kernels

Aside
Kernel functions are good for more than just matching.

You will most commonly see/use them smoothing out densities—providing
a smooth, moving-window average.

E.g., R's ( ggplot2 's) smooth, density-plotting function geom_density() .

geom_density()  defaults to kernel = "gaussian" , but you can specify many
other kernel functions (including "epanechnikov" ).

You can also change the bandwidth  argument. The default is a bandwidth-
choosing function called bw.nrd0() .

21 / 51



Matching

Adding neighbors
As we add more neighbors—either moving from  to  or increasing our
bandwidth—we potentially increase the efficiency of our estimator.

We need to be careful not to add too many controls for each treated .

CIA requires that we're actually conditioning on the observables—it does
not allow us to take a simple average across all control observations.

1 n > 1

i
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Matching

The curse of dimensionality†

It turns out kernel- and bandwidth-selection are not our biggest enemies.

As the dimension of  expands (matching on more variables), it becomes
harder and harder to find a nice, close control for each treated unit.

We need a way to shrink the dimensionality of .

† I'm not sure if this is a title for Harry Potter or Indiana Jones... crossover anyone?

X

X
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Propensity-score methodsPropensity-score methods
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Propensity-score methods

Setup
Let's begin with two assumptions—one old and one new.

�. Conditional independence: 

�. Overlap: 

We can estimate an average treatment effect by conditioning on .

However, overlap may fail if the dimensions of  are large and  is finite.

Propensity scores provide a solution to this mess.

(Y0i, Y1i) ⊥⊥ Di|Xi

0 < Pr(Di = 1 ∣ Xi) < 1

Xi

X N
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Propensity-score methods

The magic
It turns out that if  then we actually only need to
match/condition on .

 is the propensity score, the probability of treatment given 

Propensity-score theorem If  then 

This theorem extends our CIA to a one-dimensional score, avoiding the
curse of dimensionality.

(Y0i, Y1i) ⊥⊥ Di|Xi,

p(Xi) = E[Di|Xi]

p(Xi) Xi.

(Y0i, Y1i) ⊥⊥ Di|Xi, (Y0i, Y1i) ⊥⊥ Di|p(Xi).
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Propensity-score methods
Theorem If  then 

Proof

(Y0i, Y1i) ⊥⊥ Di|Xi, (Y0i, Y1i) ⊥⊥ Di|p(Xi).

Pr[Di = 1
∣
∣∣Y0i, Y1i, p(Xi)]

= E[Di
∣
∣∣
Y0i, Y1i, p(Xi)]

= E[E(Di
∣
∣∣Y0i, Y1i, p(Xi), Xi)

∣
∣∣Y0i, Y1i, p(Xi)]

= E[E(Di
∣
∣∣
Y0i, Y1i, Xi)

∣
∣∣
Y0i, Y1i, p(Xi)]
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Propensity-score methods
Theorem If  then 

Proof

∴  ✔

(Y0i, Y1i) ⊥⊥ Di|Xi, (Y0i, Y1i) ⊥⊥ Di|p(Xi).

Pr[Di = 1
∣
∣∣Y0i, Y1i, p(Xi)] = ⋯ = E[E(Di

∣
∣∣Y0i, Y1i, Xi)

∣
∣∣Y0i, Y1i, p(Xi)]

= E[E(Di
∣
∣∣
Xi)

∣
∣∣
Y0i, Y1i, p(Xi)]

= E[p(Xi)
∣
∣∣Y0i, Y1i, p(Xi)]

= p(Xi)

(Y0i, Y1i) ⊥⊥ Di|Xi ⟹ (Y0i, Y1i) ⊥⊥ Di|p(Xi)
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Propensity-score methods

Intuition
Q What's going on here?

 carries way more information than , so how can we still get
conditional independence of treatment by only conditioning on ?

A1 Conditional independence of treatment isn't about extracting all of the
information possible from . We actually only care about creating a
situation in which something is independent of .

A2 Back to our main concern: selection bias. People select into treatment. If
 says two people were equally likely to be treated, and if  explains all of

selection (CIA), then there cannot be selection between these two people.

Xi p(Xi)

p(Xi)

Xi

Di| (Y0i, Y1i)

X Xi
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Propensity-score methods

Estimation
So where do propensity scores come from?

We estimate them—and there are a lot of ways to do that.

�. Flexible (i.e., interactions) logit specification
�. Kernel regression (remember kernel functions?)
�. Many others—machine learning, series-logit estimator, etc.

Q Can we just use plain OLS (linear probability model)?

A Sort of. Think about FWL. This route is going to be the same as a
regression conditioning on .Xi
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Propensity-score methods

Estimation
From MHE (p. 83)

Question

A big question here is how to best model and estimate ...

Answer

The answer to this is inherently application-specific. A growing
empirical literature suggests that a logit model for the propensity
score with a few polynomial terms in continuous covariates
works well in practice...

p(Xi)
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Propensity-score methods

Application
So you have some estimated propensity scores . What next?

Option 1 Conditioning via regression

Option 1a Use a regression to condition on , i.e.,

Option 1b If we think treatment effects are heterogeneous and may covary
with , then we might want to also interact treatment with , i.e.,

p̂(Xi)

p(Xi)

Yi = α + δDi + βp(Xi) + ui (1a)

X p(Xi)

Yi = α + δ1Di + δ2Dip(Xi) + βp(Xi) + ui (1b)
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Propensity-score methods

Heterogeneity with regression
Let's think a bit more about heterogeneous treatment effects in this setting.

i.e., the treatment effect depends upon .

Y0i = α + βXi + ui

Y1i = Y0i + δ1 + δ2Xi

Xi

Yi = DiY1i + (1 − Di) Y0i

= Di(Y0i + δ1 + δ2Xi)+ (1 − Di) Y0i

= Y0i + δ1Di + δ2DiXi

= α + δ1Di + δ2DiXi + βXi + ui
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Propensity-score methods

Heterogeneity
This final equation

suggests that we want  and , i.e.,

which yields

�. a group-specific treatment effect  for each 

�. an average treatment effect 

Yi = α + δ1Di + δ2DiXi + βXi + ui

p(Xi) Dip(Xi)

Yi = α + δ1Di + δ2Dip(Xi) + βp(Xi) + ui (1b)

δ1 + δ2p(Xi) Xi

δ1 + δ2
¯̄̄p(Xi)
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Propensity-score methods

More flexibility
We motivated propensity scores with a desire to reduce dimensionality and
estimate/choose/assume fewer parameters.

Adding  and  as covariates in a linear regression doesn't quite
exhaust our potential for flexible/nonparametric estimation.

p(Xi) Dip(Xi)
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Propensity-score methods

Blocking
Option 2 Block (stratify) on propensity scores.

�. Divide the range of  into  blocks (e.g., 0.05-wide blocks).

�. Place each observation into a block via its .

�. Calculate  for each block via difference in means.

�. Average the  using their shares of the sample, i.e.,

Note Blocking is similar to NN/kernel matching using  as distance.

p̂(Xi) K

p̂(Xi)

τ̂ k

τ̂ k

τ̂ Block =
K

∑
k=1

τ̂ k

N1k + N0k

N

p(Xi)
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Propensity-score methods

Choosing blocks
Blocking on propensity scores requires defining defining blocks.

One common route involves some iteration.

�. Choose blocks.

�. Check the balance of the covariates within each block.†

If covariates are not balanced, then split your blocks and repeat.

If covariates are balanced, then stop.

† Keep multiple-hypothesis testing in mind. With many covariates and many blocks, you are bound to
find statistically significant relationships—even if you are balanced in truth.
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Propensity-score methods

Overlap
Blocking emphasizes our overlap assumption, i.e., .

If a block contains zero treated/control units, we cannot calculate .

Caution Logit can hide violations—it forces .

Common practice Empirically enforce overlap:

Drop control units with  below the minimum propensity score in
the treatment group.

Drop treated units with  above the maximum propensity score in
the control group.

0 < Pr(Di|Xi) < 1

τ̂ k

0 < p̂(Xi) < 1

p̂(Xi)

p̂(Xi)
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Propensity-score methods

Weighting
Option 3 Weight observations by the inverse propensity score.

Q How does weighting by  make sense?

A Consider our old (likely biased) friend the difference in means, i.e.,

which we've discussed is biased due to selection into treatment, i.e.,

1/p̂(Xi)

τ̂ Diff =
¯̄¯̄
YT −

¯̄¯̄
YC = −

∑i DiYi

∑i Di

∑i (1 − Di) Yi

∑i (1 − Di)

E[Y0i|Di = 1] ≠ E[Y0i]
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Propensity-score methods

Weighting, justified
Suppose we know  and we weight each treated individual by 

   

    

    

Similarly, weighting control individuals by  yields

p(Xi) 1/p(Xi)

E[ ]
DiYi

p(Xi)
= E[ ]

Di (DiY1i + (1 − Di)Y0i)

p(Xi)
= E[ ]

DiY1i

p(Xi)

= E(E[
∣
∣
∣

Xi])
DiY1i

p(Xi)
= E( )

E[Di ∣ Xi] E[Y1i ∣ Xi]

p(Xi)

= E( )
p(Xi) E[Y1i ∣ Xi]

p(Xi)
= E(E[Y1i ∣ Xi]) = E[Y1i]

1/(1 − p(Xi))

E[ ] = E[Y0i]
(1 − Di)Yi

1 − p(Xi)
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Propensity-score methods

Weighting: The estimator
Thus, we can estimate an unbiased treatment effect via

Intuition We're trying to overcome selection bias, i.e., treated individuals
were more likely to be treated as a function of —producing higher .

We want to get back to as-good-as random variation in treatment.

So we upweight (1) treated individuals with low  and (2) control
observations with high .

τ̂ pWeight =
N

∑
i=1

[ − ]
1

N

DiYi

p(Xi)

(1 − DiYi)

1 − p(Xi)

Xi p(Xi)

p(Xi)

p(Xi)
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Propensity-score methods

Weighting: The example
Suppose for some individual , .

This propensity score says someone with this set of  was four-times more
likely to be treated than control.

Our weights fix this imbalance for each .

If  is treated, then her weight is 

If  is control, then her weight is 

And guess what  is... ! This weighting scheme gets us back to equal
representation for each set of .

i p(Xi) = 0.80

Xi

Xi

i 1/p(Xi) = 1/0.80 = 1.25

i 1/(1 − p(Xi)) = 1/(1 − 0.80) = 5

5/1.25 4

Xi
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Propensity-score methods

Weighting: Last issue
Practical issue Nothing guarantees .

Solution Normalize weights by their total sum.

Applying the normalized (and estimated) propensity scores

Hirano, Imbens, and Ridder (2003) suggests this estimator is efficient.

∑i p̂(Xi) = 1

τ̂ pWeight =
N

∑
i=1

−
N

∑
i=1

DiYi

p̂(Xi)

∑i

Di

p̂(Xi)

(1 − Di)Yi

1 − p̂(Xi)

∑i

(1 − Di)

1 − p̂(Xi)
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Propensity-score methods

Why choose one?
There's nothing special about weighted averages—regression can weight.

Thus, a regression-based estimate

with weights

offers a doubly robust property—you have two chances to be right:  or
the regression specification.

Yi = α + Xiβ + τDi + ui

wi = √ +
Di

p̂(Xi)

(1 − Di)

1 − p̂(Xi)

p(Xi)
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Propensity-score methods

Why choose one? Part two
An alternative, doubly robust method combines propensity-score blocking
with regression.

Step 1 For each block , we run the regression

Step 2 Aggregate block-level treatment-effect estimates

k

Yi = αk + Xiβk + τkDi + ui

τ̂ =
K

∑
k=1

τ̂ k

N1k + N0k

N

45 / 51



Propensity-score methods

Major requirements
Don't get (too) caught up in the bells and whistles.

We still have two major requirements for any of these methods to work.

�. Is the conditional-independence assumption true?

�. Do we have overlap between treatment and control units.

We can look for evidence of (2) in the data—particularly if we're using
propensity-score methods.†

How? Plot the distributions of  for T and C.p(Xi)

† Checking for overlap in -space, can be tough as the dimensions of  expand.X X

46 / 51



Missing overlap in p(Xi)
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Authentic (enforced) overlap in p(Xi)
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Logit-based  hiding some of the missing overlap in p̂(Xi) p(Xi)
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Overlap in one dimension does not guarantee in two dimensions. 
Note Shading denotes share of treatment: lwhitel=0% and pink=100%.
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