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Last time
Regression discontinuities

Today
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Inference

Motivation
So far, we've focused on carefully obtaining causal estimates of the effect
of some treatment  on our outcome .

Our discussion of research designs and their requirements/assumptions
has centered on avoiding selection and securing unbiased and/or
consistent estimates for .

In other words, we've concentrated on point estimates.

What about inference?

Di Yi

τ
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Inference

Shminference †

Q Why care about inference?

A I'll give you two reasons.

1. We often want to test theories/hypotheses. Point estimates (i.e., )
can't do this alone. Inference finishes the job.

2. Other times, we want to measure the effect of a treatment. Inference
helps us think about the precision of our estimates.

Note: Similar reasoning can apply to bounding forecasting/predictions.

If you want answers, then you need to do inference correctly.

† What is shminference?

β̂
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Inference

What's so complicated?
Angrist and Pischke told us that "correcting" our standard errors for
heteroskedasticity may increase the standard errors up to 25%.

What else are we worried about?
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What we're worried about
Transformations of estimators, i.e., 

Dependence/correlation in our disturbance, i.e., 

Autocorrelation 
Correlated shocks within groups 

Finite-sample properties vs. asymptotic properties

Power and minimal detectable effects

Multiple-hypothesis testing and p-hacking

In other words: We've got a lot to worry/think about.

Var[f (β̂)] ≠ f(Var[β̂])

Cov(εi, εj) ≠ 0

εt = ρεt−1 + εt

εi = εg(i) + εi
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Clustering

Setup
Many studies—observational and experimental—have a treatment that is
assigned to all/most individuals within a group.

Classrooms/schools
Households
Villages/counties/states

Furthermore, we might imagine individuals within the same group may
have correlated disturbances. For  and  in group 

where  gives the within-group correlation of disturbances—what MHE
calls the intraclass correlation coe�cient.

i j g

Cov(εi, εj) = E[εiεj] = ρεσ2
ε

ρε
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Clustering

Setup
In other words, we have a regression

where individual  is in group , and  only varies across groups.

For within-group correlation, we can use an additive random-effects model

meaning group members all receive a common shock , and individuals
receive independent shocks .

Note We assume  is independent of   and  .

yi = β0 + β1xg(i) + εi

i g Xg(i)

εi = νg(i) + ηi

νg(i)

ηi

ηi ηj (i ≠ j) νg (∀g)
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Clustering

Additive random effects
Based upon this model we've set up

the covariance between individuals  and  in group  is

Thus, we can write the intraclass correlation coefficient as

εi = νg(i) + ηi

i j g

Cov(εi, εj) = E[εiεj] = E[(νg + ηi) (νg + ηj)] = E[ν2
g ] = σ2

ν

= ρεσ2
ε

= ρε (σ2
ν + σ2

η)

ρε = =
σ2

ν

σ2
ε

σ2
ν

σ2
ν + σ2

η

12 / 39



Clustering

What is 
Let's review what we know.

ρε?

εi = νg(i) + ηi and ρε = =
σ2

ν

σ2
ε

σ2
ν

σ2
ν + σ2

η

13 / 39



Clustering

What is 
Let's review what we know.

One way to think about  is as the share of the variance of the
disturbance  accounted for by the shared disurbance .

ρε?

εi = νg(i) + ηi and ρε = =
σ2

ν

σ2
ε

σ2
ν

σ2
ν + σ2

η

ρε

εi νg(i)

13 / 39



Clustering

What is 
Let's review what we know.

One way to think about  is as the share of the variance of the
disturbance  accounted for by the shared disurbance .

As  accounts for more and more of the variation in , .

ρε?

εi = νg(i) + ηi and ρε = =
σ2

ν

σ2
ε

σ2
ν

σ2
ν + σ2

η

ρε

εi νg(i)

νg(i) εi ρε → 1
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So...
Q Why do we care about ?

A It tells us by how wrong our standard errors can be if we treat all
observations as independent.

Let  denote the conventional variance formula for OLS estimator.†

Let  denote the actual variance of .

ρε

Varo(β̂
1
)

† which treats all disturbances as independent (and identically distributed).

Var(β̂
1
) β̂

1
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So....
With (1) nonstochasic regressors fixed by group and (2) groups of size 

The term  is called the Moulton factor†.

The Moulton factor tells us by what factor standard errors will be wrong if
we ignore within-group correlation (conditional on assumptions 1 and 2).

Q What happens if  1? What if you duplicated your dataset? 
Q What happens as  increases?

n

= 1 + (n − 1)ρε

Var(β̂
1
)

Varo(β̂
1
)

⟹ = √1 + (n − 1)ρε

S.E.(β̂
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)

S.E.o(β̂
1
)
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Clustering

The Moulton factor
The Moulton factor

shows even when  is small, we can have vary large standard error issues.

Ex An experiment on 400 schools, each with 1,000 students.

If , the Moulton factor is .

= √1 + (n − 1)ρε

S.E.(β̂
1
)

S.E.o(β̂
1
)

ρε

ρε = 0.01 √1 + (1, 000 − 1) × 0.01 ≈ 3.32
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Test statistics

Recall .

    the Moulton factor.

Ex Thus, in our example of 400 schools with 1,000 students, ignoring within-
school correlation of  0.01 would lead us test statistics that are more
than 3 times as large as they should be.

This is why economics seminars have standard-error police.
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If we allow regressors to vary by individual and groups to differ in size ,
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† See MHE for mathematical definitions and the derivation.

18 / 39



Clustering

Relaxing assumptions
If we allow regressors to vary by individual and groups to differ in size ,

where  denotes the intraclass (within-group) correlation of .†

Important The Moulton factor for this general model depends upon the
amount of within-group correlation in  and .

(ng)

= 1 + [ + ¯̄¯n − 1] ρxρε

Var(β̂1)

Varo(β̂1)

Var(ng)
¯̄¯n

ρx xi

† See MHE for mathematical definitions and the derivation.

xi εi

18 / 39



Clustering

Relaxing assumptions
If we allow regressors to vary by individual and groups to differ in size ,

where  denotes the intraclass (within-group) correlation of .†

Important The Moulton factor for this general model depends upon the
amount of within-group correlation in  and .

The special case is also important, as treatment is often fixed at some level.

(ng)

= 1 + [ + ¯̄¯n − 1] ρxρε
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A We've got options (as usual)

1. Parametrically model the random effects
2. Cluster-robust standard error (estimator)
3. Aggregate up to the group (or a similar method)
4. Block (group-based) bootstrap
5. GLS/MLE modeling  and 

Most common: Cluster-robust standard errors  
Runner up: Block bootstrap  
Second runner up: Group-level analysis

yi εi
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matrix to allow for both clustering and heteroskedasticity.†
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Clustering

Cluster-robust standard errors
Liang and Zeger (1986) extend White's heteroskedasticity-robust covariance
matrix to allow for both clustering and heteroskedasticity.†

where  are the OLS residuals for group ,  is the residual for individual 
 in group , and  is a degrees-of-freedom adjustment.
† When people say clustering, they typically mean correlated disturbances within a group.

Ω̂cl = (X′X)
−1

(∑
g

X′

g
Ψ̂gXg) (X′X)

−1

Ψ̂g = aege
′
g = a

⎡
⎢ ⎢ ⎢ ⎢ ⎢ ⎢
⎣

e
2

1g
e1ge2g ⋯ e1gengg

e1ge2g e
2

2g
e2g ⋯ e2gengg

⋮ ⋮ ⋱ ⋮

e1gengg e2gengg ⋯ e
2
ngg

⎤
⎥ ⎥ ⎥ ⎥ ⎥ ⎥
⎦

eg g eig

i g a
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A No. Recall with OLS, .
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Cluster-robust standard errors
Derivation Let  denote observation  (row) from .

Q Can we estimate  with ? 

A No. Recall with OLS, . But we will do something similar.
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Clustering

Cluster-robust standard errors
Imagine we have  clusters with some unknown dependence between
observations within a cluster and independence between clusters.

G
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Clustering

Cluster-robust standard errors
Imagine we have  clusters with some unknown dependence between
observations within a cluster and independence between clusters.

Then we can ignore  if  and  are in different clusters.

We can estimate  with

I.e., to learn about within-group covariance, we calculate these within-group
cross products and then sum over groups.†

G

x′

i
xj E[εjεi∣∣X] i j

∑
i
∑

j
x′

i
xj E[εjεi∣∣X]

G

∑
g=1

⎛

⎝

Ng

∑
i=1

Ng

∑
j=1

x
′

ixjejei

⎞

⎠
=

G

∑
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X
′

gege
′
gXg

† Group sizes can vary.
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Clustering

Guidelines for group number/size
Large , Small   
Clustered-standard errors work well.  and .

Large , Large   
We might be concerned about the number of within-group cross terms
here. However, for moderately large  (50?), cluster-robust standard errors
appear to perform well with large .

Small , Large   
Cluster-robust standard errors do not work well (definitely ).  
Options Collapse groups? Wild clustered bootstrap?

Small , Small   
Essentially the same issues and solutions as small  with large .

G Ng

G > Ng G > 20

G Ng

G

Ng

G Ng

G < 10

G Ng

G Ng
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Clustering

Further extensions
We've discussed the standard cluster-robust variance-covariance estimator.

Multi-way clustering allows multiple levels/dimensions in which
individuals are clustered.

For nested clusters (e.g., state and county), people commonly cluster at
the highest (largest) unit.

For non-nested clusters (e.g., state and year), Cameron, Gelbach, and
Miller (2011) provide a covariance estimator

where  denotes the covariance of  clustered by state.

Var(β̂) = VarState(β̂) + VarYear(β̂) − VarState-Year(β̂)

VarState(β̂) β̂
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Clustering

Further extensions
We've discussed the standard cluster-robust variance-covariance estimator.

The term Conley standard errors is often used to describe situations in
which you have spatial clustering/correlation that you can describe via a
function like spatial distance.†

See Conley (1999) for the paper and this blog by Dan Christensen and
Thiemo Fetzer for practical implementation in R and Stata.

† They also are robust to heteroskedasticity and autocorrelation within units.
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Clustering

Cluster-robust standard errors
So now you know what lm_robust() , iv_robust() , etc. are doing when you
specify a variable for clustering (e.g., clusters = var ).
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lm_robust()  without clustering

# Estimate without clusters
vote_no �� lm_robust(
  voteA ~ expendA + expendB,
  fixed_effects = state,
  data = wooldridge��vote1
)

lm_robust()  with clustering

# Estimate with clusters
vote_cl �� lm_robust(
  voteA ~ expendA + expendB,
  fixed_effects = state,
  clusters = state,
  data = wooldridge��vote1
)

Clustering

Cluster-robust standard errors
So now you know what lm_robust() , iv_robust() , etc. are doing when you
specify a variable for clustering (e.g., clusters = var ).
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Time for a simulation.
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Cluster simulation
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Cluster simulation

The DGP
Let's opt for a simple-ish example.†

where the , , and .

† So we have more room for problem sets/exams.

yig = (β0 = 1) + (β1 = 2)x1,g + (β2 = 0)x2,g + εig

εig = νg + ηi

ηi ⊥ ηj ηi ⊥ νg νg ⊥ νh
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The DGP
Let's opt for a simple-ish example.†

where the , , and .

Let's assume  and . And .

Plus  with 10 groups.

† So we have more room for problem sets/exams.

yig = (β0 = 1) + (β1 = 2)x1,g + (β2 = 0)x2,g + εig

εig = νg + ηi
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ηi ∼ N(0, 1) νg ∼ N(0, 1) xg ∼ N(0, 1)

Ng = 100
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Cluster simulation

The DGP
Let's opt for a simple-ish example.†

where the , , and .

Let's assume  and . And .

Plus  with 10 groups.

Note Small  with large-ish .

† So we have more room for problem sets/exams.

yig = (β0 = 1) + (β1 = 2)x1,g + (β2 = 0)x2,g + εig

εig = νg + ηi

ηi ⊥ ηj ηi ⊥ νg νg ⊥ νh

ηi ∼ N(0, 1) νg ∼ N(0, 1) xg ∼ N(0, 1)

Ng = 100

G Ng
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First we need to write the data generating process for one iteration.

# The DGP
sim_dgp �� function(n = 100, n_grps = 10, σν = 1, ση = 1) {
  # Create the right number of observations
  sample_df �� expand.grid(i = 1:n, g = 1:n_grps) %>% as_tibble()
  # Create a unique ID (from 1 to number of observations)
  sample_df %��% mutate(id = 1:(n * n_grps))
  # Sample ν at the group level (NOTE� DON'T FORGET TO UNGROUP)
  sample_df %��% group_by(g) %>%
    mutate(ν = rnorm(1, sd = σν)) %>% ungroup()
  # Sample η at the individual level
  sample_df %��% mutate(η = rnorm(n * n_grps, sd = ση))
  # Sample x_g from N(0,1)
  sample_df %��% group_by(g) %>%
    mutate(x1 = rnorm(1), x2 = rnorm(1)) %>% ungroup()
  # Calculate y
  sample_df %��% mutate(y = 1 + 2 * x1 + 0 * x2 + ν + η)
  # Return
  return(sample_df)
}
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Now we analyze the data within one iteration.

# Analyze 'data'
sim_analyze �� function(data) {
  # Conventional SEs
  result_ols �� lm_robust(
    y ~ x1 + x2, data = data, se_type = "classical"
  ) %>% tidy() %>% filter(term %in% c("x1", "x2")) %>% select(1:5) %>%
  mutate(type = "conventional")
  # Cluster�robust SEs
  result_cl �� lm_robust(
    y ~ x1 + x2, data = data, clusters = g
  ) %>% tidy() %>% filter(term %in% c("x1", "x2")) %>% select(1:5) %>%
  mutate(type = "clustered")
  # Bind results together and add column for standard errors
  results_df �� bind_rows(result_ols, result_cl)
  # Return results
  return(results_df)
}
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Now put the pieces together.

# Join sim_dgp and sim_analyze
sim_iter �� function(n = 100, n_grps = 10, σν = 1, ση = 1) {
  # Run the analysis in sim_analyze on the output of sim_dgp
  sim_dgp(n = 100, n_grps = 10, σν = 1, ση = 1) %>% sim_analyze()
}
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And we run the simulation (10,000 times).

# Load and set up furrr
p_load(furrr)
plan(multiprocess, workers = 10)
# Set a seed
set.seed(1234)
# Run the simulation 1e4 times
sim_df �� future_map_dfr(
  # Repeat sample size 100 for 1e4 times
  rep(100, 1e4),
  # Our function
  sim_iter,
  # Let furrr know we want to set a seed
  .options = future_options(seed = T)
)
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Comparing standard errors for  (coefficient on )β̂
1

x1
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Comparing t statistics for  (coefficient on )β̂
1

x1

35 / 39



Comparing t statistics for  (coefficient on )β̂
2

x2
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Rejection rates

x1 clustered 0.878 

x1 conventional 0.999 

x2 clustered 0.0371

x2 conventional 0.801 

1. We definitely can see the need for clustering. 
Conventional standard errors are rejecting a true Ho 80% of the time.

2. Cluster-robust standard errors are struggling a bit in this situation. 
Small ; large . Rejecting false Ho 88% and true Ho 3.7% of the time.G Ng
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Resources from the literature
A Practitioner’s Guide to Cluster-Robust Inference 
Cameron and Miller (2015)

Robust Inference With Multiway Clustering 
Cameron, Gelbach, and Miller (2011)

Bootstrap-Based Improvements for Inference with Clustered Errors 
Cameron, Gelbach, and Miller (2008)

How Much Should We Trust Differences-In-Differences Estimates? 
Bertrand, Duflo, and Mullainathan (2004)
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