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Admin

Material
Last time Shrinkage methods

Ridge regression
(The) lasso
Elasticnet

Today Classification methods

Introduction to classification
Linear probability models
Logistic regression

Also: Class will end today at 11:30am.†

† 🎉 ?
3 / 65



Admin

Upcoming
Readings Today ISL Ch. 4

Problem sets

Shrinkage methods Due today
Classification Due next week
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Classification

Intro
Regression problems seek to predict the number an outcome will take—
integers (e.g., number of cats), reals (e.g., home/cat value), etc. †

Classi�cation problems instead seek to predict the category of an outcome

Binary outcomes
success/failure; true/false; A or B; cat or not cat; etc.

Multi-class outcomes
yes, no, or maybe; colors; letters; type of cat;†† etc.

This type of outcome is often called a qualitative or categorical response.

† Maybe: Binary indicators... †† It turns out, all of machine learning is about cats.
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Classification

Examples
For the past few weeks, we've been immersed in regression problems.

It's probably helpful to mention a few examples of classification problems.

Using life/criminal history (and demographics?):
Can we predict whether a defendant is granted bail?

Based upon a set of symptoms and observations:
Can we predict a patient's medical condition(s)?

From the pixels in an image:
Can we classify images as bagel, puppy, or other?
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Classification

Approach
One can imagine two† related approaches to classification

�. Predict which category the outcome will take.

�. Estimate the probability of each category for the outcome.

That said, the general approach will

Take a set of training observations 
Build a classifier 

all while balancing bias and variance.††

† At least.

(x1, y1), (x2, y2), … , (xn, yn)

ŷo = f(xo)

 †† Sound familiar?
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Q If everything is so similar, can't we use regression methods?

No



Q If everything is so similar, can't we use regression methods?

A Sometimes. Other times: No. Plus you still need new tools.



Option 1 Option 2 Option 3

Classification

Why not regression?
Regression methods are not made to deal with multiple categories.

Ex. Consider three medical diagnoses: stroke, overdose, and seizure.

Regression needs a numeric outcome—how should we code our categories?

The categories' ordering is unclear—let alone the actual valuation. 
The choice of ordering and valuation can affect predictions. 😿

Y =
⎧
⎨⎩

1 if  stroke
2 if  overdose
3 if  seizure

Y =
⎧
⎨⎩

1 if  overdose
2 if  stroke
3 if  seizure

Y =
⎧
⎨⎩

1 if  seizure
2 if  stroke
3 if  overdose
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Option 1

and

Option 2

Classification

Why not regression?
As we've seen, binary outcomes are simpler.

Ex If we are only choosing between stroke and overdose

will provide the same results.

Y = { 0 if  stroke
1 if  overdose

Y = { 0 if  overdose
1 if  stroke
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Classification

Why not regression?
In these binary outcome cases, we can apply linear regression.

These models are called linear probability models (LPMs).

The predictions from an LPM

�. estimate the conditional probability , i.e., 

�. are not restricted to being between 0 and 1†

�. provide an ordering—and a reasonable estimate of probability

Other bene�ts: Coefficients are easily interpreted + we know how OLS works.

yi = 1 Pr(yo = 1 ∣ xo)

† Some people get very worked up about this point.
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Let's consider an example: the Default  dataset from ISLR

default student balance income

No No 939.10 45,519

No Yes 397.54 22,711

Yes No 1,511.61 53,507

No No 301.32 51,540

No No 878.45 29,562

Yes No 1,673.49 49,310

No No 310.13 37,697

No No 1,272.05 44,896

No No 887.20 41,641

No No 230.87 32,799



The data: The outcome, default, only takes two values (only 3.3% default).



The data: The outcome, default, only takes two values (only 3.3% default).



The linear probability model struggles with prediction in this setting.



Logistic regression appears to offer an improvement.



So... what's logistic regression?



Logistic regressionLogistic regression



Logistic regression

Intro
Logistic regression models the probability that our outcome  belongs to
a specific category (often whichever category we think of as TRUE ).

For example, we just saw a graph where

we are modeling the probability of default  as a function of balance .

We use the estimated probabilities to make predictions, e.g.,

if , we could predict "Yes" for Default
to be conservative, we could predict "Yes" if 

Y

Pr(Default = Yes|Balance) = p(Balance)

p(Balance) ≥ 0.5

p(Balance) ≥ 0.1
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Linear probability model 
linear transform. of predictors

Logistic model 
logistic transform. of predictors

Logistic regression

What's logistic?
We want to model probability as a function of the predictors .

What does this logistic function  do?

�. ensures predictions are between 0  and 1 

�. forces an S-shaped curved through the data (not linear)

(β0 + β1X)

p(X) = β0 + β1X
p(X) =

eβ0+β1X

1 + eβ0+β1X

( )ex

1+ex

(x → −∞) (x → ∞)
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Logistic regression

What's logistic?
With a little math, you can show

New de�nition: log odds† on the RHS and linear predictors on the LHS.

�. interpretation of  is about log odds—not probability

�. changes in probability due to  depend on level of †

p(X) = ⟹ log( ) = β0 + β1X
eβ0+β1X

1 + eβ0+β1X

p(X)

1 − p(X)

† The "log odds" is sometimes called "logit".

βj

X X

 †† It's nonlinear!
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Logistic regression

Estimation
Before we can start predicting, we need to estimate the s.

We estimate logistic regression using maximum likelihood estimation.

Maximum likelihood estimation (MLE) searches for the s that make our
data "most likely" given the model we've written.

βj

p(X) = ⟹ log( ) = β0 + β1X
eβ0+β1X

1 + eβ0+β1X

p(X)

1 − p(X)

βj
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Logistic regression

Maximum likelihood
MLE searches for the s that make our data "most likely" using our model.

�.  tells us how  affects the log odds

�. odds . If , then odds  and log odds .

So we want choose  such that

log odds are above zero for observations where 
log odds even larger for areas of  where most s have 

βj

log( ) = β0 + β1X
p(X)

1 − p(X)

βj xj

=
p(X)

1 − p(X)
p(X) > 0.5 > 1 > 0

βj

yi = 1

xj i yi = 1
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Logistic regression

Formally: The likelihood function
We estimate logistic regression by maximizing the likelihood function†

The likelihood function is maximized by

making  large for individuals with 
making  small for individuals with 

Put simply: Maximum likelihood maximizes a predictive performance,
conditional on the model we have written down.

† Generally, we actually will maximize the log of the likelihood function.

ℓ(β0, β1) = ∏
i:yi=1

p(xi) ∏
i:yi=0

(1 − p(xi))

p(xi) yi = 1

p(xi) yi = 0
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Logistic regression

In R
In R, you can run logistic regression using the glm()  function.

Aside: Related to lm , glm  stands for generalized (linear model).

"Generalized" essentially means that we're applying some transformation to
 like logistic regression applies the logistic function.β0 + β1X
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Logistic regression

In R
In R, you can run logistic regression using the glm()  function.

Key arguments (very similar to lm() )

specify a formula ,† e.g., y ~ .  or y ~ x + I(x^2)

define family = "binomial"  (so R knows to run logistic regression)

give the function some data

est_logistic = glm(
  i_default ~ balance,
  family = "binomial",
  data = default_df
)

† Notice that we're back in the world of needing to select a model...
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est_logistic %>% summary()

#> 
#> Call:
#> glm(formula = i_default ~ balance, family = "binomial", data = default_df)
#> 
#> Deviance Residuals: 
#>     Min       1Q   Median       3Q      Max  
#> -2.2697  -0.1465  -0.0589  -0.0221   3.7589  
#> 
#> Coefficients:
#>               Estimate Std. Error z value Pr(>|z|)    
#> (Intercept) -1.065e+01  3.612e-01  -29.49   <2e-16 ���
#> balance      5.499e-03  2.204e-04   24.95   <2e-16 ���
#> ���
#> Signif. codes:  0 '���' 0.001 '��' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for binomial family taken to be 1)
#> 
#>     Null deviance: 2920.6  on 9999  degrees of freedom
#> Residual deviance: 1596.5  on 9998  degrees of freedom
#> AIC� 1600.5
#> 
#> Number of Fisher Scoring iterations: 8



Logistic regression

Estimates and predictions
Thus, our estimates are  and .

Remember: These coefficients are for the log odds.

If we want to make predictions for  (whether or not  defaults), 
then we first must estimate the probability 

If , we then estimate 
If , we then estimate 
If , we then estimate  †

β̂0 ≈ −10.65 β̂1 ≈ 0.0055

yi i

p(Balance)

p̂(Balance) = ≈
eβ̂0+β̂1Balance

1 + eβ̂0+β̂1Balance

e−10.65+0.0055⋅Balance

1 + e−10.65+0.0055⋅Balance

Balance = 0 p̂ ≈ 0.000024

Balance = 2, 000 p̂ ≈ 0.586

Balance = 3, 000 p̂ ≈ 0.997

† You get a sense of the nonlinearity of the predictors' effects.
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Logistic regression's predictions of p(Balance)



Note: Everything we've done so far extends to models with many predictors.

Old news: You can use predict()  to get predictions out of glm  objects.

New and important: predict()  produces multiple type s of predictions

�. type = "response"  predicts on the scale of the response variable 
for logistic regression, this means predicted probabilities (0 to 1)

�. type = "link"  predicts on the scale of the linear predictors 
for logistic regression, this means predicted log odds (-∞ to ∞)

Beware: The default is type = "link" , which you may not want.



Logistic regression

Prediction
Putting it all together, we can get (estimated) probabilities 

# Predictions on scale of response (outcome) variable
p_hat = predict(est_logistic, type = "response")

which we can use to make predictions on 

# Predict '1' if p_hat is greater or equal to 0.5
y_hat = as.numeric(p_hat �� 0.5)

p̂(X)

y
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So how did we do?



AssessmentAssessment



Assessment

How did we do?
We guessed 97.25% of the observations correctly.

Q 97.25% is pretty good, right?

A It depends... Remember that 3.33% of the observations actually defaulted.
So we would get 96.67% right by guessing "No" for everyone.†

We did guess 30.03% of the defaults, which is clearer better than 0%.

Q How can we more formally assess our model's performance?

A All roads lead to the confusion matrix.

† This idea is called the null classifier.
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Assessment

The confusion matrix
The confusion matrix is us a convenient way to display 
correct and incorrect predictions for each class of our outcome.

Truth
No Yes

Prediction
No True Negative (TN) False Negative (FN)
Yes False Positive (FP) True Positive (TP)

The accuracy of a method is the share of correct predictions, i.e.,

Accuracy = (TN + TP) / (TN + TP + FN + FP)

This matrix also helps display many other measures of assessment.
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Assessment

The confusion matrix
Sensitivity: the share of positive outcomes  that we correctly predict.

Sensitivity = TP / (TP + FN)

Truth
No Yes

Prediction
No True Negative (TN) False Negative (FN)
Yes False Positive (FP) True Positive (TP)

Sensitivity is also called recall and the true-positive rate.

One minus sensitivity is the type-II error rate.

Y = 1
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Assessment

The confusion matrix
Speci�city: the share of neg. outcomes  that we correctly predict.

Specificity = TN / (TN + FP)

Truth
No Yes

Prediction
No True Negative (TN) False Negative (FN)
Yes False Positive (FP) True Positive (TP)

One minus specificity is the false-positive rate or type-I error rate.

(Y = 0)
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Assessment

The confusion matrix
Precision: the share of predicted positives  that are correct.

Precision = TP / (TP + FP)

Truth
No Yes

Prediction
No True Negative (TN) False Negative (FN)
Yes False Positive (FP) True Positive (TP)

(Ŷ = 1)
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Assessment

Which assessment?
Q So which criterion should we use?

A You should use the right criterion for your context.

Are true positives more valuable than true negatives?
Sensitivity will be key.

Do you want to have high confidence in predicted positives?
Precision is your friend

Are all errors equal?
Accuracy is perfect.

There's a lot more, e.g., the F1 score combines precision and sensitivity.
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Assessment

Confusion in R
confusionMatrix()  from caret  calculates the confusion matrix—and many
other statistics.

data : a factor  vector of predictions (use as.factor()  if needed)

reference : a factor  vector of true outcomes

cm_logistic = confusionMatrix(
  # Our predictions
  data = y_hat %>% as.factor(),
  # Truth
  reference = default_df$i_default %>% as.factor()
)

42 / 65



#> Confusion Matrix and Statistics 
#>   
#>            Reference 
#>  Prediction    0    1 
#>           0 9625  233 
#>           1   42  100 
#>                                             
#>                 Accuracy : 0.9725           
#>                   95% CI : (0.9691, 0.9756) 
#>      No Information Rate : 0.9667           
#>      P-Value [Acc > NIR] : 0.0004973        
#>                                             
#>                    Kappa : 0.4093           
#>                                             
#>   Mcnemar's Test P-Value : < 2.2e-16        
#>                                             
#>              Sensitivity : 0.9957           
#>              Specificity : 0.3003           
#>           Pos Pred Value : 0.9764           
#>           Neg Pred Value : 0.7042           
#>               Prevalence : 0.9667           
#>           Detection Rate : 0.9625           
#>     Detection Prevalence : 0.9858           
#>        Balanced Accuracy : 0.6480



Assessment

Thresholds
Your setting also dictates the "optimal" threshold that moves a prediction
from one class (e.g., Default = No) to another class (Default = Yes).

The Bayes classifier suggests a probability threshold of 0.5.

The Bayes classifier can't be beat in terms of accuracy, but if you have goals
other than accuracy, you should consider other thresholds.
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As we vary the threshold, our error rates (types I, II, and overall) change.



The ROC curve plots the true- (TP/P) and the false-positive rates (FP/N).

"Best performance" means the ROC curve hugs the top-left corner.



The AUC gives the area under the (ROC) curve.

"Best performance" means the AUC is near 1. Random chance: 0.5



Q So what information is AUC telling us?



Q So what information is AUC telling us?

A AUC tells us how much we've separated the positive and negative labels.



Example: Distributions of probabilities for negative and positive outcomes.



For any given threshold



For any given threshold, we get false positives



For any given threshold, we get false positives and true positives.



... moving through all possible thresholds generates the ROC (AUC ≈ 0.872).



Increasing separation between negative and positive outcomes...



... reduces error (shifts ROC) and increases AUC (≈ 0.994).



Further increasing separation between negative and positive outcomes...



... reduces error (shifts ROC) and increases AUC (≈ 1).



Tiny separation ("guessing") between negative and positive outcomes...



... increases error (shifts ROC) and pushes AUC toward 0.5 (here ≈ 0.523).



Getting negative and positive outcomes backwards...



... increases error (shifts ROC) and pushes AUC toward 0 (here ≈ 0.012).



R extras
AUC You can calculate AUC in R using the prSummary()  function from caret .
See here for an example.

Logistic elasticnet glmnet()  (for ridge , lasso, and elasticnet) extends to
logistic regression† by specifying the family  argument of glmnet , e.g.,

# Example of logistic regression with lasso
logistic_lasso = glmnet(
  y = y,
  x = x,
  family = "binomial",
  alpha = 1,
  lambda = best_lambda
)

† Or many other generalized linear models.
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https://topepo.github.io/caret/measuring-performance.html#measures-for-predicted-classes


Sources
These notes draw upon

An Introduction to Statistical Learning (ISL)
James, Witten, Hastie, and Tibshirani

Receiver Operating Characteristic Curves Demystified (in Python)
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http://faculty.marshall.usc.edu/gareth-james/ISL/
https://towardsdatascience.com/receiver-operating-characteristic-curves-demystified-in-python-bd531a4364d0
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