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Material
Decision trees for regression and classification.
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Upcoming
Readings

Today ISL Ch. 8.1
Next ISL Ch. 8.2

Problem sets

Classification Due today
Let Connor know if you are resubmitting

Project Project topic due before midnight on Friday.
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Decision trees

Fundamentals
Decision trees

split the predictor space (our ) into regions
then predict the most-common value within a region

Tree-based methods

�. work for both classification and regression
�. are inherently nonlinear
�. are relatively simple and interpretable
�. often underperform relatively to competing methods
�. easily extend to very competitive ensemble methods (many trees)🌲

X

🌲  Though the ensembles will be much less interpretable.
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Example: A simple decision tree classifying credit-card default
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Let's see how the tree works—starting with our data (default: Yes vs. No).



The first partition splits balance at $1,800.



The second partition splits balance at $1,972, (conditional on bal. > $1,800).



The third partition splits income at $27K for bal. between $1,800 and $1,972.



These three partitions give us four regions...



Predictions cover each region (e.g., using the region's most common class).



Predictions cover each region (e.g., using the region's most common class).



Predictions cover each region (e.g., using the region's most common class).



Predictions cover each region (e.g., using the region's most common class).



The regions correspond to the tree's terminal nodes (or leaves).
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The graph's separating lines correspond to the tree's internal nodes.
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The segments connecting the nodes within the tree are its branches.
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You now know the anatomy of a decision tree.

But where do trees come from—how do we train🌲  a tree?

🌲  grow



Decision trees

Growing trees
We will start with regression trees, i.e., trees used in regression settings.

As we saw, the task of growing a tree involves two main steps:

�. Divide the predictor space into  regions (using predictors )

�. Make predictions using the regions' mean outcome. 
For region  predict  where

J x1, … , xp

Rj ŷRj

ŷRj
= ∑

i∈Rj

y
1

nj
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Decision trees

Growing trees
We choose the regions to minimize RSS across all  [regions], i.e.,

Problem: Examining every possible parition is computationally infeasible.

Solution: a top-down, greedy algorithm named recursive binary splitting

recursive start with the "best" split, then find the next "best" split, ...
binary each split creates two branches—"yes" and "no"
greedy each step makes best split—no consideration of overall process

J

J

∑
j=1

(yi − ŷRj
)

2
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Decision trees

Growing trees: Choosing a split
Recall Regression trees choose the split that minimizes RSS.

To find this split, we need

�. a predictor, 
�. a cuto�  that splits  into two parts: (1)  and (2) 

Searching across each of our predictors  and all of their cutoffs , 
we choose the combination that minimizes RSS.

xj

s xj xj < s xj ≥ s

j s
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Decision trees

Example: Splitting
Example Consider the dataset

i pred. y x1 x2
1 0 0 1 4
2 0 8 3 2
3 0 6 5 6

With just three observations, each variable only has two actual splits.🌲

🌲  You can think about cutoffs as the ways we divide observations into two groups.
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Decision trees

Example: Splitting
One possible split: x1 at 2, which yields (1) x1 < 2 vs. (2) x1 ≥ 2

i pred. y x1 x2
1 0 0 1 4
2 7 8 3 2
3 7 6 5 6
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Decision trees

Example: Splitting
One possible split: x1 at 2, which yields (1) x1 < 2 vs. (2) x1 ≥ 2

i pred. y x1 x2
1 0 0 1 4
2 7 8 3 2
3 7 6 5 6

This split yields an RSS of 02 + 12 + (-1)2 = 2.

Note1 Splitting x1 at 2 yields that same results as 1.5, 2.5—anything in (1, 3).

Note2 Trees often grow until they hit some number of observations in a leaf.
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Decision trees

Example: Splitting
An alternative split: x1 at 4, which yields (1) x1 < 4 vs. (2) x1 ≥ 4

i pred. y x1 x2
1 4 0 1 4
2 4 8 3 2
3 6 6 5 6

This split yields an RSS of (-4)2 + 42 + 02 = 32.

Previous: Splitting x1 at 4 yielded RSS = 2. (Much better)
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Decision trees

Example: Splitting
Another split: x2 at 3, which yields (1) x1 < 3 vs. (2) x1 ≥ 3

i pred. y x1 x2
1 3 0 1 4
2 8 8 3 2
3 3 6 5 6

This split yields an RSS of (-3)2 + 02 + 32 = 18.
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Decision trees

Example: Splitting
Final split: x2 at 5, which yields (1) x1 < 5 vs. (2) x1 ≥ 5

i pred. y x1 x2
1 4 0 1 4
2 4 8 3 2
3 6 6 5 6

This split yields an RSS of (-4)2 + 42 + 02 = 32.
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Decision trees

Example: Splitting
Across our four possible splits (two variables each with two splits)

x1 with a cutoff of 2: RSS = 2
x1 with a cutoff of 4: RSS = 32
x2 with a cutoff of 3: RSS = 18
x2 with a cutoff of 5: RSS = 32

our split of x1 at 2 generates the lowest RSS.
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Split 1: A|B|C vs. D
Split 2: A|B|D vs. C
Split 3: A|C|D vs. B
Split 4: B|C|D vs. A

Split 5: A|B vs. C|D
Split 6: A|C vs. B|D
Split 7: A|D vs. B|C

Note: Categorical predictors work in exactly the same way. 
We want to try all possible combinations of the categories.

Ex: For a four-level categorical predicator (levels: A, B, C, D)

we would need to try 7 possible splits.



Decision trees

More splits
Once we make our a split, we then continue splitting, 
conditional on the regions from our previous splits.

So if our first split creates R1 and R2, then our next split 
searches the predictor space only in R1 or R2.🌲

The tree continue to grow until it hits some specified threshold, 
e.g., at most 5 observations in each leaf.

🌲  We are no longer searching the full space—it is conditional on the previous splits.
32 / 56



Decision trees

Too many splits?
One can have too many splits.

Q Why?

A "More splits" means

�. more flexibility (think about the bias-variance tradeoff/overfitting)
�. less interpretability (one of the selling points for trees)

Q So what can we do?

A Prune your trees!
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Decision trees

Pruning
Pruning allows us to trim our trees back to their "best selves."

The idea: Some regions may increase variance more than they reduce bias. 
By removing these regions, we gain in test MSE.

Candidates for trimming: Regions that do not reduce RSS very much.

Updated strategy: Grow big trees  and then trim  to an optimal subtree.

Updated problem: Considering all possible subtrees can get expensive.

T0 T0
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Decision trees

Pruning
Cost-complexity pruning🌲  offers a solution.

Just as we did with lasso, cost-complexity pruning forces the tree to pay a
price (penalty) to become more complex

Complexity here is defined as the number of regions .

🌲  Also called: weakest-link pruning.

|T |
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Decision trees

Pruning
Specifically, cost-complexity pruning adds a penalty of  to the RSS, i.e.,

For any value of , we get a subtree .

 generates , but as  increases, we begin to cut back the tree.

We choose  via cross validation.

α|T |

|T |

∑
m=1

∑
i:x∈Rm

(yi − ŷRm
)2

+ α|T |

α(≥ 0) T ⊂ T0

α = 0 T0 α

α
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Regression trees

Predict: Region's mean
Split: Minimize RSS
Prune: Penalized RSS

Classification trees

Predict: Region's mode
Split: Min. Gini or entropy🌲

Prune: Penalized error rate🌴

Decision trees

Classification trees
Classification with trees is very similar to regression.

An additional nuance for classi�cation trees: We typically care about the
proportions of classes in the leaves—not just the final prediction.

🌲  Defined on the next slide. 🌴  ... or Gini index or entropy
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Decision trees

The Gini index
Let  denote the proportion of observations in class  and region .

The Gini index tells us about a region's "purity"🌲

if a region is very homogeneous, then the Gini index will be small.

Homogenous regions are easier to predict. 
Reducing the Gini index yields to more homogeneous regions 
∴ We want to minimize the Gini index.

p̂mk k m

G =
K

∑
k=1

p̂mk (1 − p̂mk)

🌲  This vocabulary is Voldemort's contribution to the machine-learning literature.
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Decision trees

Entropy
Let  denote the proportion of observations in class  and region .

Entropy also measures the "purity" of a node/leaf

Entropy is also minimized when  values are close to 0 and 1.

p̂mk k m

D = −
K

∑
k=1

p̂mk log(p̂mk)

p̂mk
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Leaf 1

A: 51, B: 49, C: 00
Error rate: 49%
Gini index: 0.4998
Entropy: 0.6929

Leaf 2

A: 51, B: 25, C: 24
Error rate: 49%
Gini index: 0.6198
Entropy: 1.0325

Decision trees

Rational
Q Why are we using the Gini index or entropy (vs. error rate)?

A The error rate isn't sufficiently sensitive to grow good trees. 
The Gini index and entropy tell us about the composition of the leaf.

Ex. Consider two different leaves in a three-level classification.

The Gini index and entropy tell us about the distribution.
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Decision trees

Classification trees
When growing classification trees, we want to use the Gini index or entropy.

However, when pruning, the error rate is typically fine—especially if
accuracy will be the final criterion.
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Decision trees

In R
To train decision trees in R, we can use caret , which draws upon rpart .

To train()  our model in caret

our method  is "rpart"
the main tuning parameter is cp , the complexity parameter (penalty)

# Set seed
set.seed(12345)
# CV and train
default_tree = train(
  default ~ .,
  data = default_df,
  method = "rpart",
  trControl = trainControl("cv", number = 5),
  tuneGrid = data.frame(cp = seq(0, 0.2, by = 0.005))
)
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Accuracy and complexity via cp , the penalty for complexity



To plot the CV-chosen tree, we need to

�. extract the fitted model, e.g., default_tree$finalModel

�. apply a plotting function e.g., rpart.plot()  from rpart.plot





which we can compare to a less unpruned tree ( cp = 0.005 )





And now for a more penalized tree ( cp = 0.1 )...





Q How do trees compare to linear models?



Q How do trees compare to linear models?

A It depends how linear the true boundary is.



Linear boundary: trees struggle to recreate a line.

Source: ISL, p. 315



Nonlinear boundary: trees easily replicate the nonlinear boundary.

Source: ISL, p. 315



Strengths 
+ Easily explained/interpretted 
+ Include several graphical options 
+ Mirror human decision making? 
+ Handle num. or cat. on LHS/RHS🌳

Weaknesses 
- Outperformed by other methods 
- Struggle with linearity 
- Can be very "non-robust"

Decision trees

Strengths and weaknesses
As with any method, decision trees have tradeoffs.

Non-robust: Small data changes can cause huge changes in our tree.

Next: Create ensembles of trees🌲  to strengthen these weaknesses.🌴

🌳  Without needing to create lots of dummy variables!  
🌲  Forests! 🌴  Which will also weaken some of the strengths.
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Sources
These notes draw upon

An Introduction to Statistical Learning (ISL)
James, Witten, Hastie, and Tibshirani
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http://faculty.marshall.usc.edu/gareth-james/ISL/
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