Lecture 007

Edward Rubin 20 February 2020

Admin

Admin

Material

Decision trees for regression and classification.

Admin

Upcoming

Readings

- Today ISL Ch. 8.1
- Next ISL Ch. 8.2

Problem sets

- Classification Due today
- Let Connor know if you are resubmitting

Project Project topic due before midnight on Friday.

Fundamentals

Decision trees

- split the *predictor space* (our \mathbf{X}) into regions
- then predict the most-common value within a region

Tree-based methods

- 1. work for **both classification and regression**
- 2. are inherently **nonlinear**
- 3. are relatively **simple** and **interpretable**
- 4. often **underperform** relatively to competing methods
- 5. easily extend to **very competitive ensemble methods** (*many* trees)^A

Though the ensembles will be much less interpretable.

Example: A simple decision tree classifying credit-card default

Let's see how the tree works—starting with our data (default: Yes vs. No).

The **first partition** splits balance at \$1,800.

The **second partition** splits balance at \$1,972, (conditional on bal. > \$1,800).

The **third partition** splits income at \$27K **for** bal. between \$1,800 and \$1,972.

These three partitions give us four **regions**...

The **regions** correspond to the tree's **terminal nodes** (or **leaves**).

The graph's **separating lines** correspond to the tree's **internal nodes**.

The segments connecting the nodes within the tree are its **branches**.

You now know the anatomy of a decision tree.

But where do trees come from—how do we train^{*} a tree?

Growing trees

We will start with **regression trees**, *i.e.*, trees used in regression settings.

As we saw, the task of **growing a tree** involves two main steps:

- 1. Divide the predictor space into J regions (using predictors $\mathbf{x}_1, \ldots, \mathbf{x}_p$)
- 2. **Make predictions** using the regions' mean outcome. For region R_j predict \hat{y}_{R_j} where

$${\hat y}_{R_j} = rac{1}{n_j}\sum_{i\in R_j} y$$

Growing trees

We **choose the regions to minimize RSS** across all *J* [regions], *i.e.*,

$$\sum_{j=1}^J \left(y_i - {\hat y}_{R_j}
ight)^2$$

Problem: Examining every possible parition is computationally infeasible.

Solution: a *top-down, greedy* algorithm named **recursive binary splitting**

- **recursive** start with the "best" split, then find the next "best" split, ...
- **binary** each split creates two branches—"yes" and "no"
- greedy each step makes *best* split—no consideration of overall process

Growing trees: Choosing a split

Recall Regression trees choose the split that minimizes RSS.

To find this split, we need

- 1. a predictor, \mathbf{x}_j
- 2. a cutoff s that splits \mathbf{x}_j into two parts: (1) $\mathbf{x}_j < s$ and (2) $\mathbf{x}_j \geq s$

Searching across each of our predictors *j* and all of their cutoffs *s*, we choose the combination that **minimizes RSS**.

Example: Splitting

Example Consider the dataset

i	У	X 1	X ₂
1	0	1	4
2	8	3	2
3	6	5	6

With just three observations, each variable only has two actual splits.[‡]

A You can think about cutoffs as the ways we divide observations into two groups.

Example: Splitting

One possible split: x_1 at 2, which yields (1) $x_1 < 2$ vs. (2) $x_1 \ge 2$

i	У	X 1	X ₂
1	0	1	4
2	8	3	2
3	6	5	6

Example: Splitting

One possible split: x_1 at 2, which yields (1) $x_1 < 2$ vs. (2) $x_1 \ge 2$

i	pred.	У	X 1	X ₂
1	0	0	1	4
2	7	8	3	2
3	7	6	5	6

This split yields an RSS of $0^2 + 1^2 + (-1)^2 = 2$.

*Note*₁ Splitting x_1 at 2 yields that same results as 1.5, 2.5—anything in (1, 3).

*Note*₂ Trees often grow until they hit some number of observations in a leaf.

Example: Splitting

An alternative split: x_1 at 4, which yields (1) $x_1 < 4$ vs. (2) $x_1 \ge 4$

i	pred.	У	X 1	X ₂
1	4	0	1	4
2	4	8	3	2
3	6	6	5	6

This split yields an RSS of $(-4)^2 + 4^2 + 0^2 = 32$.

Previous: Splitting x₁ at 4 yielded RSS = 2. (*Much better*)

Example: Splitting

Another split: x_2 at 3, which yields (1) $x_1 < 3$ vs. (2) $x_1 \ge 3$

i	pred.	У	X 1	X ₂
1	3	0	1	4
2	8	8	3	2
3	3	6	5	6

This split yields an RSS of $(-3)^2 + 0^2 + 3^2 = 18$.

Example: Splitting

Final split: x_2 at 5, which yields (1) $x_1 < 5$ vs. (2) $x_1 \ge 5$

i	pred.	У	X ₁	X ₂
1	4	0	1	4
2	4	8	3	2
3	6	6	5	6

This split yields an RSS of $(-4)^2 + 4^2 + 0^2 = 32$.

Example: Splitting

Across our four possible splits (two variables each with two splits)

- x_1 with a cutoff of 2: **RSS** = 2
- x₁ with a cutoff of 4: **RSS** = 32
- x₂ with a cutoff of 3: **RSS** = 18
- x₂ with a cutoff of 5: **RSS** = 32

our split of x_1 at 2 generates the lowest RSS.

Note: Categorical predictors work in exactly the same way. We want to try **all possible combinations** of the categories.

Ex: For a four-level categorical predicator (levels: A, B, C, D)

- Split 1: A|B|C vs. D
- Split 2: A|B|D vs. C
- Split 3: A|C|D vs. B
- Split 4: B|C|D vs. A

• Split 5: A|B vs. C|D

- Split 6: A|C vs. B|D
- Split 7: A|D vs. B|C

we would need to try 7 possible splits.

More splits

Once we make our a split, we then continue splitting, **conditional** on the regions from our previous splits.

So if our first split creates R_1 and R_2 , then our next split searches the predictor space only in R_1 or R_2 .

The tree continue to **grow until** it hits some specified threshold, *e.g.*, at most 5 observations in each leaf.

We are no longer searching the full space—it is conditional on the previous splits.

Too many splits?

One can have too many splits.

Q Why?

A "More splits" means

more flexibility (think about the bias-variance tradeoff/overfitting)
 less interpretability (one of the selling points for trees)

Q So what can we do?

A Prune your trees!

Pruning

Pruning allows us to trim our trees back to their "best selves."

The idea: Some regions may increase **variance** more than they reduce **bias**. By removing these regions, we gain in test MSE.

Candidates for trimming: Regions that do not **reduce RSS** very much.

Updated strategy: Grow big trees T_0 and then trim T_0 to an optimal subtree.

Updated problem: Considering all possible subtrees can get expensive.

Pruning

Cost-complexity pruning offers a solution.

Just as we did with lasso, **cost-complexity pruning** forces the tree to pay a price (penalty) to become more complex

Complexity here is defined as the number of regions |T|.

🜲 Also called: weakest-link pruning.

Pruning

Specifically, **cost-complexity pruning** adds a penalty of $\alpha |T|$ to the RSS, *i.e.*,

$$\sum_{m=1}^{|T|}\sum_{i:x\in R_m} \left(y_i - {\hat y}_{R_m}
ight)^2 + lpha |T|$$

For any value of $lpha(\geq 0)$, we get a subtree $T \subset T_0$.

lpha=0 generates T_0 , but as lpha increases, we begin to cut back the tree.

We choose α via cross validation.

Classification trees

Classification with trees is very similar to regression.

Regression trees

- **Predict:** Region's mean
- **Split:** Minimize RSS
- Prune: Penalized RSS

Classification trees

- **Predict:** Region's mode
- **Split:** Min. Gini or entropy[▲]
- Prune: Penalized error rate^T

An additional nuance for **classification trees**: We typically care about the **proportions of classes in the leaves**—not just the final prediction.

The Gini index

Let \hat{p}_{mk} denote the proportion of observations in class k and region m.

The **Gini index** tells us about a region's "purity"[▲]

$$G = \sum_{k=1}^{K} {{{\hat p}}_{mk}}\left({1 - {{\hat p}}_{mk}}
ight)$$

if a region is very homogeneous, then the Gini index will be small.

Homogenous regions are easier to predict. Reducing the Gini index yields to more homogeneous regions ∴ We want to minimize the Gini index.

A This vocabulary is Voldemort's contribution to the machine-learning literature.

Entropy

Let \hat{p}_{mk} denote the proportion of observations in class k and region m.

Entropy also measures the "purity" of a node/leaf

$$D = -\sum_{k=1}^{K} {\hat{p}}_{mk} \log({\hat{p}}_{mk})$$

Entropy is also minimized when \hat{p}_{mk} values are close to 0 and 1.

Rational

Q Why are we using the Gini index or entropy (vs. error rate)?

A The error rate isn't sufficiently sensitive to grow good trees. The Gini index and entropy tell us about the **composition** of the leaf.

Ex. Consider two different leaves in a three-level classification.

Leaf 1

- **A:** 51, **B:** 49, **C:** 00
- Error rate: 49%
- **Gini index:** 0.4998
- Entropy: 0.6929

Leaf 2

- A: 51, B: 25, C: 24
- **Error rate:** 49%
- Gini index: 0.6198
- **Entropy:** 1.0325

The **Gini index** and **entropy** tell us about the distribution.

Classification trees

When **growing** classification trees, we want to use the Gini index or entropy.

However, when **pruning**, the error rate is typically fine—especially if accuracy will be the final criterion.

In R

To train decision trees in R, we can use caret, which draws upon rpart.

To train() our model in caret

- OUT method is "rpart"
- the main tuning parameter is cp, the complexity parameter (penalty)

```
# Set seed
set.seed(12345)
# CV and train
default_tree = train(
   default ~ .,
   data = default_df,
   method = "rpart",
   trControl = trainControl("cv", number = 5),
   tuneGrid = data.frame(cp = seq(0, 0.2, by = 0.005))
)
```

Accuracy and complexity via cp, the penalty for complexity

To plot the CV-chosen tree, we need to

1. **extract** the fitted model, *e.g.*, default_tree\$finalModel

2. apply a **plotting function** *e.g.*, <code>rpart.plot()</code> from <code>rpart.plot</code>

which we can compare to a less unpruned tree (cp = 0.005)

And now for a more penalized tree (cp = 0.1)...

Q How do trees compare to linear models?

Q How do trees compare to linear models?

A It depends how linear the true boundary is.

Linear boundary: trees struggle to recreate a line.

Source: ISL, p. 315

Nonlinear boundary: trees easily replicate the nonlinear boundary.

Source: ISL, p. 315

Strengths and weaknesses

As with any method, decision trees have tradeoffs.

Strengths

- + Easily explained/interpretted
- + Include several graphical options
- + Mirror human decision making?
- + Handle num. or cat. on LHS/RHS[♥]

Weaknesses

- Outperformed by other methods
- Struggle with linearity
- Can be very "non-robust"

Non-robust: Small data changes can cause huge changes in our tree.

Next: Create ensembles of trees st to strengthen these weaknesses. $^{ au}$

Without needing to create lots of dummy variables!

Forests! 🌴 Which will also weaken some of the strengths.

Sources

These notes draw upon

• An Introduction to Statistical Learning (ISL)

James, Witten, Hastie, and Tibshirani

Table of contents

Admin

- Today
- Upcoming

Decision trees

- 1. Fundamentals
- 2. Partitioning predictors
- 3. Definitions
- 4. Growing trees
- 5. Example: Splitting
- 6. More splits
- 7. Pruning
- 8. Classification trees
 - The Gini index
 - Entropy
 - Rationale
- 9. In R
- 10. Linearity
- 11. Strengths and weaknesses

Other

• Sources/references