
Lab 000
Data cleaning and workflow [1/N]

Edward Rubin
07 January 2022

AdminAdmin

Admin
Basic workflow (best) practices (i.e., Projects)

RStudio and projects
Naming conventions
Pipes (%>%)
Data cleaning with dplyr

Reminders

Reminder: Readings for next week

ISL Ch1–Ch2
Prediction Policy Problems by Kleinberg et al. (2015)

3 / 54

https://www.aeaweb.org/articles?id=10.1257/aer.p20151023

Improving your workflowImproving your workflow

Improving your workflow
Data cleaning, manipulation, and analysis can be grueling, but optimizing
your workflow can speed things along and make them less painful.†

A few dimensions that can help

Understand how to interact with RStudio
Use R projects
Follow reasonable naming conventions
dplyr and pipes
Write your own functions (future lab)
Use loops and parallelization (future lab)
Hire an intern/assistant to do your work for you

† Notice that I said less painful.
5 / 54

Efficiency

Source: xkcd

https://xkcd.com/1445/

RStudioRStudio

Let's recap some of the major features in RStudio...

First, you write your R scripts (source code) in the Source pane.

You can use the menubar or ⇧+⌘+N to create new R scripts.

To execute commands from your R script, use ⌘+Enter.

RStudio will execute the command in the terminal.

You can see our new object in the Environment pane.

The History tab (next to Environment) records your old commands.

The Files pane is file explorer.

The Plots pane/tab shows... plots.

Packages shows installed packages and whether they are loaded.

The Help tab shows help documentation (also accessible via ?).

Finally, you can customize the actual layout and many other items.

R and RStudio

Related best practices

1. Write code in R scripts. Troubleshoot in RStudio. Then run the scripts.

2. Comment your code. (# This is a comment)

3. Name objects/variables/files with intelligible, standardized names.

BAD ALLCARS , Vl123a8 , a.fun , cens.12931 , cens.12933
GOOD unique_cars , health_df , sim_fun , is_female , age

4. Write code that is readable (see comments comment above).

5. Use projects in RStudio (next). And organize your projects.

20 / 54

ProjectsProjects

Projects
Projects in R offer several benefits

1. Act as an anchor for working with files.

2. Make your work (projects) easily reproducible.†

3. Help you quickly jump back into your work.

† In this class, we're assuming reproducibility is good/desirable. 22 / 54

To start a new project, hit the project icon.

You'll then choose the folder/directory where your project lives.

RStudio will 'load' your previous setup (pane setup, scripts, etc.).

R and RStudio

Projects

Without a project, you will need to define long file paths that you'll need to
keep updating as folder names/locations change.

dir_class <- "/Users/edwardarubin/Dropbox/UO/Teaching/EC525S19/"

dir_labs <- paste0(dir_class, "NotesLab/")

dir_lab03 <- paste0(dir_labs, "03RInput/")

sample_df <- read.csv(paste0(dir_lab03, "sample.csv"))

With a project, R automatically references the project's folder.

sample_df <- read.csv("sample.csv")

Double-plus bonus The here package extends projects' reproducibility.

26 / 54

https://github.com/r-lib/here

Pipes and dplyrPipes and dplyr

Pipes and dplyr
Introduction

1. Pipes (%>%) make your life easier.†

2. dplyr is your data-work friend.

† Check out magrittr for more pipe options, e.g., %<>% . 28 / 54

Pipes and dplyr
What is a pipe?

Pipes are a simplifying programming tool; make your code easier to read

Take the output of a function as the input/argument of another function

In dplyr , the expression for a pipe is %>%

R's pipe specifically plugs the returned object to the left of the pipe into
the first argument of the function on the right fo the pipe, e.g.,

rnorm(10) %>% mean()

#> [1] -0.5162503

† |> native pipe as of R 4.1.0
29 / 54

Pipes and dplyr
Pipes

Pipes avoid nested functions, prevent excessive writing to your disc, and
increase the readability of our R scripts

Example Three ways to draw 100 N(0,1) observations and calculate the
interquartile range (IQR: difference between the 75th and 25th percentiles).

Save each intermediate step
draw <- rnorm(100)
end_points <- quantile(draw, probs = c(0.25, 0.75))
diff(end_points)
Lots of nesting
diff(quantile(rnorm(100), probs = c(0.25, 0.75)))
Piping 💪
rnorm(100) %>% quantile(probs = c(0.25, 0.75)) %>% diff()

Think russian dolls
30 / 54

https://en.wikipedia.org/wiki/Matryoshka_doll

Pipes and dplyr
Pipes

By default, R pipes the output from the LHS of the pipe into

the first argument of the function on the RHS of the pipe.

E.g., a %>% fun(3) is equivalent to fun(arg1 = a, arg2 = 3) .

If you want to pipe output into a different argument, you use a period (.).

b %>% fun(arg1 = 3, .) is equivalent to fun(arg1 = 3, arg2 = b) .
b %>% fun(3, .) is also equivalent to fun(arg1 = 3, arg2 = b) .
b %>% fun(., .) is equivalent to fun(arg1 = b, arg2 = b) .

The magrittr package contains even more piping power.†

† magrittr = Magritte (of this is not a pipe fame) plus R. 31 / 54

https://en.wikipedia.org/wiki/The_Treachery_of_Images

dplyrdplyr
Before we begin:

1. Ensure tidyverse is installed: install.packages('tidyverse')

2. Install nycflights13 package: install.packages('nycflights13')

3. Load package libraries: library(tidyverse, nycflights13)

4. Test the flights dataset: (flights)

year month day dep_time sched_dep_time dep_delay arr_time

2013 1 1 517 515 2 830

2013 1 1 533 529 4 850

2013 1 1 542 540 2 923

32 / 54

dplyrdplyr

dplyr
Introduction

It's a package. dplyr is not installed by default, so you'll need to install it.†

dplyr is part of the tidyverse (Hadleyverse), and it follows a grammar-
based approach to programming/data work.

data compose the subjects of your stories

dplyr provides the verbs (action words)
:

  filter() , mutate() , select() , group_by() , summarize() , arrange()

Bonus dplyr is pretty fast and able to interact with SQL databases.

† or just p_load(dplyr) after loading pacman . 34 / 54

https://dplyr.tidyverse.org/

dplyr
Manipulating variables: mutate()

dplyr streamlines adding/manipulating variables in your data frame.

Function mutate(.data, ...)

Required argument .data , an existing data frame

Additional arguments Names and values of the new variables

Output An updated data frame

Example

mutate(.data = our_df, new1 = 7, new2 = x * y)

35 / 54

mutate(.data = my_df,
 xy = x * y,
 x2 = x^2,
 xy2 = xy^2,
 is_max = x == max(x)
)

Notice mutate() returns the
original and new columns.

dplyr

mutate()

Example Take the data frame

my_df <- data.frame(x = 1:3, y = 5:7)

mutate() allows us to create many new variables with one call.

x y xy x2 xy2 is_max

1 5 5 1 25 false

2 6 12 4 144 false

3 7 21 9 441 true

36 / 54

dplyr

mutate() vs. transmute()
As their names imply, mutate() and transmute() are very similar functions.

mutate() returns the original and new columns (variables).

transmute() returns only the new columns (variables).

Note Both functions return a new object as output—they do not update the
object in R's memory. (This is the case for all functions in dplyr .)

37 / 54

dplyr

%>% and dplyr
Each dplyr function begins with a .data argument so that you can easily
pipe in data frames (recall: mutate(.data, ...)).

The common workflow in dplyr will look something like

new_df <- old_df %>% mutate(cool stuff here)

which takes old_df , does some cool stuff with mutate() , and then saves
the output of mutate() as new_df .

38 / 54

Create a dataset
some_df <- data.frame(
 x = 1:10,
 y = 11:20
)

Only keep rows where x is 3
some_df %>% filter(x == 3)

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

Example

x y

3 13

39 / 54

Create a dataset
some_df <- data.frame(
 x = 1:10,
 y = 11:20
)

Only keep rows where x > 7
some_df %>% filter(x > 7)

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

Example

x y

8 18

9 19

10 20

40 / 54

Create a dataset
some_df <- data.frame(
 x = 1:10,
 y = 11:20
)

Keep rows where y/x > 3
some_df %>% filter(y/x > 3)

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

Example

x y

1 11

2 12

3 13

4 14

41 / 54

Create a dataset
some_df <- data.frame(
 x = 1:10,
 y = 11:20
)

Keep rows where x>8 OR y<12
some_df %>%
 filter(x > 8 | y < 12)

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

Example

x y

1 11

9 19

10 20

42 / 54

Create a dataset
some_df <- data.frame(
 x = 1:10,
 y = 11:20
)

Keep rows where 16<=y<=18
some_df %>%
 filter(between(y, 16, 18))

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

Example

x y

6 16

7 17

8 18

43 / 54

Create a dataset
some_df <- data.frame(
 x = 1:10,
 y = 11:20
)

Keep rows where y > 20
some_df %>% filter(y > 20)

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

Example

If you filter your data frame down to nothing, R returns a 0-row data frame
with the names/number of columns from the original data frame.

x y

No data available in
table

44 / 54

dplyr

select()

Just as filter() grabs row-based subsets of your data frame,

select() grabs column-based subsets.

You can select columns using their names

our_df %>% select(var10, var100)

you can select columns using their numbers

our_df %>% select(10, 100)

or you can select columns using helper fuctions

our_df %>% select(starts_with("var10"))

select() helps you narrow down a dataset to its necessary features.

45 / 54

dplyr

summarize()

Hopefully you're starting to see that functions' names in dplyr tell you
what the function does.

summarize() † summarizes variables—you choose the variables and the
summaries (e.g., mean() or min()).

the_df %>% summarize(
 mean(x), mean(y), mean(z),
 min(x), max(x),
)

would return a 1×5 data frame with the means of x , y , and z ; the
minimum of x ; and the maximum of x .

† or summarise() if you ❤️ 🇬🇧 46 / 54

dplyr

summarize() and group_by()
While sample-wide summarizes are certainly interesting, dplyr has one
last gem for us: group_by() .

group_by() groups your observations by the variable(s) that you name.

Specifically, group_by() returns a grouped data frame that you can then
feed to summarize() , mutate() , or transmuate to perform grouped
calculations, e.g., each group's mean.

47 / 54

Create a new data frame
our_df <- data.frame(
 x = 1:6,
 y = c(0, 1),
 grp = rep(c("A", "B"), each = 3)
)

For dataset 'our_df'...
our_df %>%
 # Group by 'grp'
 group_by(grp) %>%
 # Take means of 'x' and 'y'
 summarize(mean(x), mean(y))

dplyr

Example: Grouped summaries

x y grp

1 0 A

2 1 A

3 0 A

4 1 B

5 0 B

6 1 B

grp mean(x) mean(y)

A 2.000 0.333

B 5.000 0.667

48 / 54

Create a new data frame
our_df <- data.frame(
 x = 1:6,
 y = c(0, 1),
 grp = rep(c("A", "B"), each = 3)
)

Add grp means for x and y
our_df %>%
 group_by(grp) %>%
 mutate(
 x_m = mean(x), y_m = mean(y)
)

dplyr

Example: Grouped mutation

x y grp

1 0 A

2 1 A

3 0 A

4 1 B

5 0 B

6 1 B

x y grp x_m y_m

1 0 A 2.000 0.333

2 1 A 2.000 0.333

3 0 A 2.000 0.333

4 1 B 5.000 0.667

5 0 B 5.000 0.667

6 1 B 5.000 0.667

49 / 54

dplyr

arrange()

arrange() will sorts the rows of a data frame using the inputted columns.

R defaults to starting with the "lowest" (smallest) at the top of the data
frame. Use a - in front of the variable's name to reverse sort.

50 / 54

As is
our_df

Arrang by y, grp, then -x
our_df %>% arrange(y, grp, -x)

x y grp

1 0 A

2 1 A

3 0 A

4 1 B

5 0 B

6 1 B

x y grp

3 0 A

1 0 A

5 0 B

2 1 A

6 1 B

4 1 B

The tidyverse
There's more! dplyr and tidyr offer even more...†

Viewing data glimpse() , top_n()
Sampling sample_n() , sample_frac()
Summaries first() , last() , nth() , n_distinct()
Duplicates distinct()
Missingness na_if() , replace_na() , drop_na() , fill()

The folks at RStudio have put together some great cheatsheets, e.g.,

dplyr

data import
data wrangling

† And these are only two of the packages in the tidyverse .
52 / 54

https://raw.githack.com/edrubin/EC524W20/master/resources/cheatsheet-dplyr.pdf
https://raw.githack.com/edrubin/EC524W20/master/resources/cheatsheet-data-import.pdf
https://raw.githack.com/edrubin/EC524W20/master/resources/cheatsheet-data-wrangling.pdf

Exercises
Some selected exercises from R for Data Science by Hadley Wickham

1. Exercise 5.2.4.1

2. Exercise 5.3.1.2, 5.3.1.3, 5.3.1.4

3. Exercise 5.5.2.4

4. Exercise 5.7.1.3

53 / 54

https://r4ds.had.co.nz/index.html
https://r4ds.had.co.nz/transform.html#exercises-8
https://r4ds.had.co.nz/transform.html#exercises-9
https://r4ds.had.co.nz/transform.html#exercises-11
https://r4ds.had.co.nz/transform.html#exercises-13

Admin

Today and upcoming

Workflow

General
RStudio
Related best practies
Projects

dplyr

Pipes
mutate

transmute()

arrange

filter()

select()

summarize

summarize() and group_by()
The tidyverse

Table of contents

54 / 54

