Adventures in Simulation in $\ensuremath{\mathbb{R}}$

EC 425/525, Lab 6

Edward Rubin 11 May 2019

Prologue

Schedule

Last time

Plotting

Today

Simulation

Motivation

As we've discussed, simulation can be a quick and effective way to better understand how an estimator performs/behaves.

You just need to be careful to **ask a clear, answerable question** and then **run a simulation** that corresponds/answers this question.

In addition, simulations can be computationally intense—they are often the first time you have to really think about efficiency in coding.

Generic outline

The general outline for a simulation is fairly consistent.

- 1. **Define the population** via a data-generating process (DGP).⁺
- 2. Iterate. In each iteration:
 - **Sample** from your population.
 - Construct **estimates/inferences** that relate to your original question.
- 3. Summarize results.

† Some people prefer to actually construct the population in this step and then repeatedly sample from this fixed population. Others stick with a population defined by the DGP.

Practical issues

This semi-theoretical framework needs a few practical reminders.

- 1. Always set a seed at the beginning of your simulation (set.seed()).
- 1. Parallelize where/when possible (*e.g.*, the furrr package).
- 1. Writing a function for a single iteration can be helpful (see above).
- 1. There is a (big) difference between unbiasedness and consistency.
- 1. You build simulations/DGPs with assumptions.
- 1. Analytical results can inform and/or replace simulations.

Example simulation

The question

Q We've shown that instrumental variables (IV) is consistent, how does it perform (*i.e.*, is it unbiased) in finite (small) samples?

Note This question is definitely answerable analytically.

Nevertheless, let's see how IV performs at several small-ish sample sizes.

While we're at it, let's confirm OLS is indeed biased in this setting.

DGP

We want a valid instrument for a setting in which treatment is endogenous.

$$\mathbf{Y}_i = \alpha + \tau \mathbf{D}_i + \varepsilon_i$$

So we want

- 1. Endogenous treatment: $Cov(D_i, \varepsilon_i) \neq 0$
- 2. Predictive: $Cov(Z_i, D_i) \neq 0$
- 3. Excludability: $\operatorname{Cov}(\operatorname{Z}_i, \, \varepsilon_i) = 0$

where (2) and (3) imply \mathbf{Z}_i is a valid instrument.

DGP

In other words, the variance-covariance matrix of \mathbf{D}_i , ε_i , and \mathbf{Z}_i is

$$\Sigma = egin{bmatrix} \sigma_{\mathrm{D}}^2 & \sigma_{\mathrm{D},arepsilon} & \sigma_{\mathrm{D},\mathrm{Z}} \ \sigma_{\mathrm{D},arepsilon} & \sigma_arepsilon^2 & 0 \ \sigma_{\mathrm{D},\mathrm{Z}} & 0 & \sigma_\mathrm{Z}^2 \end{bmatrix}$$

If we assume unit variances and covariances are 0.6, then

$$\Sigma = egin{bmatrix} 1 & 0.6 & 0.6 \ 0.6 & 1 & 0 \ 0.6 & 0 & 1 \end{bmatrix}$$

DGP

To simplify our lives, let's assume that D_i , ε_i , and Z_i come from a multivariate normal distribution.

We defined their covariance matrix. We need to define their means.

 $\mu_{
m D}=10$, $\mu_{arepsilon}=0$, and $\mu_{
m Z}=3$.

Finally, we need to define the way in which D_i and ε_i affect Y_i .

$$\mathbf{Y}_i = \mathbf{7} + \mathbf{1} \times \mathbf{D}_i + \varepsilon_i$$

i.e., au=1.

DGP

Lucky for us, R's MASS package has a function mvrnorm() that draws n
random observations from a multivariate normal distribution with means
mu and variance-covariance matrix Sigma.

Sampling from our DPG

We're ready to write a function that performs one iteration.

Our function will accept a single argument n, the sample size.

```
sim_iter \leftarrow function(n) {

# Define our variance-covariance matrix (D, \varepsilon, Z)

\Sigma \leftarrow matrix(data = c(1, 0.6, 0.6, 0.6, 1, 0, 0.6, 0, 1), ncol = 3)

# Our vector of means (D, \varepsilon, Z)

\mu = c(10, 0, 3)

# Draw n observations; convert to tibble

sample_df \leftarrow MASS::mvrnorm(n = n, mu = \mu, Sigma = \Sigma) %>% tibble()

# Name variables

names(sample_df) \leftarrow c("D", "\varepsilon", "Z")

# Calculate Y

sample_df %<% mutate(Y = 7 + 1 * D + \varepsilon)
```

Estimation

Now we just need to estimate β_{IV} and β_{OLS} . We'll use estimatr.

Previous OLS estimates of the effect of x on y

 $lm_robust(y \sim x)$

New IV estimates of the effect of x on y with instrument z

 $iv_robust(y ~ x | z)$

```
sim iter \leftarrow function(n) {
  # Define our variance-covariance matrix (D, \varepsilon, Z)
  \Sigma \leftarrow \text{matrix}(\text{data} = c(1, 0.6, 0.6, 0.6, 1, 0, 0.6, 0, 1), \text{ncol} = 3)
  # Our vector of means (D, \varepsilon, Z)
  \mu = c(10, 0, 3)
  # Draw n observations; convert to tibble
  smpl df \leftarrow MASS::mvrnorm(n = n, mu = \mu, Sigma = \Sigma) %>% data.frame()
  # Name variables
  names(smpl df) \leftarrow c("D", "\epsilon", "Z")
  # Calculate Y
  smpl_df \% \% mutate(Y = 7 + 1 * D + \epsilon)
  # Estimates
  est df \leftarrow bind rows(
    # The OLS estimates
    lm_robust(Y ~ D, data = smpl_df) %>% tidy() %>% mutate(est = "OLS"),
    # The TV estimates
    iv robust(Y ~ D | Z, data = smpl df) %>% tidy() %>% mutate(est = "IV")
  )
  return(est_df)
}
```

Repeat

Now we want run sim_iter() many times.

And we're going to do it in parallel—using the furrr package.

The output of sim_iter() is a data frame, so we can actually use a function from furrr that expects outputted data frames, namely, future_map_dfr.

The suffix _dfr means the function will row-bind the data frames returned by individual iterations.

We'll also use the rep() function which repeats things, e.g., rep("a", 3) repeats "a" three times.

Assuming we've already entered sim_iter() into memory, we can run our simulation 5,000 times, each with sample size 50—in parallel!

```
# Load furrr
p load(furrr)
# Tell R to parallelize with 4 cores
plan(multiprocess, workers = 4)
# Set a seed
set.seed(12345)
# Run simulation with sample size 50
sim50 \leftarrow future map dfr(
  # Repeat sample size 50 for 5000 times
  rep(50, 5000),
  # Our function
  sim iter,
  # Let furrr know we want to set a seed
  .options = future options(seed = T)
```


Let's vary the sample size and see what happens.

Sample size 10 (5,000 iterations)

Sample size 25 (5,000 iterations)

Sample size 50 (5,000 iterations)

Sample size 100 (5,000 iterations)

Assumptions

Keep in mind that we made several assumptions about

- the distribution (joint normality is very restrictive)
- variance (all equal, independent, and homoskedastic)
- covariances (again, all equal)
- strong instrument

Looping

There are **many** ways to iterate/loop in R:

- for(), while(), etc.
- lapply(), mapply(), etc.
- parallel: mclapply(), mcmapply(), etc.
- foreach
- future, furrr, and future.apply: future_lapply(), future_map(), etc.

They are not all equal/identical.

- Few can access values from previous iterations (for() and foreach).
- A subset is parallelizable (parallel, foreach, the future family).
- Behavior can be OS specific (especially parallel).

for()

You'll often hear that you should never use for() loops in R.

This opinion is a bit extreme, but there are a few reasons to avoid them.

- 1. for() is not parallelized (though foreach can be).
- 2. for() doesn't clean up after itself—leaving objects in memory between iterations and after the loop finishes.[†]
- 3. for() loops generally "grow" data which can be slow/inefficient.

See Grant McDermott's lectures for further justification.

Table of contents

Simulation

- 1. Motivation
- 2. Generic outline
- 3. Example
 - The question
 - DGP
 - Sampling from the DGP
 - Iterating
 - Assumptions
- 4. Loops