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Upcoming
Readings

Today: ISL Ch. 5 (changed—sorry)

Problem set Coming very soon...

4 / 56



ReviewReview



Review

Regression and loss
For regression settings, the loss is our prediction's distance from truth, i.e.,

Depending upon our ultimate goal, we choose loss/objective functions.

Whatever we're using, we care about test performance (e.g., test MSE),
rather than training performance.

errori = yi − ŷ i lossi = ∣∣yi − ŷ i
∣∣ = ∣∣errori∣∣

L1 loss = ∑
i

∣∣yi − ŷ i
∣∣ MAE = ∑

i

∣∣yi − ŷ i
∣∣

L2 loss = ∑
i

(yi − ŷ i)
2

MSE = ∑
i

(yi − ŷ i)
2

1

n

1

n
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Review

Classi�cation
For classi�cation problems, we often use the test error rate.

The Bayes classi�er

�. predicts class  when  exceeds all other classes.

�. produces the Bayes decision boundary—the decision boundary with
the lowest test error rate.

�. is unknown: we must predict .

n

∑
i=1

I(yi ≠ ŷ i)
1

n

j Pr(y0 = j∣∣X = x0)

Pr(y0 = j∣∣X = x0)
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Review

KNN
K-nearest neighbors (KNN) is a non-parametric method for estimating

that makes a prediction using the most-common class among an
observation's "nearest" K neighbors.

Low values of K (e.g., 1) are exteremly �exible but tend to over�t
(increase variance).
Large values of K (e.g., N) are very in�exible—essentially making the
same prediction for each observation.

The optimal value of K will trade off between over�tting and accuracy.

Pr(y0 = j∣∣X = x0)
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Review

The bias-variance tradeoff
Finding the optimal level of �exibility highlights the bias-variance tradeoff.

Bias The error that comes from inaccurately estimating .

More �exible models are better equipped to recover complex
relationships , reducing bias. (Real life is seldom linear.)
Simpler (less �exible) models typically increase bias.

Variance The amount  would change with a different training sample

If new training sets drastically change , then we have a lot of
uncertainty about  (and, in general, ).
More �exible models generally add variance to .

f

(f)

f̂

f̂

f f̂ ≉ f

f
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Review

The bias-variance tradeoff
The expected value† of the test MSE can be written

The tradeoff in terms of model �exibility

Increasing �exibility from total in�exibility generally reduces bias more
than it increases variance (reducing test MSE).

At some point, the marginal bene�ts of �exibility equal marginal costs.

Past this point (optimal �exibility), we increase variance more than we
reduce bias (increasing test MSE).

E[(y0 − f̂ (X0))
2

] = Var(f̂ (X0))


Variance

+ [Bias(f̂ (X0))]
2


Bias

+ Var(ε)

Irr. error
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U-shaped test MSE with respect to model �exibility (KNN here).  
Increases in variance eventually overcome reductions in (squared) bias.
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Resampling methods

Intro
Resampling methods help understand uncertainty in statistical modeling.

Ex. Linear regression: How precise is your ?
Ex. With KNN: Which K minimizes (out-of-sample) test MSE?

The process behind the magic of resampling methods:

�. Repeatedly draw samples from the training data.
�. Fit your model(s) on each random sample.
�. Compare model performance (or estimates) across samples.
�. Infer the variability/uncertainty in your model from (3).

Warning1 Resampling methods can be computationally intensive.  
Warning2 Certain methods don't work in certain settings.

β̂1
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Resampling methods

Today
Let's distinguish between two important modeling tasks:

Model selection Choosing and tuning a model

Model assessment Evaluating a model's accuracy

We're going to focus on two common resampling methods:

�. Cross validation used to estimate test error, evaluating performance or
selecting a model's �exibility

�. Bootstrap used to assess accuracy—parameter estimates or methods
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Resampling methods

Hold out
Recall: We want to �nd the model that minimizes out-of-sample test error.

If we have a large test dataset, we can use it (once).

Q1 What if we don't have a test set?  
Q2 What if we need to select and train a model?  
Q3 How can we avoid over�tting our training† data during model selection?

A1,2,3 Hold-out methods (e.g., cross validation) use training data to estimate
test performance—holding out a mini "test" sample of the training data
that we use to estimate the test error.

† Also relevant for testing data.
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Hold-out methods

Option 1: The validation set approach
To estimate the test error, we can hold out a subset of our training data
and then validate (evaluate) our model on this held out validation set.

The validation error rate estimates the test error rate
The model only "sees" the non-validation subset of the training data.
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Initial training set

Hold-out methods

Option 1: The validation set approach
To estimate the test error, we can hold out a subset of our training data
and then validate (evaluate) our model on this held out validation set.

The validation error rate estimates the test error rate
The model only "sees" the non-validation subset of the training data.
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Validation (sub)set Training set: Model training

Hold-out methods

Option 1: The validation set approach
To estimate the test error, we can hold out a subset of our training data
and then validate (evaluate) our model on this held out validation set.

The validation error rate estimates the test error rate
The model only "sees" the non-validation subset of the training data.
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Validation (sub)set Training set: Model training

Hold-out methods

Option 1: The validation set approach
To estimate the test error, we can hold out a subset of our training data
and then validate (evaluate) our model on this held out validation set.

The validation error rate estimates the test error rate
The model only "sees" the non-validation subset of the training data.
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Hold-out methods

Option 1: The validation set approach
Example We could use the validation-set approach to help select the
degree of a polynomial for a linear-regression model (Kaggle).

The goal of the validation set is to estimate out-of-sample (test) error.

Q So what?

Estimates come with uncertainty—varying from sample to sample.

Variability (standard errors) is larger with smaller samples.

Problem This estimated error is often based upon a fairly small sample
(<30% of our training data). So its variance can be large.
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http://127.0.0.1:6008/(https://www.kaggle.com/edwardarubin/ec524-lecture-003/


Validation MSE for 10 different validation samples



True test MSE compared to validation-set estimates



Hold-out methods

Option 1: The validation set approach
Put differently: The validation-set approach has (≥) two major drawbacks:

�. High variability Which observations are included in the validation set
can greatly affect the validation MSE.

�. Inef�ciency in training our model We're essentially throwing away the
validation data when training the model—"wasting" observations.

(2) ⟹ validation MSE may overestimate test MSE.

Even if the validation-set approach provides an unbiased estimator for test
error, it is likely a pretty noisy estimator.
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Hold-out methods

Option 2: Leave-one-out cross validation
Cross validation solves the validation-set method's main problems.

Use more (= all) of the data for training (lower variability; less bias).
Still maintains separation between training and validation subsets.

Leave-one-out cross validation (LOOCV) is perhaps the cross-validation
method most similar to the validation-set approach.

Your validation set is exactly one observation.
New You repeat the validation exercise for every observation.
New Estimate MSE as the mean across all observations.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set,  
while the other n-1 observations get to train the model.  

Observation 1's turn for validation produces MSE1.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set,  
while the other n-1 observations get to train the model.  

Observation 2's turn for validation produces MSE2.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set,  
while the other n-1 observations get to train the model.  

Observation 3's turn for validation produces MSE3.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set,  
while the other n-1 observations get to train the model.  

Observation 4's turn for validation produces MSE4.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set,  
while the other n-1 observations get to train the model.  

Observation 5's turn for validation produces MSE5.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set,  
while the other n-1 observations get to train the model.  

Observation n's turn for validation produces MSEn.
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Hold-out methods

Option 2: Leave-one-out cross validation
Because LOOCV uses n-1 observations to train the model,† MSEi (validation
MSE from observation i) is approximately unbiased for test MSE.

Problem MSEi is a terribly noisy estimator for test MSE (albeit ≈unbiased). 
Solution Take the mean!

�. LOOCV reduces bias by using n-1 (almost all) observations for training.

�. LOOCV resolves variance: it makes all possible comparisons 
(no dependence upon which validation-test split you make).

† And because often n-1 ≈ n.

CV(n) =
n

∑
i=1

MSEi

1

n
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True test MSE and LOOCV MSE compared to validation-set estimates



Hold-out methods

Option 3: k-fold cross validation
Leave-one-out cross validation is a special case of a broader strategy:  
k-fold cross validation.

�. Divide the training data into  equally sized groups (folds).
�. Iterate over the  folds, treating each as a validation set once 

(training the model on the other  folds).
�. Average the folds' MSEs to estimate test MSE.

Bene�ts?

�. Less computationally demanding (�t model  5 or 10 times; not ).
�. Greater accuracy (in general) due to bias-variance tradeoff!

Somewhat higher bias, relative to LOOCV:  vs. .
Lower variance due to high-degree of correlation in LOOCV MSEi.🤯

k

k

k − 1

k = n

n − 1 (k − 1)/k
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

Our  5 folds.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k =

34 / 56



Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

Each fold takes a turn at validation. The other  folds train.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k − 1
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=1.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k = 5 1
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=2.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k = 5 2
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=3.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k = 5 3
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=4.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k = 5 4
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=5.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k = 5 5
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE ask

CV(k) =
k

∑
i=1

MSEi

1

k
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Test MSE vs. estimates: LOOCV, 5-fold CV (20x), and validation set (10x)



Note: Each of these methods extends to classi�cation settings, e.g., LOOCV

CV(n) =
n

∑
i=1

I(yi ≠ ŷ i)
1

n



Hold-out methods

Caveat
So far, we've treated each observation as separate/independent from each
other observation.

The methods that we've de�ned assume this independence.

Make sure that you think about

the structure of your data
the goal of the prediction exercise

E.g.,

�. Are you trying to predict the behavior of existing or new customers?
�. Are you trying to predict historical or future recessions?
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The bootstrapThe bootstrap



The bootstrap

Intro
The bootstrap is a resampling method often used to quantify the
uncertainty (variability) underlying an estimator or learning method.

Hold-out methods

randomly divide the sample into training and validation subsets
train and validate ("test") model on each subset/division

Bootstrapping

randomly samples with replacement from the original sample
estimates model on each of the bootstrap samples
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The bootstrap

Intro
Estimating a estimate's standard error involves assumptions and theory.†

There are times this derivation is dif�cult or even impossible, e.g.,

The bootstrap can help in these situations.

Rather than deriving an estimator's variance, we use bootstrapped samles
to build a distribution and then learn about the estimator's variance.

† Recall the standard-error estimator for OLS.

Var( )
β̂1

1 − β̂2
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Intuition
Idea: Bootstrapping builds a distribution for the estimate using the
variability embedded in the training sample.



 
 
 
…

The bootstrap

Graphically

Z

β̂ = 0.653

Z⋆1

β̂ = −0.96

Z⋆2

β̂ = 0.968

Z⋆B

β̂ = 0.978
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The bootstrap
Running this bootstrap 10,000 times

plan(multiprocess, workers = 10)
# Set a seed
set.seed(123)
# Run the simulation 1e4 times
boot_df �� future_map_dfr(
  # Repeat sample size 100 for 1e4 times
  rep(n, 1e4),
  # Our function
  function(n) {
    # Estimates via bootstrap
    est �� lm(y ~ x, data = z[sample(1:n, n, replace = T), ])
    # Return a tibble
    data.frame(int = est$coefficients[1], coef = est$coefficients[2])
  },
  # Let furrr know we want to set a seed
  .options = future_options(seed = T)
)
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The bootstrap

Comparison: Standard-error estimates
The bootstrapped standard error of  is the standard deviation of the 

This 10,000-sample bootstrap estimates  0.77.

If we go the old-fashioned OLS route, we estimate 0.673.

α̂ α̂⋆b

SEB(α̂) =


 

⎷

B

∑
b=1

(α̂⋆b −
B

∑
ℓ=1

α̂⋆ℓ)

2
1

B

1

B

S.E.(β̂1) ≈
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Resampling

Review
Previous resampling methods

Split data into subsets:  validation and  training .
Repeat estimation on each subset.
Estimate the true test error (to help tune �exibility).

Bootstrap

Randomly samples from training data with replacement to generate 
"samples", each of size .
Repeat estimation on each subset.
Estimate the variance estimate using variability across  samples.

nv nt (nv + nt = n)

B

n

B
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Sources
These notes draw upon

An Introduction to Statistical Learning (ISL) 
James, Witten, Hastie, and Tibshirani

Python Data Science Handbook 
Jake VanderPlas
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http://faculty.marshall.usc.edu/gareth-james/ISL/
https://jakevdp.github.io/PythonDataScienceHandbook/
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