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Upcoming
Readings

Today

Finish ISL Ch2
Prediction Policy Problems by Kleinberg et al. (2015)

Next

ISL Ch. 3–4
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https://www.aeaweb.org/articles?id=10.1257/aer.p20151023
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Model accuracy

Review: Supervised learning
�. Using training data , we train , estimating .

�. Using this estimated model , we can calculate training MSE

Note: Assuming  is numeric (regression problem).

�. We want the model to accurately predict previously unseen (test) data.
This goal is sometimes call generalization or external validity.

Average  for obs.  in our test data.

(y, X) f̂ y = f(X) + ε

f̂

MSEtrain =
n

∑
1

[yi − f̂ (xi)]
2


Squared error

=
n

∑
1

[yi − ŷ]2
1

n

1

n

y

[y0 − f̂ (x0)]
2

(y0, x0)
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Model accuracy

Errors
The item at the center of our focus is the (test-sample) prediction error

the difference between the label  and its prediction .

The distance (i.e., non-negative value) between a true value and its
prediction is often called loss.

yi − f̂ (xi) = yi − ŷi

(y) (ŷ)
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Model accuracy

Loss functions
Loss functions aggregate and quantify loss.

► L1 loss function:      Mean abs. error: 

► L2 loss function:    Mean squared error: 

Notice that both functions impose assumptions.

�. Both assume overestimating is equally bad as underestimating.
�. Both assume errors are similarly bad for all individuals .
�. They differ in their assumptions about the magnitude of errors.

L1 an additional unit of error is equally bad everywhere.
L2 an additional unit of error is worse when the error is already big.

∑
i
∣∣yi − ŷ i

∣∣ ∑
i
∣∣yi − ŷ i

∣∣
1

n

∑i (yi − ŷ i)
2

∑i (yi − ŷ i)
21

n

(i)
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A very simple, univariate dataset (y, x)



... on which we run a simple linear regression.



Each point  has an associated loss (error).(yi, xi)



The L1 loss function weights all errors equally: ∑
i
∣∣yi − ŷ i

∣∣



The L2 loss function upweights large weights: ∑
i
(yi − ŷ i)

2



Model accuracy

Over�tting
So what's the big deal? (Hint: Look up.)

We're facing a tradeoff—increasing model �exibility

offers potential to better �t complex systems
risks over�tting our model to the training data

We can see these tradeoffs in our test MSE (but not the training MSE).
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Training data and example models (splines)





The previous example has a pretty nonlinear relationship.

Q What happens when truth is actually linear?



Training data and example models (splines)





Model accuracy

Solutions?
Clearly we don't want to over�t our training data. 
It loos like our testing data can help.

Q How about the following routine?

�. train a model  on the training data
�. use the test data to "tune" the model's �exibility
�. repeat steps 1–2 until we �nd the optimal level of �exibility

A No!!! This is an algorithm for over�tting your test data.

Okay... so maybe that was on overreaction, but we need to be careful.

f̂
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Model accuracy
This tradeoff that we keep coming back to has an of�cial name:  
bias-variance tradeoff. (or the variance-bias tradeoff)

Variance The amount  would change with a different training sample

If new training sets drastically change , then we have a lot of
uncertainty about  (and, in general, ).
More �exible models generally add variance to .

Bias The error that comes from inaccurately estimating .

More �exible models are better equipped to recover complex
relationships , reducing bias. (Real life is seldom linear.)
Simpler (less �exible) models typically increase bias.

f̂

f̂

f f̂ ≉ f

f

f

(f)
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Model accuracy

The bias-variance tradeoff, formally
The expected value† of the test MSE can be written

Q1 What does this formula tell us? (Think intuition/interpretation.)  
Q2 How does model �exibility feed into this formula?  
Q3 What does this formula say about minimizing test MSE?

A2 In general, model �exibility increases (1) and decreases (2). 
A3 Rates of change for variance and bias will lead to optimal �exibility.  
We often see U-shape curves of test MSE w.r.t. to model �exibility.

E[(y0 − f̂(X0))
2

] = Var(f̂(X0))


(1)

+ [Bias(f̂(X0))]
2


(2)

+ Var(ε)


(3)

† Think: mean or tendency
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U-shaped test MSE w.r.t. model �exibility  
Increases in variance eventually overcome reductions in (squared) bias.



Model accuracy

Bias-variance tradeoff
The bias-variance tradeoff key to understanding many ML concepts.

Loss functions and model performance
Over�tting and model �exibility
Training and testing (and cross validating)

Spend some time thinking about it and building intution.  
It's time well spent.
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So far we've focused on regression problems; what about classi�cation?



Model accuracy

Classi�cation problems
Recall We're still supervised, but now we're predicting categorical labels.

With categorical variables, MSE doesn't work—e.g.,

 (Chihuahua) - (Blueberry muf�n)  not math (does not compute)

Clearly we need a different way to de�ne model performance.

y − ŷ = =
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Model accuracy

Classi�cation problems
The most common approach is exactly what you'd guess...

Training error rate The share of training predictions that we get wrong.

where  is an indicator function that equals 1 whenever our
prediction is wrong.

Test error rate The share of test predictions that we get wrong.

Average  in our test data

n

∑
i=1

I(yi ≠ ŷ i)
1

n

I(yi ≠ ŷ i)

I(y0 ≠ ŷ0)
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Model accuracy

The Bayes classi�er
Recall Test error rate is the share of test predictions that we get wrong.

Average  in our test data

The Bayes classi�er as the classi�er that assigns an observation to its most
probable groups, given the values of its predictors, i.e.,

Assign obs.  to the class  for which  is the largest

The Bayes classi�er minimizes the test error rate.

Note  is the probability that random variable  equals ,
given† the variable(s) .

I(y
0

≠ ŷ
0
)

i j Pr(y = j|X = x0)

Pr(y = j|X = x0) y j

X = x0

† The "given" is also read as "conditional on". Think of it as subsetting to where .X = x0
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Model accuracy

The Bayes classi�er
Example

Pr(y = "chihuahua" | X = "orange and purple") = 0.3
Pr(y = "blueberry muf�n" | X = "orange and purple") = 0.4
Pr(y = "squirrel" | X = "orange and purple") = 0.2
Pr(y = "other" | X = "orange and purple") = 0.1

Then the Bayes classi�er says we should predict "blueberry muf�n".
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Model accuracy

The Bayes classi�er
More notes on the Bayes classi�er

�. In the two-class case, we're basically looking for 
 for one class.

�. The Bayes decision boundary is the point where the probability is
equal between the most likely groups (i.e., exactly 50% for two groups).

�. The Bayes classi�er produces the lowest possible test error rate, which
is called the Bayes error rate.

�. Just as with , the probabilities  that the Bayes
classi�er relies upon are unknown. We have to estimate.

Pr(y = j|X = x0) > 0.5

f Pr(y = j|X = xo)
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The Bayes decision boundary between classes A and B



Now we sample...



... and our sample gives us an estimated decision boundary.



And a new sample gives us another estimated decision boundary.



One non-parametric way to estimate these unknown conditional
probabilities: K-nearest neighbors (KNN).



K-nearest neighbors

Setup
K-nearest neighbors (KNN) simply assigns a category based upon the
nearest K neighbors votes (their values).

More formally: Using the K closest neighbors† to test observation , we
calculate the share of the observations whose class equals ,

These shares are our estimates for the unknown conditional probabilities.

We then assign observation  to the class with the highest probability.

x0

j

P̂r (y = j|X = x0) = ∑
i∈N0

I(yi = j)
1

K

x0

† In  space.X
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KNN in action  
Left: K=3 estimation for "x".       Right: KNN decision boundaries.

Source: ISL



The choice of K is very important—ranging from super �exible to in�exible.



Decision boundaries: Bayes, K=1, and K=60



KNN error rates, as K increases

Source: ISL



Model accuracy

Summary
The bias-variance tradeoff is central to quality prediction.

Relevant for classi�cation and regression settings
Bene�ts and costs of increasing model �exibility
U-shaped test error curves
Avoid over�tting—including in test data

42 / 44



Sources
These notes draw upon

An Introduction to Statistical Learning (ISL) 
James, Witten, Hastie, and Tibshirani

Python Data Science Handbook 
Jake VanderPlas

'Chihuahua or Muf�n' is from Twitter
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http://faculty.marshall.usc.edu/gareth-james/ISL/
https://jakevdp.github.io/PythonDataScienceHandbook/
https://twitter.com/teenybiscuit/status/705232709220769792
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