
Lecture 009
Support vector machines

Edward Rubin
03 March 2020



Admin

Today
Mini-survey What are you missing?
Results In-class competition
Topic Support vector machines

Upcoming
Readings

Today ISL Ch. 9
Next 100ML Ch. 6

Project Project updates/questions?

2 / 79

https://www.dropbox.com/s/uh48e6wjs4w13t5/Chapter6.pdf?dl=0


In-class competitionIn-class competition
Results



In-class competition

Submission Accuracy Precision Recall F1

brad-bailey-simple-tree-model 0.791 0.665 0.469 0.550

coia_forest 0.789 0.657 0.472 0.549

coia_net 0.789 0.651 0.486 0.557

coia_tree 0.791 0.665 0.469 0.550

Craig_Submission 0.791 0.652 0.500 0.566

DNickles_cv_logistic_1_churn 0.802 0.689 0.500 0.579

DNickles_lasso_churn 0.793 0.699 0.420 0.525

DNickles_ridge_churn 0.793 0.699 0.420 0.525

Elliott_Eli_for 0.785 0.645 0.472 0.545

Elliott_Eli_net 0.789 0.650 0.490 0.558

4 / 79



In-class competition

Comparing (trading) precision and recall (F1 = 2 × )
Precision × Recall

Precision + Recall

5 / 79



Support vector machinesSupport vector machines



Support vector machines

Intro
Support vector machines (SVMs) are a general class of classifiers that
essentially attempt to separate two classes of observations.

SVMs have been shown to perform well in a variety of settings,
and are often considered one of the best "out of the box"
classifiers. ISL, p. 337

The support vector machine generalizes a much simpler classifier—the
maximal margin classi�er.

The maximal margin classi�er attempts to separate the two classes in our
prediction space using a single hyperplane.

7 / 79



Support vector machines

What's a hyperplane?
Consider a space with  dimensions.

A hyperplane is a  dimensional subspace that is

�. flat (no curvature)
�. affine (may or may not pass through the origin)

Examples

In  dimensions, a hyperplane is a line.
In  dimensions, a hyperplane is a plane.
In  dimensions, a hyperplane is a point.

p

p − 1

p = 2

p = 3

p = 1

8 / 79



Support vector machines

Hyperplanes
We can define a hyperplane in  dimensions by constraining the linear
combination of the  dimensions.†

For example, in two dimensions a hyperplane is defined by

which is just the equation for a line.

Points  that satisfy the equality live on the hyperplane.††

p

p

† Plus some offset ("intercept") 

β0 + β1X1 + β2X2 = 0

X = (X1, X2)

 
†† Alternatively: The hyperplane is composed of such points.

9 / 79



Support vector machines

Separating hyperplanes
More generally, in  dimensions, we defined a hyperplane by

If  satisfies the equality, it is on the hyperplane.

Of course, not every point in the  dimensions will satisfy .

If , then  is above the hyperplane.

If , then  sits below the hyperplane.

The hyperplane separates the -dimensional space into two "halves".

p

β0 + β1X1 + β2X2 + ⋯ + βpXp = 0 (A)

X = (X1, X2, … , Xp)

p A

β0 + β1X1 + ⋯ + βpXp > 0 X

β0 + β1X1 + ⋯ + βpXp − 0 X

p

10 / 79



Ex: A separating hyperplane in two dimensions: 3 + 2X1 − 4X2 = 0



Ex: A separating hyperplane in 3 dimensions: 3 + 2X1 − 4X2 + 2X3 = 0

trace 0



Support vector machines

Separating hyperplanes and classification
Idea: Separate two classes of outcomes in the  dimensions of our predictor
space using a separating hyperplane.

To make a prediction for observation 

We classify points that live "above" of the plane as one class, i.e.,

If , then  Class 1

We classify points "below" the plane as the other class, i.e.,

If , then  Class 2

Note This strategy assumes a separating hyperplane exists.

p

(xo, yo) = (xo
1
, xo

2
, … , xo

p, yo) :

β0 + β1xo
1

+ ⋯ + βpxo
p > 0 ŷo =

β0 + β1xo
1

+ ⋯ + βpxo
p < 0 ŷo =

13 / 79



Support vector machines
If a separating hyperplane exists, then it defines a binary classifier.

14 / 79



Support vector machines
If a separating hyperplane exists, then many separating hyperplanes exist.

15 / 79



Support vector machines
A a separating hyperplane may not exist.

16 / 79



Support vector machines

Decisions
Summary A given hyperplane

produces a decision boundary.

We can determine any point's  side of the boundary.

We classify observationg  based upon whether  is positive/negative.

The magnitude of  tells us about our confidence in the classification.†

β0 + β1x1 + β2x2 + ⋯ + βpxp = 0

(xo)

f(xo) = β0 + β1xo
1

+ β2xo
2

+ ⋯ + βpxo
p

xo f(xo)

f(xo)

† Larger magnitudes are farther from the boundary.
17 / 79



Support vector machines

Which separating hyperplane?
Q How do we choose between the possible hyperplanes?

A One solution: Choose the separating hyperplane that is "farthest" from
the training data points—maximizing "separation."

The maximal margin hyperplane† is the hyperplane that

�. separates the two classes of obsevations
�. maximizes the margin—the distance to the nearest observation††

where distance is a point's perpendicular distance to the hyperplane.

† AKA the optimal separating hyperplane  
†† Put differently: The smallest distance to a training observation.

18 / 79



The maximal margin hyperplane...



...maximizes the margin between the hyperplane and training data...



...and is supported by three equidistant observations—the support vectors.



Support vector machines

The maximal margin hyperplane
Formally, the maximal margin hyperplane solves the problem:

Maximize the margin  over the set of  such that

for all observations .

 Ensures we separate (classify) observations correctly.

 allows us to interpret  as "distance from the hyperplane".

M {β0, β1, … , βp, M}

p

∑
j=1

β2
j = 1 (1)

yi (β0 + β1xi1 + β2xi2 + ⋯ + βpxip) ≥ M (2)

i

(2)

(1) (2)

22 / 79



Support vector machines

Fake constraints
Note that our first "constraint"

does not actually constrain  (or the hyperplane).

If we can define a hyperplane by

then we can also rescale the same hyperplane with some constant 

p

∑
j=1

β2
j = 1 (1)

−1 ≤ βj ≤ 1

β0 + β1xi,1 + β2xi,2 + ⋯ + βpxi,p = 0

k

k (β0 + β1xi,1 + β2xi,2 + ⋯ + βpxi,p) = 0

23 / 79



Support vector machines

The maximal margin classifier
The maximal margin hyperplane produces the maximal margin classi�er.

Notes

�. We are doing binary classification.

�. The decision boundary only uses the support vectors—very sensitive.

�. This classifier can struggle in large dimensions (big ).

�. A separating hyperplane does not always exist (non-separable).

�. Decision boundaries can be nonlinear.

p

24 / 79



Let's start by addressing non-separability...



Surely there's still a decent hyperplane-based classifier here, right?



Support vector machines

Soft margins
When we cannot perfectly separate our classes, we can use soft margins,
which are margins that "accept" some number of observations.

The idea: We will allow observations to be

�. in the margin
�. on the wrong side of the hyperplane

but each will come with a price.

Using these soft margins, we create a hyperplane-based classifier called
the support vector classi�er.†

† Also called the soft margin classifier.
27 / 79



Our underlying population clearly does not have a separating hyperplane.



Our sample population also does not have a separating hyperplane.



Our hyperplane



Our hyperplane with soft margins...



Our hyperplane with soft margins and support vectors.



Support vectors: on (i) the margin or (ii) on the wrong side of the margin.



Support vector machines

Support vector classifier
The support vector classi�er selects a hyperplane by solving the problem

Maximize the margin  over the set  s.t.

The  are slack variables that allow  to violate the margin or hyperplane.
 gives is our budget for these violations.

M {β0, β1, … , βp, ϵ1, … , ϵn, M}

p

∑
j=1

β2
j = 1 (3)

yi (β0 + β1xi1 + β2xi2 + ⋯ + βpxip) ≥ M (1 − ϵi) (4)

ϵi ≥ 0,
n

∑
i=1

ϵi ≤ C (5)

ϵi i

C

34 / 79



Let's consider constraints  and  work together...(4) (5)

yi (β0 + β1xi1 + β2xi2 + ⋯ + βpxip) ≥ M (1 − ϵi) (4)

ϵi ≥ 0,
n

∑
i=1

ϵi ≤ C (5)



For 

Correct side of
hyperplane
Correct side of
margin 
(or on margin)
No cost 
Distance 
Examples? 

yi (β0 + β1xi1 + β2xi2 + ⋯ + βpxip) ≥ M (1 − ϵi) , ϵi ≥ 0,
n

∑
i=1

ϵi ≤ C

ϵi = 0 :

M (1 − ϵi) > 0

(C)

≥ M

(×)



For 

Correct side of
hyperplane
Correct side of
margin 
(or on margin)
No cost 
Distance 
Correct side of
margin: 
On margin: 1, 6, 9

yi (β0 + β1xi1 + β2xi2 + ⋯ + βpxip) ≥ M (1 − ϵi) , ϵi ≥ 0,
n

∑
i=1

ϵi ≤ C

ϵi = 0 :

M (1 − ϵi) > 0

(C)

≥ M

(×)



For 

Correct side of
hyperplane
Wrong side of the
margin 
(violates margin)
Pays cost 
Distance 
Examples?

yi (β0 + β1xi1 + β2xi2 + ⋯ + βpxip) ≥ M (1 − ϵi) , ϵi ≥ 0,
n

∑
i=1

ϵi ≤ C

0 ≤ ϵi ≤ 1 :

M (1 − ϵi) > 0

ϵi

< M



For 

Correct side of
hyperplane
Wrong side of the
margin 
(violates margin)
Pays cost 
Distance 
Ex: 2, 3

yi (β0 + β1xi1 + β2xi2 + ⋯ + βpxip) ≥ M (1 − ϵi) , ϵi ≥ 0,
n

∑
i=1

ϵi ≤ C

0 ≤ ϵi ≤ 1 :

M (1 − ϵi) > 0

ϵi

< M



For 

Wrong side of
hyperplane
Pays cost 
Distance 
Examples?

yi (β0 + β1xi1 + β2xi2 + ⋯ + βpxip) ≥ M (1 − ϵi) , ϵi ≥ 0,
n

∑
i=1

ϵi ≤ C

ϵi ≥ 1 :

M (1 − ϵi) < 0

ϵi

⪋ M



For 

Wrong side of
hyperplane
Pays cost 
Distance 
Ex: 4, 5, 7, 8

yi (β0 + β1xi1 + β2xi2 + ⋯ + βpxip) ≥ M (1 − ϵi) , ϵi ≥ 0,
n

∑
i=1

ϵi ≤ C

ϵi ≥ 1 :

M (1 − ϵi) < 0

ϵi

⪋ M



Support vectors

On margin
Violate margin
Wrong side of
hyperplane

determine the
classifier.

yi (β0 + β1xi1 + β2xi2 + ⋯ + βpxip) ≥ M (1 − ϵi) , ϵi ≥ 0,
n

∑
i=1

ϵi ≤ C



Case 1: 

We allow no violations.
Maximal margin hyperplane.
Trains on few obs.

Case 2: 

 violations of hyperplane.
Softens margins
Larger  uses more obs.

Support vector machines

Support vector classifier
The tuning parameter  determines how much slack we allow.

 is our budget for violating the margin—including observations on the
wrong side of the hyperplane.

We tune  via CV to balance low bias (low ) and low variance (high ).

C

C

C = 0 C > 0

≤ C

C

C C C

43 / 79



Starting with a low budget .(C)



Now for a high budget .(C)



The support-vector classifier extends the maximal-margin classifier:

�. Allowing for misclassification

Observations on the wrong side of the hyperplane.
Situations where there is no separating hyperplane.

�. Permitting violations of the margin.

�. Typically using more observations to determine decision boundary.



However, we still are using a (single) linear boundary between our classes.



Ex: Some data



Ex: Some data don't really work with linear decision boundaries.



Ex: Some data may have non-linear decision boundaries.



Ex: We could probably do even better with more flexibility.



Support vector machines

Flexibility
In the regression setting, we increase our model's flexiblity by adding
polynomials in our predictors, e.g., .

We can apply a very similar idea to our support vector classifier.

Previously: Train the classifier on .

Idea: Train the classifier on  (and so on).

The new classifier has a linear decision boundary in the expanded space.

The boundary is going to be nonlinear within the original space.

ŷ i = β̂0 + β̂1xi + β̂2x2
i + β̂3x3

i

X1, X2, … , Xp

X1, X2
1
, X2, X2

2
… , Xp, X2

p

52 / 79



Support vector machines

Introducing
The support vector machine runs with this idea of expanded flexiblity.

(Why stop at quadratic functions—or polynomials?)

Support vector machines train a support vector classifier on expanded
feature† spaces that result from applying kernels to the original features.

† feature = predictor
53 / 79



Support vector machines

Dot products
It turns out that solving the support vector classifier only involves the 
dot product of our observations.

The dot product of two vectors is defined as

Ex: The dot product of  = (1,2) and  = (3,4) is  = 1×3 + 2×4 = 11.

Dot products are often pitched as a measure of two vectors' similarity.

⟨a, b⟩ = a1b1 + a2b2 + ⋯ + apbp =

p

∑
i=1

aibi

a b ⟨a, b⟩

54 / 79



Support vector machines

Dot products and the SVC
We can write the linear support vector classifier as

and we fit the   and  with the training observations' dot products.†

As you might guess,  only for support-vector obsevations.

f(x) = β0 +
n

∑
i=1

αi⟨x, xi⟩

(n) αi β0

† The actually fitting is beyond what we're doing today.

αi ≠ 0

55 / 79



Support vector machines

Generalizing
Recall: Linear support vector classifier 

Support vector machines generalize this linear classifier by simply replacing
 with (non-linear) kernel functions† .

These magical kernel functions are various ways to measure similarity
between observations.

Linear kernel:   (back to SVC)

Polynomial kernel: 

Radial kernel: 

f(x) = β0 + ∑n
i=1

αi⟨x, xi⟩

⟨x, xi⟩ K(xi, xi′)

† Or just kernels.

K(xi, xi′) = ∑p
i=1

xi,jxi′,j

K(xi, xi′) = (1 + ∑p

i=1
xi,jxi′,j)

2

K(xi, xi′) = exp(−γ∑p

j=1
(xi,j − xi′,j)

2
)

56 / 79



Our example data.



With a linear kernel plus and interaction between  and .†X1 X2

† Exciting!!



Polynomial kernel (of degree 2).



And now for the radial kernel!



Very small  forces radial kernel to be even more local.γ



Support vector machines

More generalizing
So why make a big deal of kernels? Anyone can transform variables.

While anyone can transform variables, you cannot transform variables to
cover all spaces that our kernels cover.

For example, the feature space of the radial kernel is infinite dimensional.†

† And implicit
62 / 79



Support vector machines

In R
As you probably guessed, caret  offers many SVM options.

Two common popular R packages: kernlab  and e1071 .

caret  offers linear, polynomial, and radial kernels for both packages.

You can also find more kernels in the actual packages (or other packages).

63 / 79



# Set a seed
set.seed(12345)
# Tune linear SVM
svm_lin = train(
  above_fac ~ x1 + x2 + x1:x2,
  data = nonlin_dt,
  method = "svmLinear",
  scaled = T,
  trControl = trainControl(
    method = "cv",
    number = 5
  ),
  tuneGrid = data.frame(
    C = 10^seq(-3, 2, by = 0.5)
  )
)
# Predict
predict(svm_linear, newdata = test_dt)

Interactions!

Example: An SVM with a linear kernel—tuning, training, predicting.



# Set a seed
set.seed(12345)
# Tune linear SVM
svm_lin = train(
  above_fac ~ x1 + x2 + x1:x2,
  data = nonlin_dt,
  method = "svmLinear",
  scaled = T,
  trControl = trainControl(
    method = "cv",
    number = 5
  ),
  tuneGrid = data.frame(
    C = 10^seq(-3, 2, by = 0.5)
  )
)
# Predict
predict(svm_linear, newdata = test_dt)

Interactions!

Method: "svmLinear"  ( kernlab )

Example: An SVM with a linear kernel—tuning, training, predicting.



# Set a seed
set.seed(12345)
# Tune linear SVM
svm_lin = train(
  above_fac ~ x1 + x2 + x1:x2,
  data = nonlin_dt,
  method = "svmLinear",
  scaled = T,
  trControl = trainControl(
    method = "cv",
    number = 5
  ),
  tuneGrid = data.frame(
    C = 10^seq(-3, 2, by = 0.5)
  )
)
# Predict
predict(svm_linear, newdata = test_dt)

Interactions!

Method: "svmLinear"  ( kernlab )

One tuning param: cost

Example: An SVM with a linear kernel—tuning, training, predicting.



# Set a seed
set.seed(12345)
# Tune polynomial SVM
svm_poly = train(
  above_fac ~ x1 + x2,
  data = nonlin_dt,
  method = "svmPoly",
  scaled = T,
  trControl = trainControl(
    method = "cv",
    number = 5
  ),
  tuneGrid = expand.grid(
    degree = 2:4,
    scale = 1,
    C = 10^seq(-2, 1, by = 0.5)
  )
)
# Predict
predict(svm_poly, newdata = test_dt)

Method: "svmPoly"  ( kernlab )

Example: An SVM with a polynomial kernel—tuning, training, predicting.



# Set a seed
set.seed(12345)
# Tune polynomial SVM
svm_poly = train(
  above_fac ~ x1 + x2,
  data = nonlin_dt,
  method = "svmPoly",
  scaled = T,
  trControl = trainControl(
    method = "cv",
    number = 5
  ),
  tuneGrid = expand.grid(
    degree = 2:4,
    scale = 1,
    C = 10^seq(-2, 1, by = 0.5)
  )
)
# Predict
predict(svm_poly, newdata = test_dt)

Method: "svmPoly"  ( kernlab )

Scale (and center) variables?

Example: An SVM with a polynomial kernel—tuning, training, predicting.



# Set a seed
set.seed(12345)
# Tune polynomial SVM
svm_poly = train(
  above_fac ~ x1 + x2,
  data = nonlin_dt,
  method = "svmPoly",
  scaled = T,
  trControl = trainControl(
    method = "cv",
    number = 5
  ),
  tuneGrid = expand.grid(
    degree = 2:4,
    scale = 1,
    C = 10^seq(-2, 1, by = 0.5)
  )
)
# Predict
predict(svm_poly, newdata = test_dt)

Method: "svmPoly"  ( kernlab )

Scale (and center) variables?

Tuning parameters:

Polynomial degree

Example: An SVM with a polynomial kernel—tuning, training, predicting.



# Set a seed
set.seed(12345)
# Tune polynomial SVM
svm_poly = train(
  above_fac ~ x1 + x2,
  data = nonlin_dt,
  method = "svmPoly",
  scaled = T,
  trControl = trainControl(
    method = "cv",
    number = 5
  ),
  tuneGrid = expand.grid(
    degree = 2:4,
    scale = 1,
    C = 10^seq(-2, 1, by = 0.5)
  )
)
# Predict
predict(svm_poly, newdata = test_dt)

Method: "svmPoly"  ( kernlab )

Scale (and center) variables?

Tuning parameters:

Polynomial degree
scale  dotproduct in 

Example: An SVM with a polynomial kernel—tuning, training, predicting.

K(⋅)



# Set a seed
set.seed(12345)
# Tune polynomial SVM
svm_poly = train(
  above_fac ~ x1 + x2,
  data = nonlin_dt,
  method = "svmPoly",
  scaled = T,
  trControl = trainControl(
    method = "cv",
    number = 5
  ),
  tuneGrid = expand.grid(
    degree = 2:4,
    scale = 1,
    C = 10^seq(-2, 1, by = 0.5)
  )
)
# Predict
predict(svm_poly, newdata = test_dt)

Method: "svmPoly"  ( kernlab )

Scale (and center) variables?

Tuning parameters:

Polynomial degree
scale  dotproduct in 
cost ( C )

Example: An SVM with a polynomial kernel—tuning, training, predicting.

K(⋅)



# Set a seed
set.seed(12345)
# Tune radial
svm_radial = train(
  above_fac ~ x1 + x2,
  data = nonlin_dt,
  method = "svmRadial",
  scaled = T,
  trControl = trainControl(
    method = "cv",
    number = 5
  ),
  tuneGrid = expand.grid(
    sigma = c(0.1, 1, 5, 10, 20),
    C = 10^seq(-2, 1, by = 1)
  )
)
# Predict
predict(svm_radial, newdata = test_dt)

Method: "svmRadial"

Example: An SVM with a radial kernel—tuning, training, predicting.



# Set a seed
set.seed(12345)
# Tune radial
svm_radial = train(
  above_fac ~ x1 + x2,
  data = nonlin_dt,
  method = "svmRadial",
  scaled = T,
  trControl = trainControl(
    method = "cv",
    number = 5
  ),
  tuneGrid = expand.grid(
    sigma = c(0.1, 1, 5, 10, 20),
    C = 10^seq(-2, 1, by = 1)
  )
)
# Predict
predict(svm_radial, newdata = test_dt)

Method: "svmRadial"

Scale (and center) variables?

Example: An SVM with a radial kernel—tuning, training, predicting.



# Set a seed
set.seed(12345)
# Tune radial
svm_radial = train(
  above_fac ~ x1 + x2,
  data = nonlin_dt,
  method = "svmRadial",
  scaled = T,
  trControl = trainControl(
    method = "cv",
    number = 5
  ),
  tuneGrid = expand.grid(
    sigma = c(0.1, 1, 5, 10, 20),
    C = 10^seq(-2, 1, by = 1)
  )
)
# Predict
predict(svm_radial, newdata = test_dt)

Method: "svmRadial"

Scale (and center) variables?

Tuning parameters (CV)

sigma : radial param.
C : cost

Example: An SVM with a radial kernel—tuning, training, predicting.



Note: Costs have units. You often want to center/scale your variables.



Support vector machines

Multi-class classification
You will commonly see SVMs applied in settings with  classes.

What can we do? We have options!

One-versus-one classi�cation

Compares each pair of classes, one pair at a time.
Final prediction comes from the most-common pairwise prediction.

One-versus-all classi�cation

Fits  unique SVMs—one for each class:  vs. not .
Predicts the class for which  is largest.

K > 2

K k k

fk(x)

76 / 79



SVM

More material
Visualizing decision boundaries

From scikit�learn
From sub-subroutine

The kernlab  paper (describes kernel parameters)

A Practical Guide to Support Vector Classification

Coming up: A nice neural-net video

77 / 79

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
http://www.subsubroutine.com/sub-subroutine/2016/2/15/understanding-machine-learning-techniques-by-the-decision-boundaries-they-are-capable-of
https://cran.r-project.org/web/packages/kernlab/vignettes/kernlab.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.youtube.com/watch?v=aircAruvnKk


Sources
These notes draw upon

An Introduction to Statistical Learning (ISL)
James, Witten, Hastie, and Tibshirani

78 / 79

http://faculty.marshall.usc.edu/gareth-james/ISL/


Admin

Today and upcoming
In-class competition

Other

More materials
Sources/references

SVM

�. Intro
�. Hyperplanes
�. Hyperplanes and classification
�. Which hyperplane? (The maximal margin)
�. Soft margins
�. The support vector classifier
�. Support vector machines

Intro
Dot products
Generalization
In R

�. Multi-class classification

Table of contents

79 / 79


