
Problem Set 2 Solutions
Operation IV

EC 425/525: Econometrics 

Due before midnight (11:59pm) on Wednesday, 29 May 2019



DUE Your solutions to this problem set are due before 11:59pm on Wednesday, 29 May 2019 on Canvas.  
Your problem set must be typed with R code beneath your responses. E.g., knitr  and R Markdown .

OBJECTIVE We're going to walk through three classic applications of instrumental variables/two-stage
least squares: endogeneity, measurement error, and randomized encouragement designs (REDs).

Part 1: Selection bias
As this problem follows one from Wooldridge, we'll use the wooldridge  package. You need to install the
wooldridge  package and then load the birthweight data using data("bwght") . For (limited) information on
the variables, see the help file (i.e., ?wooldridge��bwght ).

1.01 We want to better understand the effect of a number of variables on birth weight (bwght )—namely
gender (male ), birth order (parity ), income (faminc ), and cigarette smoking during pregnancy (packs ), i.e.,

1.01 Why might you expect amount of smoking (packs ) to be correlated with ?

Answer We're worried about selection into smoking (in other words, omitted-variable bias). Namely, we may
expect that children born to women who smoke during pregnancy may have had different birthweights than
children born to women who do not smoke during pregnancy, regardless of the number of cigarettes their
mothers smoked during pregnancy.

1.02 Suppose that you have data on average cigarette prices in each woman’s state of residence. Discuss
whether this information is likely to satisfy the properties of a good instrumental variable for packs .

Answer Maybe? We have three requirements for our instrument.

1. First stage It seems plausible that cigarette prices will affect quantity smoked (something about
the law of demand).

2. Exclusion restriction We need our instrument to be uncorrelated with other determinants of
birthweight (determinants not included in the regression model above). This may not be true—
just as quantities respond to prices, prices can respond to quantities (simultaneity). Further,
economic shocks may affect cigarette prices and birthweight (through channels excluded from
our model above). Thus, cigarette prices may not have a super believable exclusion restriction.

3. Monotonicity We need need the instrument (cigarette prices) to have a monotone effect on our
endogenous regression (smoking behavior). This requirement seems reasonable if we think that
price increases will only reduce smoking or will not affect smoking. If we think that some people
smoke more when prices are high (e.g., some signal of defiance of a cigarette tax), then we do
not have monotonicity.
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1.03 Use the data in in bwght  to estimate equation the equation above. First, use OLS. Then, use 2SLS,
where cigprice  is an instrument for packs . Discuss any important differences in the OLS and 2SLS
estimates.

Answer

# Setup
library(pacman)
p_load(
  wooldridge,
  tidyverse, huxtable,
  ggplot2, ggthemes,
  future, furrr,
  estimatr, magrittr
)
# OLS
est_ols �� lm_robust(bwght ~ male + parity + faminc + packs, data = bwght)
# 2SLS
est_2sls �� iv_robust(
  bwght ~ male + parity + faminc + packs |
  male + parity + faminc + cigprice,
  data = bwght
)
# Table of results
huxreg("OLS" = est_ols, "2SLS" = est_2sls, statistics = "N")

OLS 2SLS
(Intercept) 112.390 *** 96.816 ***

(1.530)    (18.703)   
male 3.163 **  3.636    

(1.068)    (1.933)   
parity 1.646 **  -0.211    

(0.597)    (2.845)   
faminc 0.102 *** 0.373    

(0.028)    (0.333)   
packs -9.500 *** 91.034    

(1.804)    (123.417)   

*** p < 0.001; ** p < 0.01; * p < 0.05.

One major difference: All statistically significant coefficients are no longer significant.

Related: we previously estimated a negative and significant effect of smoking on birthweight. Now we
estimate a positive and not significant effect.
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1.04 Estimate the reduced form for packs . Does it raise any issues? What bearing does this conclusion
have on your answer from 1.03?

Answer

# The reduced form
est_rf �� lm_robust(bwght ~ male + parity + faminc + cigprice, data = bwght)
# The reduced form
est_fs �� lm_robust(packs ~ male + parity + faminc + cigprice, data = bwght)
# Table
huxreg(
    "OLS" = est_ols, "2SLS" = est_2sls, "Red. form" = est_rf, "1st stage" = est_fs,
    statistics = "N"
)[c(1,10:14),] %>%
insert_row(c("Dep. Var.:", rep("Birth Weight", 3), "# Cig.")) %>%
merge_cells(c(1,1), c(2,4)) %>%
insert_row(c("", 1:4 %>% paste0("(", ., ")"))) %>%
add_footnote("Note: I'm not showing all coefficients to preserve space.") %>%
set_all_borders(0) %>%
set_top_border(c(1,8), everywhere, 1) %>%
set_top_border(4, 2:5, 0.5) %>%
set_top_border(3, 2:4, 0.5 )

(1) (2) (3) (4)
Dep. Var.: Birth Weight # Cig.

OLS 2SLS Red. form 1st stage

packs -9.500 *** 91.034             
(1.804)    (123.417)            

cigprice                0.072  0.001 
               (0.052) (0.001)

*** p < 0.001; ** p < 0.01; * p < 0.05.
Note: I'm not showing all coefficients to preserve space.

We see that our reduced form shows a positive and not statistically significant effect of cigarette prices on
birth weight. This is the sign we might expect in the absence of exclusion-restriction violations, as higher
prices should reduce smoking and increase birth weight.

On the other hand, our 2SLS estimate is positive, which we might not have expected (again, not significant,
so don't put too much weight on this result). We know that the 2SLS coefficient is the ration of the reduced-
form coefficient and the first-stage coefficent. Thus, we know that the first-stage coefficient is also positive
(though tiny and not significant)—implying higher prices lead to higher consumption. Again, this
relationship is not statistically significant, so I wouldn't interpret this results as saying cigarettes are a
Giffen good. Finally, because the first-stage coefficient is so small, it is magnifying our (not-significant) effect
from the reduced form.

Note: You did not have to estimate the first stage.
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Part 2: Randomized encouragement designs
Another common implementation of IV/2SLS is a randomized encouragement design (RED), in which we
randomly select individuals to receive "encouragement" (e.g., we call them to tell them about an exciting
new program) in order to try to induce an exogenous change in program participation.

Let's imagine we want estimate the effect of solar-panel installation on household electricity consumption.

2.01 What would be the problem with comparing average electricity consumption for houses with solar
panels to average electricity consumption without solar panels?

Answer Selection bias. There are a lot of reasons why households with solar panels might differ in
observable and unobservable ways from households without solar panels.

2.02 We randomly select 200 homes that have not yet installed solar panels. Within this sample, we
randomly assign 100 houses to our "encouragement" group and 100 houses to our "non-encouragement"
group. For the 100 houses in the encouragement group, we call/visit the households and tell them how
awesome solar panels are—and how much money they could save with solar.†

What do we need for our encouragement to be a valid instrument for solar panel installation? Do you think
it is satisfied?

Answer We need

1. First stage If our encouragement increases purchases of solar panels, then we will have a first
stage. If the encouragement doesn't affect solar panel purchasing, then we will not have a valid
instrument.

2. Exclusion restriction We need our instrument—randomly showing up at someone's home to talk
about solare panels—to only affect energy consumption through solar-panel purchases. This
requirement should be fine as long as our encouragement doesn't directly affect households'
energy consumption. We should make sure the encouragement doesn't actually talk about
conserving energy. One related concern is that our instrument may increase the salience of
energy consumption/costs for treated households.

3. Monotonicity We need assignment to encouragement to move folks from no-panel to panel or
no-panel to no-panel. This is fine, as none of our encouragement group has panels. We also
need assignment to non-encouragement to not cause someone to buy a solar panel. This
requirement seems plausible, as non-encouragement folks likely do not know they are part of
the non-encouragement group.

† Tangent: In case you haven't seen it, you should check out Google's Project Sunroof.
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2.03 A year later, we conduct a survey and find that in the encouragement group, 15/100 homes now have
solar panels. In the non-encouragement group, 5/100 homes now have solar panels. If we estimated the
first stage, (regressing an indicator for solar panel on an intercept and an indicator for encouragement
group), what would our estimates be?

Answer The first stage

compares the share of solar panels in the encouragement group and control group, so  0.10.

2.04 Imagine that average monthly electricity consumption in the encouragement group is 900 kWh
(kilowatthours), while the average in the non-encouragement is 870 kWh. Based upon these numbers, what
are the reduced-form (the effect of encouragement on energy consumption) and 2SLS estimates?

Answer The reduced form

compares the mean consumption in the encouragement group and control group, so  30.

We know the 2SLS estimate is the ratio of the reduced-form estimate and the first-stage estimate, so 
 30/0.10  300.

2.05 What does the LATE in this setting mean—i.e., what does local mean in this setting?

Answer Recall that the LATE is for determined by compliers. In this setting, compliers are individuals who
install solar panels when they are part of our encouragement group—folks who respond to our
encouragement (learning about solar panel/energy savings causes them to install a solar panel).
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Part 3: Measurement error
Now for a good, old-fashioned simulation.

3.01 Set up a data-generating process such that

where  and .

In this simulation, we want to imagine what would happen if we could not observe  (or if  is measured
with error/noise).

Thus, we want to create two additional variables:  and , such that

where  is i.i.d. standard Normal and  is i.i.d. . For this problem, the sample size will be 50.

This setting is classical measurement error—the error (or noise) in measurement (i.e.,  and ) is
uncorrelated with the true variable .

Note: No results for this part of the problem. Just make sure you've set up the DGP.

Answer

# Function: DGP
fun_dgp �� function(i, n = 50) {
  # Generate x and u
  x �� rnorm(n, mean = 5, sd = sqrt(5))
  y �� 3 + 7 * x + rnorm(n, sd = sqrt(3))
  # Generate w1 and w2
  w1 �� x + rnorm(n)
  w2 �� x + rnorm(n, sd = sqrt(7))
  # Return tibble of variables
  return(tibble(y, x, w1, w2))
}
# Generate a dataset
set.seed(12345)
gen_df �� fun_dgp(1)
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3.02 Imagine you cannot observe  and are stuck with our noisily measured versions  and/or .
Regress  on . What do you get? What if you regress  on both  and ?

Answer When we use  instead of , we have an attenuated effect (less than 7). Adding  to the
regression does not appear to improve anything. Notice that the 95% confidence intervals for columns 2–4
would reject the true effect of  on  (i.e.,  7).

Note I included additional regression (columns 1 and 3) that you did not need to include.

# Regress y on x
est_x �� lm_robust(y ~ x, data = gen_df)
# Regress y on w1
est_w1 �� lm_robust(y ~ w1, data = gen_df)
# Regress y on w2
est_w2 �� lm_robust(y ~ w2, data = gen_df)
# Regress y on w1 and w2
est_w1w2 �� lm_robust(y ~ w1 + w2, data = gen_df)
# Table
huxreg(est_x, est_w1, est_w2, est_w1w2)

(1) (2) (3) (4)
(Intercept) 3.546 *** 11.199 *** 20.671 *** 10.225 ***

(0.724)    (1.826)    (3.088)    (1.829)   
x 6.999 ***                           

(0.120)                              
w1          5.595 ***          4.437 ***

         (0.309)             (0.302)   
w2                   3.644 *** 1.271 ***

                  (0.461)    (0.301)   
N 50         50         50         50        

*** p < 0.001; ** p < 0.01; * p < 0.05.

xi w1i w2i

yi w1i yi w1i w2i

w1 x w2

x y β1 =
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3.03 Now what happens if you instrument  with ?

Answer When we instrument  with  (meaning we use  as our instrument), our point estimate is much
closer to the true value. In fact, our 95% confidence interval now contains the true value. Also notice that
our standard errors have substantially increased with IV.

# Instrument w1 with w2
iv_w1_w2 �� iv_robust(y ~ w1 | w2, data = gen_df)
# Table
huxreg("OLS" = est_x, "OLS" = est_w1, "IV"= iv_w1_w2)

OLS OLS IV
(Intercept) 3.546 *** 11.199 *** 4.627    

(0.724)    (1.826)    (2.950)   
x 6.999 ***                  

(0.120)                     
w1          5.595 *** 6.815 ***

         (0.309)    (0.585)   
N 50         50         50        

*** p < 0.001; ** p < 0.01; * p < 0.05.

3.04 Confirm your results form 3.02 and 3.03 were not anomalies. In other words, run a simulation (with
at least 1,000 iterations). In each iteration, record the results of

regressing  on 
regressing  on 
instrumenting  with 
instrumenting  with 

Report the results of your simulation. Do you see anything interesting? Does IV outperform OLS in the
presence of measurement error (in terms of bias in )? What happens in your inference (look at the share
of estimates in which you reject the null)?
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Answer First we write a function to perform our desired analyses

# Function: Generate data and analyze
fun_analysis �� function(i, i_df) {
  # Regress y on w1; grab the coefficient
  ols1 �� lm_robust(y ~ w1, data = i_df) %>% tidy() %>% filter(term �� "w1")
  # Regress y on w2; grab the coefficient
  ols2 �� lm_robust(y ~ w2, data = i_df) %>% tidy() %>% filter(term �� "w2")
  # IV w1 with w2; grab the coefficient
  iv1 �� iv_robust(y ~ w1 | w2, data = i_df) %>% tidy() %>% filter(term �� "w1")
  # IV w2 with w1; grab the coefficient
  iv2 �� iv_robust(y ~ w2 | w1, data = i_df) %>% tidy() %>% filter(term �� "w2")
  # Results with extra columns for model and iteration
  res_df �� bind_rows(ols1, ols2, iv1, iv2) %>% mutate(
    # Variable for the model
    model = c("OLS w1", "OLS w2", "IV w1|w2", "IV w2|w1"),
    # Iteration
    iter = i
  )
  # Return results
  return(res_df)
}

Now a function that puts the two individual functions together.

fun_iter �� function(i, n = 50) {
  # Generate and analyze the data
  fun_analysis(i = i, i_df = fun_dgp(i, n))
}

Now run the function 10,000 times (you needed at least 1,000).

# Set the seed
set.seed(12345)
# Tell R (furrr) to parallelize
plan(multiprocess, workers = 8)
# Usin map_dfr from furrr: Parallelize and bind resulting data frames
sim_df �� future_map_dfr(
  # The argument to our function: The iteration number (10,000)
  1:1e4,
  # The function for each iteration
  fun_iter,
  # Tell map_dfr to use the set seed
  .options = future_options(seed = T)
)

Figures on the next page(s).
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Answer, continued

ggplot(data = sim_df, aes(x = estimate, fill = model)) +
geom_density(color = NA, alpha = 0.5) +
geom_vline(xintercept = 7, size = 0.5, linetype = "dashed") +
geom_hline(yintercept = 0, size = 0.1) +
xlim(1.5, 13) +
scale_fill_viridis_d("") +
theme_pander() + theme(legend.position = "bottom")

Two items to notice:

1. More measurement error  leads to more attenuation bias.
2. Instrumenting  (less noisy) with  (more noisy) is more efficient than the reverse.

You have options to look at inference. Let's look at the distribution of t statistics testing that our estimate
differs from the true value of 7:

ggplot(data = sim_df, aes(x = (estimate - 7)/std.error, fill = model)) +
geom_density(color = NA, alpha = 0.5) +
geom_vline(xintercept = qt(p = 0.975, df = 48), size = 0.5, linetype = "dashed") +
geom_vline(xintercept = qt(p = 0.025, df = 48), size = 0.5, linetype = "dashed") +
xlab("t statistic testing truth") +
scale_fill_viridis_d("") +
theme_pander() + theme(legend.position = "bottom")
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Answer, continued Alterantively, we could just create a table for the share of iterations that do reject  7
(truth) for each model...

sim_df %>%
  group_by(model) %>%
  summarize(mean(!(conf.low < 7 & conf.high > 7))) %>%
  hux()

IV w1|w2 0.0501
IV w2|w1 0.0647
OLS w1 0.833 
OLS w2 1     

3.05 Now let  positively correlate with  and negatively correlate with , i.e.,  and 
. What happens to your results from 3.04?

Hint You can use mvrnorm()  from MASS  to draw correlated variables from a multivariate Normal distribution
(which you can assume here). See our simulation lab for details.

Answer First we need to slightly modify our DGP. We need to define a  variance-covariance matrix for 
 and .

# Function: DGP
fun_dgp2 �� function(i, n = 50) {
  # Define the covariance matrix for x, ε, and ν
  Σ �� matrix(c(
     5,  1, -2,
     1,  1,  0,
    -2,  0,  7
  ), byrow = T, ncol = 3)
  # Vector means for
  μ �� c(5, 0, 0)
  # Generate x, ε, and ν (and convert to tibble)
  i_df �� MASS��mvrnorm(n = n, Sigma = Σ, mu = μ) %>% as_tibble()
  names(i_df) �� c("x", "ε", "ν")
  # Calculate w1, w2, and y
  i_df %��% mutate(
    y = 3 + 7 * x + rnorm(n, sd = sqrt(3)),
    w1 = x + ε,
    w2 = x + ν
  )
  # Return tibble of variables
  return(i_df)
}

β̂
1

=

xi εi νi Cov(xi, εi) = 1

Cov(xi, νi) = −2

3 × 3

x, ε, ν
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Answer, continued Now we create a new function to run one iteration and then run the simulation.

fun_iter2 �� function(i, n = 50) {
  # Generate and analyze the data
  fun_analysis(i = i, i_df = fun_dgp2(i, n))
}

# Set the seed
set.seed(12345)
# Tell R (furrr) to parallelize
plan(multiprocess, workers = 8)
# Usin map_dfr from furrr: Parallelize and bind resulting data frames
sim2_df �� future_map_dfr(
  # The argument to our function: The iteration number (10,000)
  1:1e4,
  # The function for each iteration
  fun_iter2,
  # Tell map_dfr to use the set seed
  .options = future_options(seed = T)
)

Plotting the distributions of point estimates and t statistics (as before), things are a mess. None of the
distributions are anywhere near the true estimate, and the inference is mostly a mess, as well.

The takeaway: Correcting measurement error with IV requires classical measurement error.
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Extra credit For our simple linear regression setup, show (analytically) why OLS estimates for  are biased
toward zero. How does IV help?

β1
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