Lecture 008 Ensembles

Edward Rubin 25 February 2020

Admin

Today

- *Mini-survey* What are you missing?
- Topic Ensembles (applied to decision trees)

Upcoming

Readings

- Today ISL Ch. 8.2
- Next ISL Ch. 9

Project Project topic was due Friday.

Decision trees

Review

Decision trees

Fundamentals

Decision trees

- split the *predictor space* (our \mathbf{X}) into regions
- then predict the most-common value within a region

Regression trees

- Predict: Region's mean
- **Split:** Minimize RSS
- Prune: Penalized RSS

Classification trees

- **Predict:** Region's mode
- **Split:** Min. Gini or entropy.super
- Prune: Penalized error rate¹

An additional nuance for **classification trees**: we typically care about the **proportions of classes in the leaves**—not just the final prediction.

🌴 ... or Gini index or entropy

Example Each split in our tree creates **regions**.

Example Each region has its own **predicted value**.

Decision trees

Strengths and weaknesses

As with any method, decision trees have tradeoffs.

Strengths

- + Easily explained/interpretted
- + Include several graphical options
- + Mirror human decision making?
- + Handle num. or cat. on LHS/RHS[♥]

Weaknesses

- Outperformed by other methods
- Struggle with linearity
- Can be very "non-robust"

Non-robust: Small data changes can cause huge changes in our tree.

Next: Create ensembles of trees st to strengthen these weaknesses. $^{ au}$

Without needing to create lots of dummy variables!

Forests! $\uparrow \uparrow$ Which will also weaken some of the strengths.

Intro

Rather than focusing on training a **single**, highly accurate model, **ensemble methods** combine **many** low-accuracy models into a *meta-model*.

Today: Three common methods for **combining individual trees**

- 1. Bagging
- 2. Random forests
- 3. Boosting

Why? While individual trees may be highly variable and inaccurate, a combination of trees is often quite stable and accurate.⁴

Bagging

Bagging creates additional samples via **bootstrapping**.

Q How does bootstrapping help?

A *Recall:* Individual decision trees suffer from variability (*non-robust*).

This *non-robustness* means trees can change *a lot* based upon which observations are included/excluded.

We're essentially using many "draws" instead of a single one. $^{ au}$

Bagging

Bootstrap aggregation (bagging) reduces this type of variability.

- 1. Create B bootstrapped samples
- 2. Train an estimator (tree) $\hat{f}^b(x)$ on each of the B samples
- 3. Aggregate across your B bootstrapped models:

$$\hat{f}_{ ext{ bag}}(x) = rac{1}{B}\sum_{b=1}^B \hat{f}^b(x)$$

This aggregated model $\hat{f}_{\text{bag}}(x)$ is your final model.

Bagging trees

When we apply bagging to decision trees,

- we typically grow the trees deep and do not prune
- for **regression**, we **average** across the *B* trees' regions
- for **classification**, we have more options—but often take **plurality**

Individual (unpruned) trees will be very **flexible** and **noisy**, but their **aggregate** will be quite **stable**.

The number of trees B is generally not critical with bagging. B = 100 often works fine.

Out-of-bag error estimation

Bagging also offers a convenient method for evaluating performance.

For any bootstrapped sample, we omit $\sim n/3$ observations.

Out-of-bag (OOB) error estimation estimates the test error rate using observations **randomly omitted** from each bootstrapped sample.

For each observation *i*:

- 1. Find all samples S_i in which i was omitted from training.
- 2. Aggregate the $|S_i|$ predictions $\hat{f}^b(x_i)$, e.g., using their mean or mode
- 3. Calculate the error, e.g., $y_i {\hat f}_{i,{
 m OOB},i}(x_i)$

Out-of-bag error estimation

When *B* is big enough, the OOB error rate will be very close to LOOCV.

Q Why use OOB error rate?

A When *B* and *n* are large, cross validation—with any number of folds—can become pretty computationally intensive.

Bagging in R

We can use our old friend, the caret package, for bagging trees.

Option 1: method = "treebag"

- Applied to train()
- No tuning parameter
- nbagg = number of trees
- keepX = T is necessary
- method = "oob" for OOB error

```
# Train a bagged tree model
train(
    y ~ .,
    data = fake_df,
    method = "treebag",
    nbagg = 100,
    keepX = T,
    trControl = trainControl(
        method = "oob"
    )
)
```

Option 2: caret 's bag() function extends bagging to many methods.

Example: Bagging in R

With OOB-based error

```
# Set the seed
set.seed(12345)
# Train the bagged trees
heart_bag = train(
    heart_disease ~ .,
    data = heart_df,
    method = "treebag",
    nbagg = 100,
    keepX = T,
    trControl = trainControl(
    method = "oob"
    )
)
```

With CV-based error

```
# Set the seed
set.seed(12345)
# Train the bagged trees
heart_bag_cv = train(
    heart_disease ~ .,
    data = heart_df,
    method = "treebag",
    nbagg = 100,
    keepX = T,
    trControl = trainControl(
    method = "cv",
    number = 5
    )
)
```

Bagging and the number of trees

[Method, Estimate] — Bagged, CV — Bagged, OOB

Variable importance

While ensemble methods tend to **improve predictive performance**, they also tend **reduce interpretability**.

We can illustrate **variables' importance** by considering their splits' reductions in the model's performance metric (RSS, Gini, entropy, *etc*.).

In R, we can use caret's varImp() function to calculate variable important.

Note By default, varImp() will scale improtance between 0 and 100.

This idea isn't exclusive to bagging/ensembles—we can (and do) apply it to a single tree.

Variable importance from our bagged tree model.

Bagging

Bagging has one additional shortcoming...

If one variable dominates other variables, the **trees will be very correlated**.

If the trees are very correlated, then bagging loses its advantage.

Solution We should make the trees less correlated.

Random forests

Random forests improve upon bagged trees by *decorrelating* the trees.

In order to decorrelate its trees, a random forest only considers a random subset of $m~(\approx \sqrt{p})$ predictors when making each split (for each tree).

Restricting the variables our tree sees at a given split

- nudges trees away from always using the same variables,
- increasing the variation across trees in our forest,
- which potentially reduces the variance of our estimates.

If our predictors are very correlated, we may want to shrink m.

Random forests

Random forests thus introduce **two dimensions of random variation**

- 1. the **bootstrapped sample**
- 2. the m randomly selected predictors

Everything else about random forests works just as it did with bagging.⁴

Random forests in R

You have many options for training random forests in R. E.g., party, Rborist, ranger, randomForest.

caret offers access to each of these packages via train.

- *E.g.*, method = "rf" Or method = "ranger"
- The argument mtry gives the number of predictors at each split.⁴
- Some methods have additional parameters, *e.g.*, *ranger* needs
 - minimal node size min.node.size
 - a splitting rule splitrule.

Training a random forest in R using caret ...

... and ranger

- Specify "ranger" for method
- Number of trees: num.trees
- We can still use OOB for error
- Parameters to choose/train
 - 1. *m*, *#* of predictors at a split
 - 2. the rule for splitting
 - 3. minimum size for a leaf

```
# Set the seed
set.seed(12345)
# Train the random forest
heart forest = train(
  heart disease ~ .,
  data = heart df,
  method = "ranger",
  num.trees = 100.
  trControl = trainControl(
    method = "oob"
  ).
  tuneGrid = expand.grid(
    "mtrv" = 2:13.
    "splitrule" = "gini",
    "min.node.size" = 1:10
```

Accuracy (OOB) across the grid of our parameters.

Tree ensembles and the number of trees

[Method, Estimate] — Bagged, CV — Bagged, OOB — Random forest, CV — Random forest

Boosting

So far, the elements of our ensembles have been acting independently: any single tree knows nothing about the rest of the forest.

Boosting allows trees to pass on information to eachother.

Specifically, **boosting** trains its trees^{*} *sequentially*—each new tree trains on the residuals (mistakes) from its predecessors.

- We add each new tree to our model \hat{f} (and update our residuals).
- Trees are typically small—slowly improving \hat{f} where it struggles.

As with bagging, boosting can be applied to many methods (in addition to trees).

Boosting

Boosting has three **tuning parameters**.

- 1. The **number of trees** *B* can be important to prevent overfitting.
- 2. The **shrinkage parameter** λ , which controls boosting's *learning rate* (often 0.01 or 0.001).
- 3. The **number of splits** *d* in each tree (trees' complexity).
 - Individaul trees are typically short—often d = 1 ("stumps").
 - *Remember* Trees learn from predecessors' mistakes, so no single tree needs to offer a perfect model.

How to boost

Step 1: Set $\hat{f}(x) = 0$, which yields residuals $r_i = y_i$ for all *i*.

Step 2: For b = 1, 2 ..., B do:

A. Fit a tree \hat{f}^b with d splits.

B. Update the model \hat{f} with "shrunken version" of new treee \hat{f}^b

$$\hat{f}\left(x
ight) \leftarrow \hat{f}\left(x
ight) + \lambda\,\hat{f^{b}}(x)$$

C. Update the residuals: $r_i \leftarrow r_i - \lambda \, \hat{f^b}(x)$.

Step 3: Output the boosted model: $\hat{f}(x) = \sum_b \lambda \, \hat{f}^b(x)$.

Boosting in R

We will use caret's method = "gbm" to train boosted trees."

gbm needs the three standard parameters of boosted trees—plus one more:

- 1. n.trees, the number of trees (B)
- 2. interaction.depth, trees' depth (max. splits from top)
- 3. shrinkage, the learning rate (λ)
- 4. n.minobsinnode, minimum observations in a terminal node

Boosting in R

```
# Set the seed
set.seed(12345)
# Train the random forest
heart boost = train(
  heart disease ~ .,
  data = heart df,
  method = "gbm",
  trControl = trainControl(
    method = "cv",
    number = 5
  ),
  tuneGrid = expand.grid(
    "n.trees" = seq(25, 200, by = 25),
    "interaction.depth" = 1:3,
    "shrinkage" = c(0.1, 0.01, 0.001),
    "n.minobsinnode" = 5
```

- boosted trees via gbm package
- cross validation now (no OOB)
- CV-search of parameter grid
 - number of trees
 - tree depth (complexity)
 - shrinkage (learing rate)
 - minimum leaf size
 (not searching here)

Comparing boosting parameters—notice the rates of learning

Tree ensembles and the number of trees

Sources

These notes draw upon

• An Introduction to Statistical Learning (ISL)

James, Witten, Hastie, and Tibshirani

Table of contents

Admin

• Today and upcoming

Decision trees

- 1. Fundamentals
- 2. Strengths and weaknesses

Other

• Sources/references

Ensemble methods

- 1. Introduction
- 2. Bagging
 - Introduction
 - Algorithm
 - Out-of-bag
 - In R
 - Variable importance
- 3. Random forests
 - Introduction
 - In R
- 4. Boosting
 - Introduction
 - Parameters
 - Algorithm
 - In R