Lab 000

Data cleaning and workflow [1/N]

Edward Rubin 07 January 2022

Admin

Admin

Basic workflow (best) practices (i.e., Projects)

- RStudio and projects
- Naming conventions
- Pipes (%>%)
- Data cleaning with dplyr

Reminders

Reminder: Readings for next week

- ISL Ch1-Ch2
- Prediction Policy Problems by Kleinberg et al. (2015)

Improving your workflow

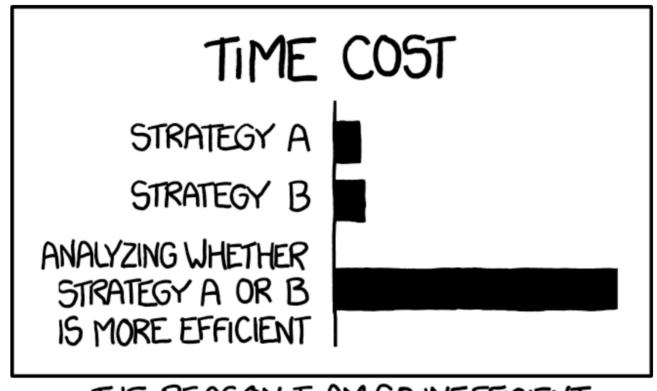
Improving your workflow

Data cleaning, manipulation, and analysis can be grueling, but optimizing your workflow can speed things along and make them less painful.[†]

A few dimensions that can help

- Understand how to interact with RStudio
- Use R projects
- Follow reasonable naming conventions
- dplyr and pipes
- Write your own functions (future lab)
- Use loops and parallelization (future lab)
- Hire an intern/assistant to do your work for you

Efficiency

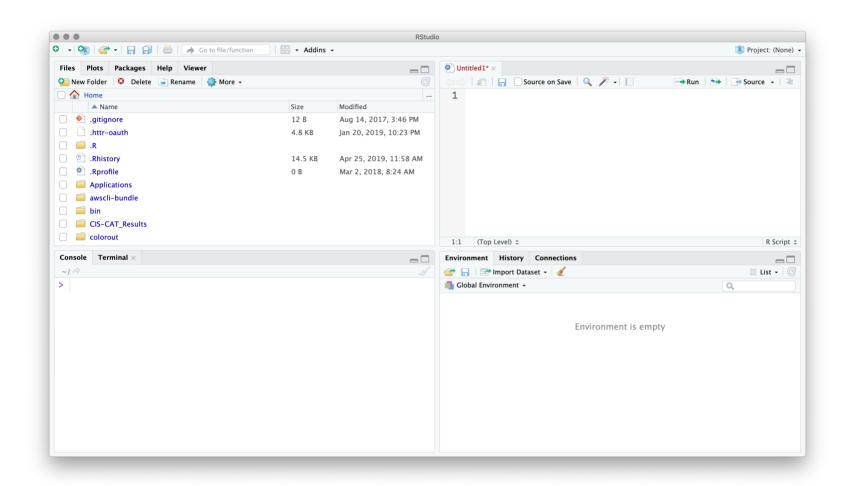


THE REASON I AM SO INEFFICIENT

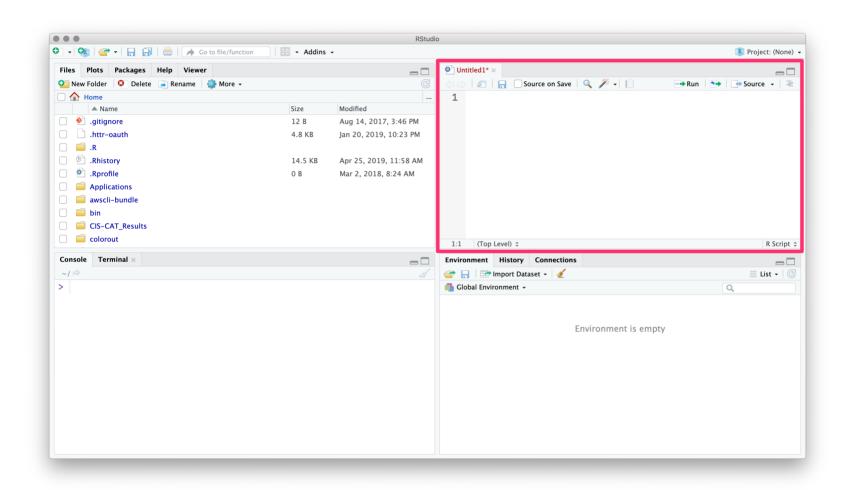
Source: xkcd

RStudio

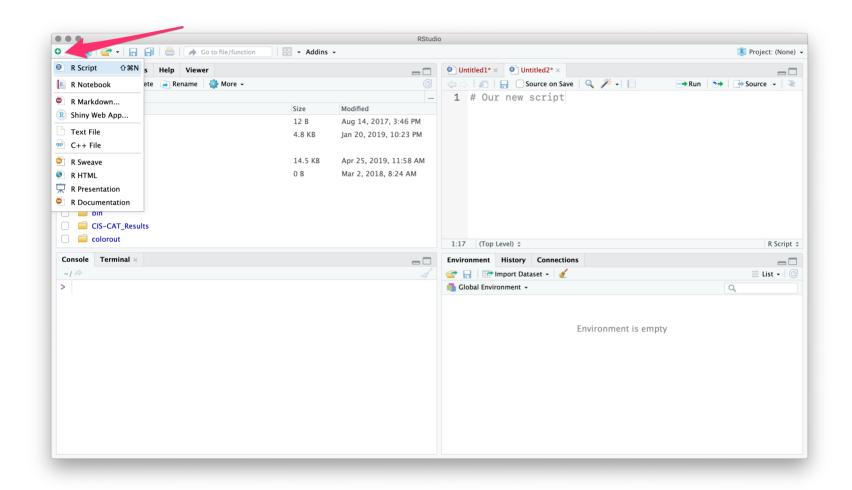
Let's recap some of the major features in RStudio...



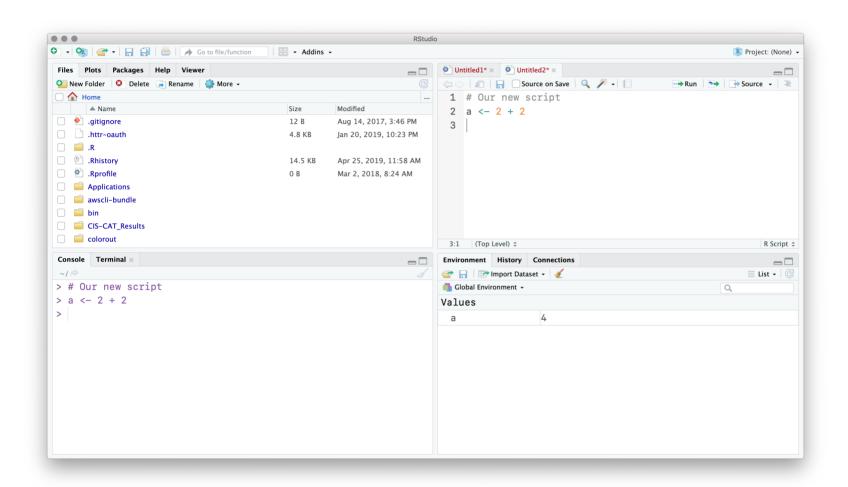
First, you write your R scripts (source code) in the Source pane.



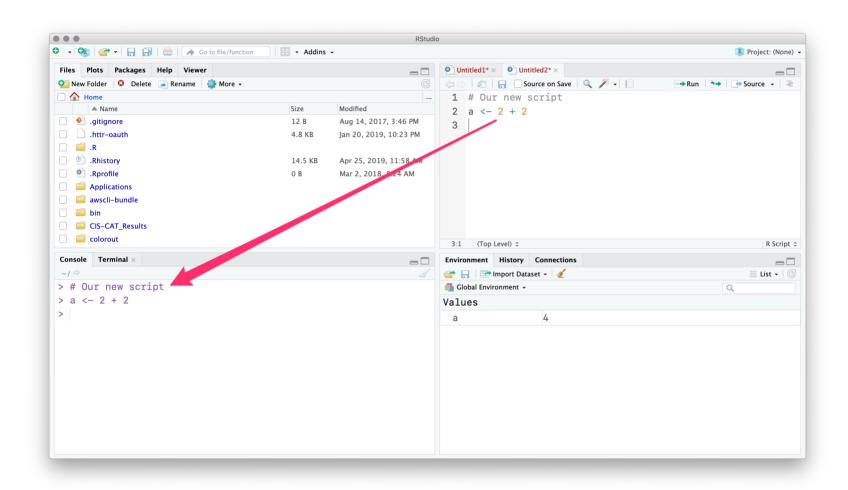
You can use the menubar or $1+\Re+N$ to create new R scripts.



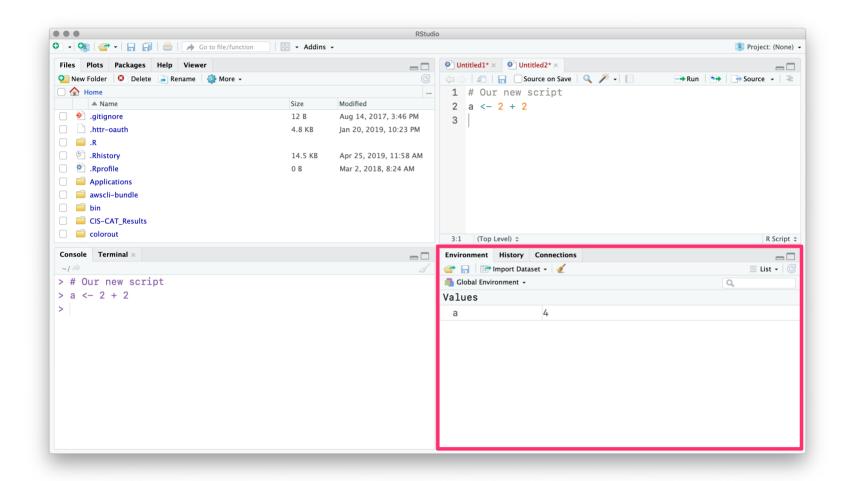
To execute commands from your R script, use #+Enter.



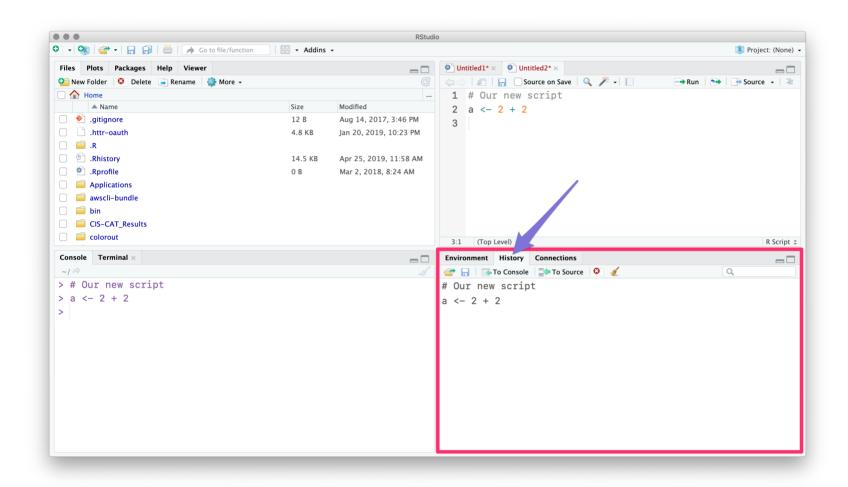
RStudio will execute the command in the terminal.



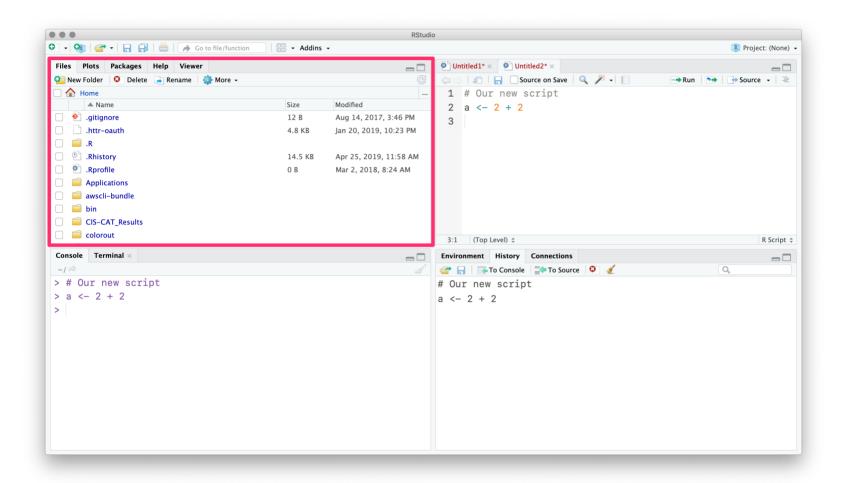
You can see our new object in the **Environment** pane.



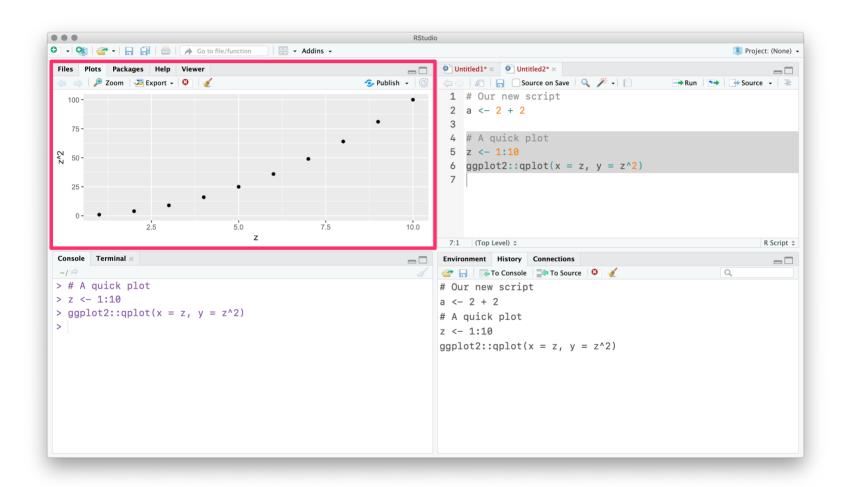
The **History** tab (next to **Environment**) records your old commands.



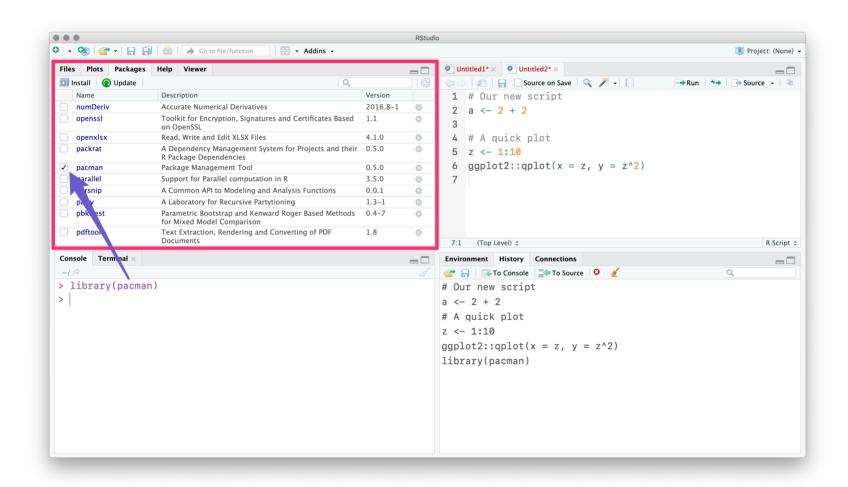
The **Files** pane is file explorer.



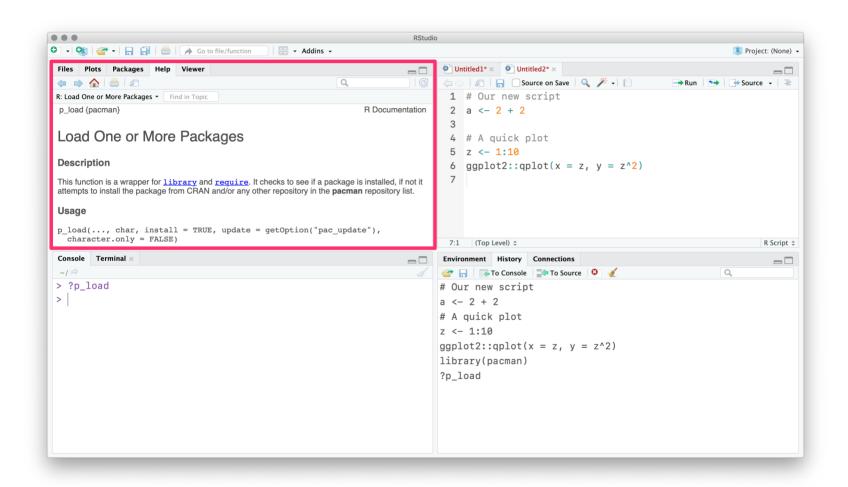
The **Plots** pane/tab shows... plots.



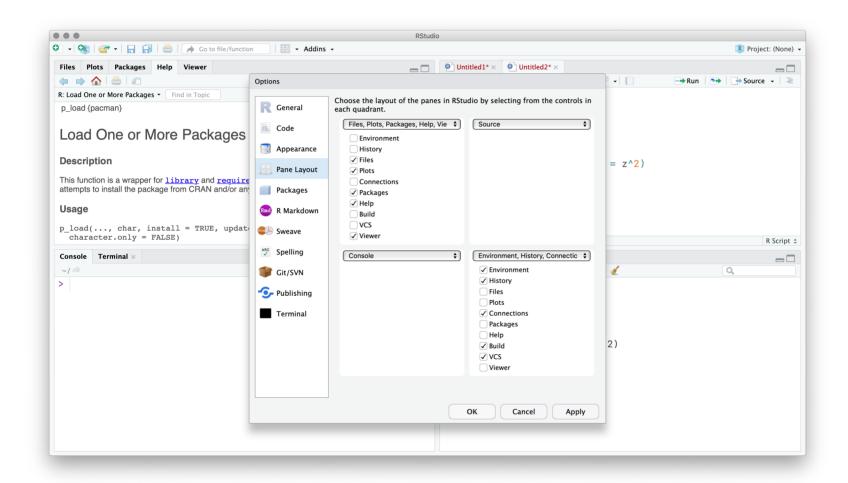
Packages shows installed packages and whether they are loaded.



The **Help** tab shows help documentation (also accessible via ?).



Finally, you can customize the actual layout and many other items.



Rand RStudio

Related best practices

- 1. Write code in R scripts. Troubleshoot in RStudio. Then run the scripts.
- 2. Comment your code. (# This is a comment)
- 3. Name objects/variables/files with intelligible, standardized names.
 - o BAD ALLCARS, Vl123a8, a.fun, cens.12931, cens.12933
 - GOOD unique_cars, health_df, sim_fun, is_female, age
- 4. Write code that is readable (see comments comment above).
- 5. Use projects in RStudio (next). And organize your projects.

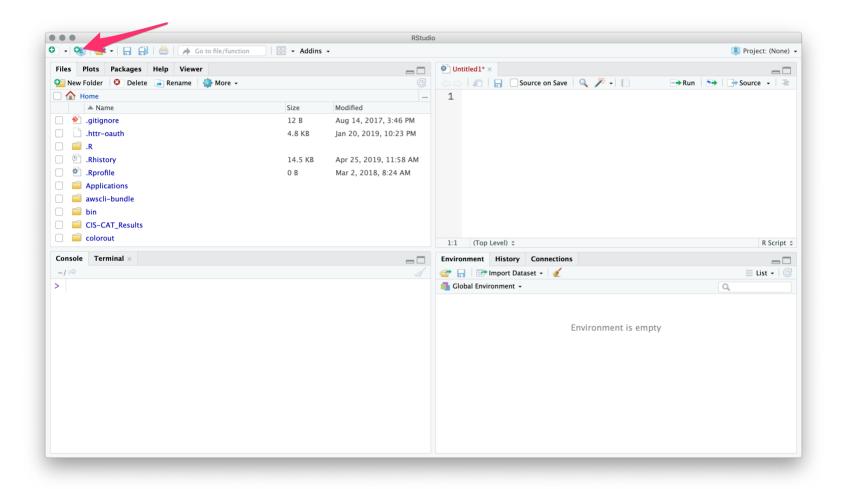
Projects

Projects

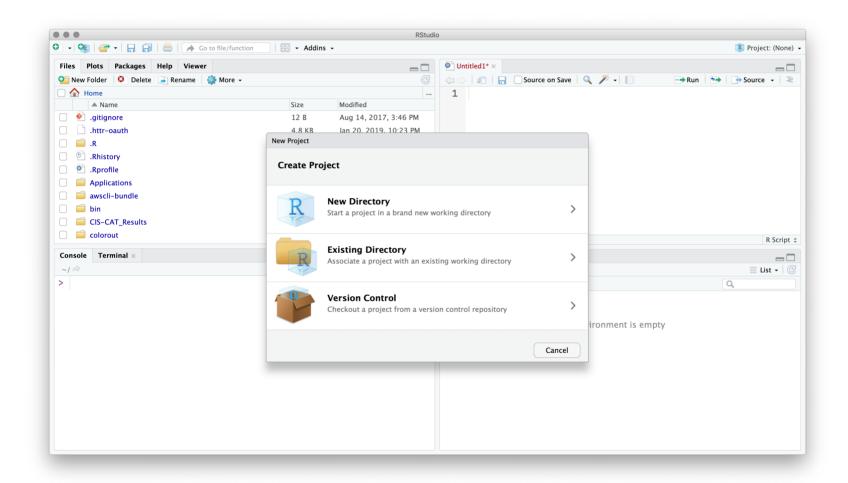
Projects in R offer several benefits

- 1. Act as an **anchor** for working with files.
- 2. Make your work (projects) easily **reproducible**.[†]
- 3. Help you **quickly jump back** into your work.

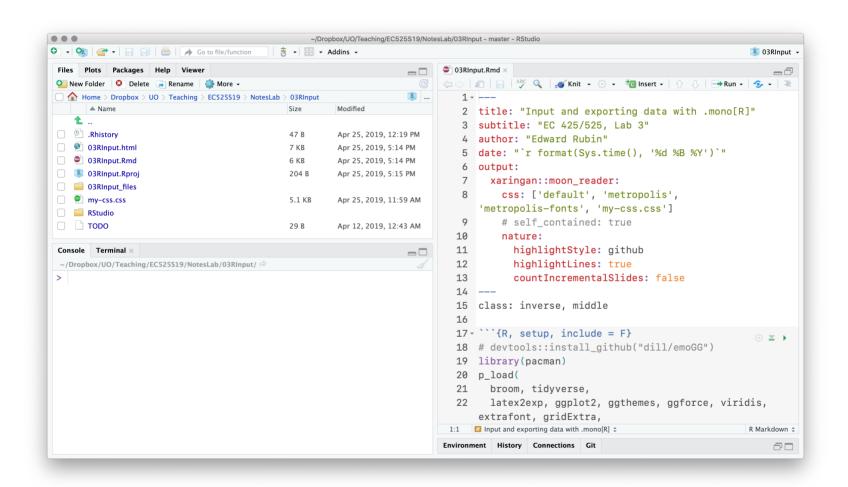
To start a new project, hit the **project icon**.



You'll then choose the folder/directory where your project lives.



RStudio will 'load' your previous setup (pane setup, scripts, etc.).



R and RStudio

Projects

Without a project, you will need to define long file paths that you'll need to keep updating as folder names/locations change.

```
dir_class ← "/Users/edwardarubin/Dropbox/UO/Teaching/EC525S19/"
dir_labs ← paste0(dir_class, "NotesLab/")
dir_lab03 ← paste0(dir_labs, "03RInput/")
sample_df ← read.csv(paste0(dir_lab03, "sample.csv"))
```

With a project, R automatically references the project's folder.

```
sample\_df \leftarrow read.csv("sample.csv")
```

Double-plus bonus The here package extends projects' reproducibility.

Introduction

- 1. Pipes (%>%) make your life easier.[†]
- 2. dplyr is your data-work friend.

What is a pipe?

Pipes are a simplifying programming tool; make your code easier to read

Take the **output** of a function as the **input/argument** of another function

In dplyr, the expression for a pipe is %>%

R's pipe specifically plugs the returned object to the left of the pipe into the first argument of the function on the right fo the pipe, e.g.,

```
rnorm(10) %>% mean()
```

#> [1] -0.5162503

† ⊳ native pipe as of R 4.1.0

Pipes

Pipes avoid nested functions, prevent excessive writing to your disc, and increase the readability of our R scripts

Example Three ways to draw 100 N(0,1) observations and calculate the interquartile range (IQR: difference between the 75th and 25th percentiles).

Think russian dolls

Pipes

By default, R pipes the output from the LHS of the pipe into the **first** argument of the function on the RHS of the pipe.

```
E.g., a %>% fun(3) is equivalent to fun(arg1 = a, arg2 = 3).
```

If you want to pipe output into a different argument, you use a period (.).

- b %>% fun(arg1 = 3, .) is equivalent to fun(arg1 = 3, arg2 = b).
- b %>% fun(3, .) is also equivalent to fun(arg1 = 3, arg2 = b).
- b %>% fun(., .) is equivalent to fun(arg1 = b, arg2 = b).

The magrittr package contains even more piping power. †

Before we begin:

- 1. Ensure tidyverse is installed: install.packages('tidyverse')
- 2. Install nycflights13 package: install.packages('nycflights13')
- 3. Load package libraries: library(tidyverse, nycflights13)
- 4. Test the flights dataset: (flights)

year	month	day	dep_time	sched_dep_time	dep_delay	arr_time
2013	1	1	517	515	2	830
2013	1	1	533	529	4	850
2013	1	1	542	540	2	923

Introduction

It's a package. dplyr is not installed by default, so you'll need to install it. dplyr is part of the tidyverse (Hadleyverse), and it follows a grammar-based approach to programming/data work.

- data compose the subjects of your stories
- dplyr provides the verbs (action words):
 filter(), mutate(), select(), group_by(), summarize(), arrange()

Bonus dplyr is pretty fast and able to interact with SQL databases.

Manipulating variables: mutate()

dplyr streamlines adding/manipulating variables in your data frame.

```
Function mutate(.data, ...)
```

- Required argument .data, an existing data frame
- Additional arguments Names and values of the new variables
- Output An updated data frame

Example

```
mutate(.data = our_df, new1 = 7, new2 = x * y)
```

mutate()

Example Take the data frame

```
my_df \leftarrow data.frame(x = 1:3, y = 5:7)
```

mutate() allows us to create many new variables with one call.

```
mutate(.data = my_df,
    xy = x * y,
    x2 = x^2,
    xy2 = xy^2,
    is_max = x = max(x)
)
```

X \$	y \$	xy ♦	x2 ♦	xy2 ♦	is_max 🛊
1	5	5	1	25	false
2	6	12	4	144	false
3	7	21	9	441	true

Notice mutate() returns the original and new columns.

```
mutate() VS. transmute()
```

As their names imply, mutate() and transmute() are very similar functions.

- mutate() returns the original and new columns (variables).
- transmute() returns only the new columns (variables).

Note Both functions return a new object as output—they do not update the object in R's memory. (This is the case for all functions in dplyr.)

%>% and dplyr

Each dplyr function begins with a .data argument so that you can easily pipe in data frames (recall: mutate(.data, ...)).

The common workflow in dplyr will look something like

```
new_df ← old_df %>% mutate(cool stuff here)
```

which takes old_df, does some cool stuff with mutate(), and then saves the output of mutate() as new_df.

filter()

The filter() function does what its name implies: it **filters the rows** of your data frame **based upon logical conditions**.

```
# Create a dataset
some_df ← data.frame(
    x = 1:10,
    y = 11:20
)
```

```
# Only keep rows where x is 3
some_df %>% filter(x = 3)
```

x 🌩	y
3	13

filter()

The filter() function does what its name implies: it **filters the rows** of your data frame **based upon logical conditions**.

```
# Create a dataset
some_df ← data.frame(
    x = 1:10,
    y = 11:20
)
```

```
# Only keep rows where x > 7
some_df %>% filter(x > 7)
```

X 🕏	y
8	18
9	19
10	20

filter()

The filter() function does what its name implies: it **filters the rows** of your data frame **based upon logical conditions**.

```
# Create a dataset
some_df ← data.frame(
    x = 1:10,
    y = 11:20
)
```

```
# Keep rows where y/x > 3
some_df %>% filter(y/x > 3)
```

X 🕏	y \$
1	11
2	12
3	13
4	14

filter()

The filter() function does what its name implies: it **filters the rows** of your data frame **based upon logical conditions**.

```
# Create a dataset
some_df ← data.frame(
    x = 1:10,
    y = 11:20
)
```

```
# Keep rows where x>8 OR y<12
some_df %>%
filter(x > 8 | y < 12)</pre>
```

X 🏺	y \$
1	11
9	19
10	20

filter()

The filter() function does what its name implies: it **filters the rows** of your data frame **based upon logical conditions**.

```
# Create a dataset
some_df ← data.frame(
    x = 1:10,
    y = 11:20
)
```

```
# Keep rows where 16 \le y \le 18 some_df %>% filter(between(y, 16, 18))
```

 x 🌲	у ♦
6	16
7	17
8	18

filter()

The filter() function does what its name implies: it **filters the rows** of your data frame **based upon logical conditions**.

Example

```
# Create a dataset
some_df ← data.frame(
    x = 1:10,
    y = 11:20
)
```

If you filter your data frame down to nothing, R returns a 0-row data frame with the names/number of columns from the original data frame.

```
select()
Just as filter() grabs row-based subsets of your data frame,
select() grabs column-based subsets.
You can select columns using their names
    our df %>% select(var10, var100)
you can select columns using their numbers
    our df %>% select(10, 100)
or you can select columns using helper fuctions
    our df %>% select(starts with("var10"))
select() helps you narrow down a dataset to its necessary features.
```

summarize()

Hopefully you're starting to see that functions' names in dplyr tell you what the function does.

summarize() † summarizes variables—you choose the variables and the summaries (e.g., mean() or min()).

```
the_df %>% summarize(
  mean(x), mean(y), mean(z),
  min(x), max(x),
)
```

would return a 1×5 data frame with the means of x, y, and z; the minimum of x; and the maximum of x.

summarize() and group_by()

While sample-wide summarizes are certainly interesting, dplyr has one last gem for us: group_by().

group_by() groups your observations by the variable(s) that you name.

Specifically, group_by() returns a grouped data frame that you can then feed to summarize(), mutate(), or transmuate to perform grouped calculations, e.g., each group's mean.

Example: Grouped summaries

```
# Create a new data frame
our_df ← data.frame(
    x = 1:6,
    y = c(0, 1),
    grp = rep(c("A", "B"), each = 3)
)
```

x \$	y \$	grp	$\stackrel{\mathbb{A}}{\triangledown}$
1	0	А	
2	1	А	
3	0	А	
4	1	В	
5	0	В	
6	1	В	

For dataset 'our_df'
our_df %>%
Group by 'grp'
group_by(grp) %>%
Take means of 'x' and 'y'
<pre>summarize(mean(x), mean(y))</pre>

grp 🛊	mean(x) 🛊	mean(y) 🛊	
A	2.000	0.333	
В	5.000	0.667	

Example: Grouped mutation

```
# Create a new data frame
our_df ← data.frame(
    x = 1:6,
    y = c(0, 1),
    grp = rep(c("A", "B"), each = 3)
)
```

Add grp means for x and y
our_df %>%
group_by(grp) %>%
mutate(
$x_m = mean(x), y_m = mean(y)$
)

x \$	y \$	grp	$\stackrel{\triangle}{\triangledown}$
1	0	А	
2	1	А	
3	0	А	
4	1	В	
5	0	В	
6	1	В	

x \$	y 🔷	grp 🛊	x_m	y_m
1	0	А	2.000	0.333
2	1	А	2.000	0.333
3	0	А	2.000	0.333
4	1	В	5.000	0.667
5	0	В	5.000	0.667
6	1	В	5.000	0.667

arrange()

arrange() will sorts the rows of a data frame using the inputted columns.

R defaults to starting with the "lowest" (smallest) at the top of the data frame. Use a - in front of the variable's name to reverse sort.

As is
our_df

Arrang by y, grp, then -x
our_df %>% arrange(y, grp, -x)

x \$	y \$	grp	\$ X ♦	y \$	grp	\$
1	0 A		 3	0 A		
2	1 A		1	0 A		
3	0 A		5	0 B		
4	1 B		2	1 A		
5	0 B		6	1 B		
6	1 B		 4	1 B		

The tidyverse

There's more! dplyr and tidyr offer even more...[†]

- Viewing data glimpse(), top_n()
- Sampling sample_n(), sample_frac()
- Summaries first(), last(), nth(), n_distinct()
- Duplicates distinct()
- Missingness na_if(), replace_na(), drop_na(), fill()

The folks at RStudio have put together some great cheatsheets, e.g.,

- dplyr
- data import
- data wrangling

[†] And these are only two of the packages in the tidyverse.

Exercises

Some selected exercises from R for Data Science by Hadley Wickham

- 1. Exercise 5.2.4.1
- 2. Exercise 5.3.1.2, 5.3.1.3, 5.3.1.4
- 3. Exercise 5.5.2.4
- 4. Exercise 5.7.1.3

Table of contents

Admin

Today and upcoming

Workflow

- General
- RStudio
- Related best practies
- Projects

dplyr

- Pipes
- mutate
- transmute()
- arrange
- filter()
- select()
- summarize
- summarize() and group_by()
- The tidyverse