
Miscellaneous Tips and Tricks in R
EC 425/525, Lab 7
Edward Rubin
17 May 2019

Prologue

2 / 20

Schedule

Last time
Simulation in R

Today
Helpful tips and tricks in R

3 / 20

Tips and tricks

4 / 20

Tips and tricks

The apply family
In general, for loops are not the "preferred" route in R.

1. Many functions are vectorized—you can apply a function over a vector.
E.g., the square root of the numbers from 1 to 10: sqrt(1�10) .

1. That said, sometimes you just gotta loop.
For these situations, base R offers a family of apply functions.

5 / 20

Tips and tricks

The apply family
The apply family applies a function over a vector, list, data frame, etc.

For example, lapply() takes two arguments: X and FUN .

X A vector/list of values.

FUN The function you want to evaluate on each value of X .

lapply() returns a list of the results.

Example toupper() capitalizes characters , e.g., toupper("a") yields "A" .

lapply(X = c("a", "pig"), FUN = toupper) returns list("A", "PIG") .

Note This is a silly example, as you can directly use toupper() on vectors.

6 / 20

Tips and tricks

Plain apply
The related apply() function applies a given function (FUN) along the
margins (MARGIN) of a given array/matrix (X).

Your options for MARGIN are 1 for rows and 2 for columns.

Example Let's find the maximum value in each row of a matrix.

Create a matrix
ex_matrix �� matrix(data = 1:16, nrow = 4, byrow = T)
Find the maximum value in each row.
apply(X = ex_matrix, MARGIN = 1, FUN = max)

#> [1] 4 8 12 16

7 / 20

Tips and tricks

Multiple apply
Like lapply() , mapply() repeatedly evaluates a function (FUN) for each
value in a vector of inputs.

However, mapply() allows you to evaluate across multiple vectors.

In addition mapply() allows you to dictate whether/how the results are
simplified (e.g., SIMPLIFY = T for vector or matrix) or kept as a list .

Example Random normal draws with different means and variances.

mapply(FUN = rnorm, n = 1, mean = c(0, 10, 20), sd = 1:3)

#> [1] 0.1313328 11.4750212 19.4918759

8 / 20

Tips and tricks

Custom apply
All of our examples used already-defined functions for FUN , e.g.,

lapply(X = c("a", "pig"), FUN = toupper)

Alternatively, you define your own function at FUN , e.g.,

lapply(X = 1:2, FUN = function(i) {i > 1})

#> [[1]]
#> [1] FALSE
#>
#> [[2]]
#> [1] TRUE

9 / 20

base
lapply()
apply()
mapply()

purrr / furrr
map()
?
map2()

future.apply
future_lapply()
future_apply()
future_mapply()

parallel
mclapply()
mcapply()
mcmapply()

Tips and tricks

Other packages
Other packages offer similar (and parallelized) functions.

10 / 20

Tips and tricks

for() loops
However, if you're really committed to running for loops, the syntax is

Create an empty vector
our_vector �� c()
Run the for loop for some numbers
for (i in c(1, 1, 2, 3, 5, 8)) {
 # Print 'i'
 print(i)
 # Append 'i' to the end of our_vector
 our_vector �� c(our_vector, i)
}

11 / 20

List output

lapply(
 X = 1:2,
 FUN = as.character
)

#> [[1]]
#> [1] "1"
#>
#> [[2]]
#> [1] "2"

unlist() -ing to vector

lapply(
 X = 1:2,
 FUN = as.character
) %>% unlist()

#> [1] "1" "2"

Tips and tricks

Lists and unlisting
Lists (e.g., as outputted by lapply()) can be helpful—but they can also be
fairly annoying. Enter unlist() .

12 / 20

Tips and tricks

From lists to data frames
Sometimes you don't want to entirely unlist() a list.

For example, you might have a list of data frames that you want to bind
into a new data frame.

In this case, you can use bind_rows() or bind_cols() from dplyr .

Alternatively, you might be able to make use of map_dfr() or map_dfc() .

13 / 20

Tips and tricks

Indexing lists
Also Don't forget that you can index lists using double-brackets.

Capitalize the alphabet
our_list �� lapply(X = letters, FUN = toupper)
The third letter
our_list[[3]]

#> [1] "C"

14 / 20

Tips and tricks

Logical vectors and which()
Finally, the simply function which() can be surprisingly helpful.

which() tells you which of the entries in a logical vector are TRUE , i.e.,
which element—or elements—satisfies your logical condition(s).

15 / 20

letters

#> [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"
#> [18] "r" "s" "t" "u" "v" "w" "x" "y" "z"

letters > "m"

#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [12] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [23] TRUE TRUE TRUE TRUE

which(letters > "m")

#> [1] 14 15 16 17 18 19 20 21 22 23 24 25 26

letters[which(letters > "m")]

#> [1] "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

16 / 20

Alternatively, we could have just used the logical vector.

17 / 20

letters

#> [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"
#> [18] "r" "s" "t" "u" "v" "w" "x" "y" "z"

letters > "m"

#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [12] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [23] TRUE TRUE TRUE TRUE

letters[letters > "m"]

#> [1] "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

18 / 20

Create a matrix
mat �� matrix(1:9, ncol = 3)
Print it out
mat

#> [,1] [,2] [,3]
#> [1,] 1 4 7
#> [2,] 2 5 8
#> [3,] 3 6 9

Is the entry even?
mat �� 2 �� 0

#> [,1] [,2] [,3]
#> [1,] FALSE TRUE FALSE
#> [2,] TRUE FALSE TRUE
#> [3,] FALSE TRUE FALSE

Print the even entries
mat[mat �� 2 �� 0]

#> [1] 2 4 6 8

Tips and tricks

Logical vectors, continued
This logic-based selection works on many classes of objects, but it may
change the class/structure of the object.

19 / 20

Tips and tricks
1. The apply family

lapply()

Plain apply()
mapply()

2. for() loops
3. Lists

unlist() -ing
Binding to data frame
Indexing

4. Logical vectors and which()

Table of contents

20 / 20

