
RStudio + Data i/o with R
EC 425/525, Lab 3
Edward Rubin
26 April 2019

Prologue

2 / 33

Schedule

Last time
Working with data in R—especially via dplyr .

Today
1. RStudio basics
2. Getting data in and out of R.

3 / 33

Review
Key points from the last lab(s).

1. dplyr is your data-work friend.

2. Pipes (%>%) make your life easier.†

† Check out magrittr for more pipe options, e.g., %��% .
4 / 33

RStudio

5 / 33

Let's recap some of the major features in RStudio...

6 / 33

First, you write your R scripts (source code) in the Source pane.

7 / 33

You can use the menubar or ⇧+⌘+N to create new R scripts.

8 / 33

To execute commands from your R script, use ⌘+Enter.

9 / 33

RStudio will execute the command in the terminal.

10 / 33

You can see our new object in the Environment pane.

11 / 33

The History tab (next to Environment) records your old commands.

12 / 33

The Files pane is file explorer.

13 / 33

The Plots pane/tab shows... plots.

14 / 33

Packages shows installed packages

15 / 33

Packages shows installed packages and whether they are loaded.

15 / 33

The Help tab shows help documentation (also accessible via ?).

16 / 33

Finally, you can customize the actual layout

17 / 33

Finally, you can customize the actual layout and many other items.

17 / 33

R and RStudio

Best practices
1. Write code in R scripts. Troubleshoot in RStudio. Then run the scripts.

2. Comment your code. (# This is a comment)

3. Name objects and variables with intelligible, standardized names.

BAD ALLCARS , Vl123a8 , a.fun , cens.12931 , cens.12933
GOOD unique_cars , health_df , sim_fun , is_female , age

4. Set seeds when generating randomness, e.g., set.seed(123) .

5. Parallelize when possible. (Packages: parallel , purrr , foreach , etc.)

6. Use projects in RStudio (next). And organize your projects.

18 / 33

R and RStudio

Projects
Projects in R offer several benefits:

1. Act as an anchor for working with files.

2. Make your work (projects) easily reproducible.†

3. Help you quickly jump back into your work.

† In this class, we're assuming reproducibility is good/desirable.
19 / 33

To start a new project, hit the project icon.

20 / 33

You'll then choose the folder/directory where your project lives.

21 / 33

If you open (double click) a project, RStudio opens R in that location.

22 / 33

RStudio will 'load' your previous setup (pane setup, scripts, etc.).

22 / 33

R and RStudio

Projects
Without a project, you will need to define long file paths that you'll need to
keep updating as folder names/locations change.

23 / 33

R and RStudio

Projects
Without a project, you will need to define long file paths that you'll need to
keep updating as folder names/locations change.

dir_class �� "/Users/edwardarubin/Dropbox/UO/Teaching/EC525S19/"
dir_labs �� paste0(dir_class, "NotesLab/")
dir_lab03 �� paste0(dir_labs, "03RInput/")
sample_df �� read.csv(paste0(dir_lab03, "sample.csv"))

23 / 33

R and RStudio

Projects
Without a project, you will need to define long file paths that you'll need to
keep updating as folder names/locations change.

dir_class �� "/Users/edwardarubin/Dropbox/UO/Teaching/EC525S19/"
dir_labs �� paste0(dir_class, "NotesLab/")
dir_lab03 �� paste0(dir_labs, "03RInput/")
sample_df �� read.csv(paste0(dir_lab03, "sample.csv"))

With a project, R automatically references the project's folder.

sample_df �� read.csv("sample.csv")

23 / 33

R and RStudio

Projects
Without a project, you will need to define long file paths that you'll need to
keep updating as folder names/locations change.

dir_class �� "/Users/edwardarubin/Dropbox/UO/Teaching/EC525S19/"
dir_labs �� paste0(dir_class, "NotesLab/")
dir_lab03 �� paste0(dir_labs, "03RInput/")
sample_df �� read.csv(paste0(dir_lab03, "sample.csv"))

With a project, R automatically references the project's folder.

sample_df �� read.csv("sample.csv")

Double-plus bonus The here package extends projects' reproducibility.

23 / 33

https://github.com/r-lib/here

Data i/o

24 / 33

Data i/o

Reading files
Projects solve the hardest part of data input/output in R, i.e., navigating
your computer's file structure.

Steps to read in a �le

1. Figure out your file's location relative to your project's location.

2. Find the function that loads your files' file type.

3. Load the file with the function (using its location).

25 / 33

Data i/o

Reading CSVs
We can check the files in the current (or any) directory with the dir() .

26 / 33

Data i/o

Reading CSVs
We can check the files in the current (or any) directory with the dir() .

dir()

#> [1] "03RInput_cache" "03RInput_files" "03RInput.html" "03RInput.Rmd"
#> [5] "03RInput.Rproj" "my�css.css" "RStudio" "sample.csv"
#> [9] "TODO"

Our current directory has the CSV sample.csv that I want to load.

26 / 33

Data i/o

Reading CSVs
R's base function for reading CSVs is read.csv(file) .

You feed read.csv() the directory and name of the CSV.†

read.csv("sample.csv") %>% head(4)

#> pid age first_name is_orange
#> 1 1 68 Jessica FALSE
#> 2 2 80 Andrew FALSE
#> 3 3 71 Donald TRUE
#> 4 4 81 Jacob FALSE

read.csv() returns a data.frame with the CSV's contents.

† There are many other optional arguments, e.g., whether variables are named, variable types, etc.
27 / 33

Data i/o

Reading CSVs
The Hadleyverse (technically, the tidyverse package) contains a package
called readr , which contains the read_csv() function.

read_csv() is pretty fast, guesses variable well, and returns a tibble .†

p_load(tidyverse)
read_csv("sample.csv") %>% head(3)

#> # A tibble: 3 x 4
#> pid age first_name is_orange
#> <chr> <dbl> <chr> <lgl>
#> 1 001 68 Jessica FALSE
#> 2 002 80 Andrew FALSE
#> 3 003 71 Donald TRUE

† More speed: fread() from data.table . Notice read.csv() to read_csv() give pid differing classes.
28 / 33

Data i/o

Reading other file types
If you've got a file, chances are R can read it.

Stata files: read_dta in haven

SAS files: read_sas in haven

Fixed-width files: read_fwf() in readr (also: iotools)

Excel files: read_excel() in readxl

Raster files: raster() in raster

Shapefiles: st_read() in sf

29 / 33

Data i/o

Writing
If R can read it, then R can write it.

Generally, there is a write or save function for each read function.

Read 'sample.csv'
sample_df �� read_csv("sample.csv")
Write sample_df to 'sample_copy.csv'
write_csv(
 x = sample_df,
 file = "sample_copy.csv"
)

30 / 33

Data i/o

RDS files
While CSVs can be nice—they are readable without loading into a statistical
program—when they get big, they can be slow and inefficient.

Enter RDS files, R's compressed, faster answer.

The base functions readRDS() and saveRDS() read and save RDS files.

readr offers read_rds() and write_rds() for more standard naming.

Write sample_df to 'sample.rds'
write_rds(x = sample_df, path = "sample.rds")
Read 'sample.rds'
sample_df �� read_rds("sample.rds")

31 / 33

Additional resources
More resources related to today's materials.

1. RStudio's cheatsheet for RStudio
2. Many other cheatsheets from RStudio

32 / 33

https://www.rstudio.com/wp-content/uploads/2016/01/rstudio-IDE-cheatsheet.pdf
https://www.rstudio.com/resources/cheatsheets/

Data, R, and RStudio

1. Schedule
2. Review
3. RStudio features
4. Best practices
5. Projects
6. Data i/o

Reading files
dir()

read.csv()

read_csv()

Other file types
Writing (output)
RDS files

7. More resources

Table of contents

33 / 33

