
Lecture 008
Ensembles 🌲🌲🌲🎄🌲

Edward Rubin
25 February 2020

Admin

Today
Mini-survey What are you missing?
Topic Ensembles (applied to decision trees)

Upcoming
Readings

Today ISL Ch. 8.2
Next ISL Ch. 9

Project Project topic was due Friday.

2 / 36

Decision treesDecision trees
Review

Regression trees

Predict: Region's mean
Split: Minimize RSS
Prune: Penalized RSS

Classification trees

Predict: Region's mode
Split: Min. Gini or entropy.super
Prune: Penalized error rate🌴

Decision trees

Fundamentals
Decision trees

split the predictor space (our) into regions
then predict the most-common value within a region

An additional nuance for classi�cation trees: we typically care about the
proportions of classes in the leaves—not just the final prediction.

X

🌴 ... or Gini index or entropy
4 / 36

Example Each split in our tree creates regions.

Example Each region has its own predicted value.

Strengths
+ Easily explained/interpretted
+ Include several graphical options
+ Mirror human decision making?
+ Handle num. or cat. on LHS/RHS🌳

Weaknesses
- Outperformed by other methods
- Struggle with linearity
- Can be very "non-robust"

Decision trees

Strengths and weaknesses
As with any method, decision trees have tradeoffs.

Non-robust: Small data changes can cause huge changes in our tree.

Next: Create ensembles of trees🌲 to strengthen these weaknesses.🌴

🌳 Without needing to create lots of dummy variables!
🌲 Forests!

 🌴 Which will also weaken some of the strengths.

8 / 36

Ensemble methodsEnsemble methods

Ensemble methods

Intro
Rather than focusing on training a single, highly accurate model,
ensemble methods combine many low-accuracy models into a meta-model.

Today: Three common methods for combining individual trees

�. Bagging

�. Random forests

�. Boosting

Why? While individual trees may be highly variable and inaccurate,
a combination of trees is often quite stable and accurate.🌲

🌲 We will lose interpretability.
10 / 36

Ensemble methods

Bagging
Bagging creates additional samples via bootstrapping.

Q How does bootstrapping help?

A Recall: Individual decision trees suffer from variability (non-robust).

This non-robustness means trees can change a lot based upon which
observations are included/excluded.

We're essentially using many "draws" instead of a single one.🌴

🌴 Recall that an estimator's variance typically decreases as the sample size increases.
11 / 36

https://raw.githack.com/edrubin/EC524W20/master/lecture/003/003-slides.html#62

Ensemble methods

Bagging
Bootstrap aggregation (bagging) reduces this type of variability.

�. Create bootstrapped samples

�. Train an estimator (tree) on each of the samples

�. Aggregate across your bootstrapped models:

This aggregated model is your final model.

B

f̂ b(x) B

B

f̂ bag(x) =
B

∑
b=1

f̂ b(x)
1

B

f̂ bag(x)

12 / 36

Ensemble methods

Bagging trees
When we apply bagging to decision trees,

we typically grow the trees deep and do not prune

for regression, we average across the trees' regions

for classification, we have more options—but often take plurality

Individual (unpruned) trees will be very flexible and noisy,
but their aggregate will be quite stable.

The number of trees is generally not critical with bagging.
 often works fine.

B

B

B = 100

13 / 36

Ensemble methods

Out-of-bag error estimation
Bagging also offers a convenient method for evaluating performance.

For any bootstrapped sample, we omit ~n/3 observations.

Out-of-bag (OOB) error estimation estimates the test error rate using
observations randomly omitted from each bootstrapped sample.

For each observation :

�. Find all samples in which was omitted from training.

�. Aggregate the predictions , e.g., using their mean or mode

�. Calculate the error, e.g.,

i

Si i

|Si| f̂ b(xi)

yi − f̂ i,OOB,i(xi)

14 / 36

Ensemble methods

Out-of-bag error estimation
When is big enough, the OOB error rate will be very close to LOOCV.

Q Why use OOB error rate?

A When and are large, cross validation—with any number of folds—can
become pretty computationally intensive.

B

B n

15 / 36

Option 1: method = "treebag"

Applied to train()
No tuning parameter
nbagg = number of trees
keepX = T is necessary
method = "oob" for OOB error

Train a bagged tree model
train(
 y ~ .,
 data = fake_df,
 method = "treebag",
 nbagg = 100,
 keepX = T,
 trControl = trainControl(
 method = "oob"
)
)

Ensemble methods

Bagging in R
We can use our old friend, the caret package, for bagging trees.

Option 2: caret 's bag() function extends bagging to many methods.

16 / 36

With OOB-based error

Set the seed
set.seed(12345)
Train the bagged trees
heart_bag = train(
 heart_disease ~ .,
 data = heart_df,
 method = "treebag",
 nbagg = 100,
 keepX = T,
 trControl = trainControl(
 method = "oob"
)
)

With CV-based error

Set the seed
set.seed(12345)
Train the bagged trees
heart_bag_cv = train(
 heart_disease ~ .,
 data = heart_df,
 method = "treebag",
 nbagg = 100,
 keepX = T,
 trControl = trainControl(
 method = "cv",
 number = 5
)
)

Ensemble methods

Example: Bagging in R

17 / 36

Bagging and the number of trees

Ensemble methods

Variable importance
While ensemble methods tend to improve predictive performance,
they also tend reduce interpretability.

We can illustrate variables' importance by considering their splits'
reductions in the model's performance metric (RSS, Gini, entropy, etc.).🌳

In R, we can use caret 's varImp() function to calculate variable important.

Note By default, varImp() will scale improtance between 0 and 100.

🌳 This idea isn't exclusive to bagging/ensembles—we can (and do) apply it to a single
tree.

19 / 36

Variable importance from our bagged tree model.

Ensemble methods

Bagging
Bagging has one additional shortcoming...

If one variable dominates other variables, the trees will be very correlated.

If the trees are very correlated, then bagging loses its advantage.

Solution We should make the trees less correlated.

21 / 36

Ensemble methods

Random forests
Random forests improve upon bagged trees by decorrelating the trees.

In order to decorrelate its trees, a random forest only considers a random
subset of predictors when making each split (for each tree).

Restricting the variables our tree sees at a given split

nudges trees away from always using the same variables,

increasing the variation across trees in our forest,

which potentially reduces the variance of our estimates.

If our predictors are very correlated, we may want to shrink .

m (≈ √p)

m

22 / 36

Ensemble methods

Random forests
Random forests thus introduce two dimensions of random variation

�. the bootstrapped sample

�. the randomly selected predictors

Everything else about random forests works just as it did with bagging.🎄

m

🎄 And just as it did with plain, old decision trees.
23 / 36

Ensemble methods

Random forests in R
You have many options for training random forests in R.
E.g., party , Rborist , ranger , randomForest .

caret offers access to each of these packages via train .

E.g., method = "rf" or method = "ranger"

The argument mtry gives the number of predictors at each split.🌲

Some methods have additional parameters, e.g., ranger needs
minimal node size min.node.size
a splitting rule splitrule .

🌲 predFixed for Rborist .
24 / 36

http://topepo.github.io/caret/train-models-by-tag.html#Random_Forest

... and ranger

Specify "ranger" for method
Number of trees: num.trees
We can still use OOB for error
Parameters to choose/train

�. , # of predictors at a split
�. the rule for splitting
�. minimum size for a leaf

Set the seed
set.seed(12345)
Train the random forest
heart_forest = train(
 heart_disease ~ .,
 data = heart_df,
 method = "ranger",
 num.trees = 100,
 trControl = trainControl(
 method = "oob"
),
 tuneGrid = expand.grid(
 "mtry" = 2:13,
 "splitrule" = "gini",
 "min.node.size" = 1:10
)
)

Ensemble methods
Training a random forest in R using caret ...

m

25 / 36

Accuracy (OOB) across the grid of our parameters.

Tree ensembles and the number of trees

Ensemble methods

Boosting
So far, the elements of our ensembles have been acting independently:
any single tree knows nothing about the rest of the forest.

Boosting allows trees to pass on information to eachother.

Specifically, boosting trains its trees🌲 sequentially—each new tree trains on
the residuals (mistakes) from its predecessors.

We add each new tree to our model (and update our residuals).

Trees are typically small—slowly improving where it struggles.

🌲 As with bagging, boosting can be applied to many methods (in addition to trees).

f̂

f̂

28 / 36

Ensemble methods

Boosting
Boosting has three tuning parameters.

�. The number of trees can be important to prevent overfitting.

�. The shrinkage parameter , which controls boosting's learning rate
(often 0.01 or 0.001).

�. The number of splits in each tree (trees' complexity).

Individaul trees are typically short—often ("stumps").

Remember Trees learn from predecessors' mistakes,
so no single tree needs to offer a perfect model.

B

λ

d

d = 1

29 / 36

Ensemble methods

How to boost
Step 1: Set , which yields residuals for all .

Step 2: For do:

A. Fit a tree with splits.

B. Update the model with "shrunken version" of new treee

C. Update the residuals: .

Step 3: Output the boosted model: .

f̂ (x) = 0 ri = yi i

b = 1, 2 … , B

f̂ b d

f̂ f̂ b

f̂ (x) ← f̂ (x) + λ f̂ b(x)

ri ← ri − λ f̂ b(x)

f̂ (x) = ∑
b
λ f̂ b(x)

30 / 36

Ensemble methods

Boosting in R
We will use caret 's method = "gbm" to train boosted trees.🌴

gbm needs the three standard parameters of boosted trees—plus one more:

�. n.trees , the number of trees

�. interaction.depth , trees' depth (max. splits from top)

�. shrinkage , the learning rate

�. n.minobsinnode , minimum observations in a terminal node

🌴 This method uses the gbm package.

(B)

(λ)

31 / 36

Set the seed
set.seed(12345)
Train the random forest
heart_boost = train(
 heart_disease ~ .,
 data = heart_df,
 method = "gbm",
 trControl = trainControl(
 method = "cv",
 number = 5
),
 tuneGrid = expand.grid(
 "n.trees" = seq(25, 200, by = 25),
 "interaction.depth" = 1:3,
 "shrinkage" = c(0.1, 0.01, 0.001),
 "n.minobsinnode" = 5
)
)

boosted trees via gbm package
cross validation now (no OOB)
CV-search of parameter grid

number of trees
tree depth (complexity)
shrinkage (learing rate)
minimum leaf size
(not searching here)

Ensemble methods

Boosting in R

32 / 36

Comparing boosting parameters—notice the rates of learning

Tree ensembles and the number of trees

Sources
These notes draw upon

An Introduction to Statistical Learning (ISL)
James, Witten, Hastie, and Tibshirani

35 / 36

http://faculty.marshall.usc.edu/gareth-james/ISL/

Admin

Today and upcoming

Decision trees

�. Fundamentals
�. Strengths and weaknesses

Other

Sources/references

Ensemble methods

�. Introduction
�. Bagging

Introduction
Algorithm
Out-of-bag
In R
Variable importance

�. Random forests
Introduction
In R

�. Boosting
Introduction
Parameters
Algorithm
In R

Table of contents

36 / 36

