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Shrinkage methods

Intro
Recap: Subset-selection methods (last time)

�. algorithmically search for the "best" subset of our  predictors
�. estimate the linear models via least squares

These methods assume we need to choose a model before we fit it...

Alternative approach: Shrinkage methods

fit a model that contains all  predictors
simultaneously: shrink† coefficients toward zero

Idea: Penalize the model for coefficients as they move away from zero.

p

p

† Synonyms for shrink: constrain or regularize
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Shrinkage methods

Why?
Q How could shrinking coefficients twoard zero help or predictions?

A Remember we're generally facing a tradeoff between bias and variance.

Shrinking our coefficients toward zero reduces the model's variance.†

Penalizing our model for larger coefficients shrinks them toward zero.
The optimal penalty will balance reduced variance with increased bias.

Now you understand shrinkage methods.

Ridge regression

Lasso

Elasticnet

† Imagine the extreme case: a model whose coefficients are all zeros has no variance.
6 / 43



Ridge regressionRidge regression



Ridge regression

Back to least squares (again)
Recall Least-squares regression gets 's by minimizing RSS, i.e.,

Ridge regression makes a small change

adds a shrinkage penalty = the sum of squared coefficents 

minimizes the (weighted) sum of RSS and the shrinkage penalty
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Ridge regression Least squares

Ridge regression

 is a tuning parameter for the harshness of the penalty. 
 implies no penalty: we are back to least squares.

Each value of  produces a new set of coefficents.

Ridge's approach to the bias-variance tradeoff: Balance

reducing RSS, i.e., 
reducing coefficients (ignoring the intercept)

 determines how much ridge "cares about" these two quantities.†
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† With , least-squares regression only "cares about" RSS.λ = 0
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Ridge regression

 and penalization
Choosing a good value for  is key.

If  is too small, then our model is essentially back to OLS.
If  is too large, then we shrink all of our coefficients too close to zero.

Q So what do we do?
A Cross validate!

(You saw that coming, right?)

λ

λ

λ

λ
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Ridge regression

Penalization
Note Because we sum the squared coefficients, we penalize increasing big
coefficients much more than increasing small coefficients.

Example For a value of , we pay a penalty of  for a small increase.†

At , the penalty for a small increase is .
At , the penalty for a small increase is .
At , the penalty for a small increase is .
At , the penalty for a small increase is .
At , the penalty for a small increase is .

Now you see why we call it shrinkage: it encourages small coefficients.

β 2λβ

† This quantity comes from taking the derivative of  with respect to .λβ2 β

β = 0 0

β = 1 2λ

β = 2 4λ

β = 3 6λ

β = 10 20λ
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Ridge regression

Penalization and standardization
Important Predictors' units can drastically affect ridge regression results.

Why? Because 's units affect , and ridge is very sensitive to .

Example Let  denote distance.

Least-squares regression 
If  is meters and , then when  is km, . 
The scale/units of predictors do not affect least squares' estimates.

Ridge regression pays a much larger penalty for  than . 
You will not get the same (scaled) estimates when you change units.

Solution Standardize your variables, i.e., x_stnd = (x - mean(x))/sd(x) .

xj βj βj

x1

x1 β1 = 3 x1 β1 = 3, 000

β1 = 3, 000 β1 = 3
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Ridge regression

Example
Let's return to the credit dataset.

Recall We have 11 predictors and a numeric outcome balance .

I standardized our predictors using preProcess()  from caret , i.e.,

# Standardize all variables except 'balan ce'
credit_stnd = preProcess(
  # Do not process the outcome 'balance'
  x = credit_dt %>% dplyr��select(�balance),
  # Standardizing means 'center' and 'scale'
  method = c("center", "scale")
)
# We have to pass the 'preProcess' object to 'predict' to get new data
credit_stnd %��% predict(newdata = credit_dt)
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x  a matrix of predictors
y  outcome variable as a vector
standardize  ( T  or F )
alpha  elasticnet parameter

alpha=0  gives ridge
alpha=1  gives lasso

lambda  tuning parameter
(sequence of numbers)
nlambda  alternatively, R picks a
sequence of values for 

Ridge regression

Example
For ridge regression† in R, we will use glmnet()  from the glmnet  package.

The key arguments for glmnet()  are

† And lasso!

λ
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Ridge regression

Example
We just need to define a decreasing sequence for , and then we're set.

# Define our range of lambdas (glmnet wants decreasing range)
lambdas = 10^seq(from = 5, to = -2, length = 100)
# Fit ridge regression
est_ridge = glmnet(
  x = credit_stnd %>% dplyr��select(�balance) %>% as.matrix(),
  y = credit_stnd$balance,
  standardize = T,
  alpha = 0,
  lambda = lambdas
)

The glmnet  output ( est_ridge  here) contains estimated coefficients for .
You can use predict()  to get coefficients for additional values of .

λ

λ

λ
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Ridge regression coefficents for  between 0.01 and 100,000λ



Ridge regression

Example
glmnet  also provides convenient cross-validation function: cv.glmnet() .

# Define our lambdas
lambdas = 10^seq(from = 5, to = -2, length = 100)
# Cross validation
ridge_cv = cv.glmnet(
  x = credit_stnd %>% dplyr��select(�balance) %>% as.matrix(),
  y = credit_stnd$balance,
  alpha = 0,
  standardize = T,
  lambda = lambdas,
  # New: How we make decisions and number of folds
  type.measure = "mse",
  nfolds = 5
)
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Cross-validated RMSE and : Which  minimizes CV RMSE?λ λ



Often, you will have a minimum farther away from your extremes...



Cross-validated RMSE and : Which  minimizes CV RMSE?λ λ



Ridge regression

Example
We can also use train()  from caret  to cross validate ridge regression.

# Our range of lambdas
lambdas = 10^seq(from = 5, to = -2, length = 1e3)
# Ridge regression with cross validation
ridge_cv = train(
  # The formula
  balance ~ .,
  # The dataset
  data = credit_stnd,
  # The 'glmnet' package does ridge and lasso
  method = "glmnet",
  # 5-fold cross validation
  trControl = trainControl("cv", number = 10),
  # The parameters of 'glmnet' (alpha = 0 gives ridge regression)
  tuneGrid = expand.grid(alpha = 0, lambda = lambdas)
)
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Ridge regression

Prediction in R
Once you find your  via cross validation

1. Fit your model on the full dataset using the optimal 

# Fit final model
final_ridge =  glmnet(
  x = credit_stnd %>% dplyr��select(�balance) %>% as.matrix(),
  y = credit_stnd$balance,
  standardize = T,
  alpha = 0,
  lambda = ridge_cv$lambda.min
)

λ

λ
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Ridge regression

Prediction in R
Once you find your  via cross validation

1. Fit your model on the full dataset using the optimal 

2. Make predictions

predict(
  final_ridge,
  type = "response",
  # Our chosen lambda
  s = ridge_cv$lambda.min,
  # Our data
  newx = credit_stnd %>% dplyr��select(�balance) %>% as.matrix()
)

λ

λ
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Ridge regression

Shrinking
While ridge regression shrinks coefficients close to zero, it never forces
them to be equal to zero.

Drawbacks

�. We cannot use ridge regression for subset/feature selection.
�. We often end up with a bunch of tiny coefficients.

Q Can't we just drive the coefficients to zero?
A Yes. Just not with ridge (due to ).∑

j
β̂

2

j
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Lasso

Intro
Lasso simply replaces ridge's squared coefficients with absolute values.

Ridge regression

Lasso

Everything else will be the same—except one aspect...
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Lasso

Shrinkage
Unlike ridge, lasso's penalty does not increase with the size of .

You always pay  to increase  by one unit.

The only way to avoid lasso's penalty is to set coefficents to zero.

This feature has two benefits

�. Some coefficients will be set to zero—we get "sparse" models.
�. Lasso can be used for subset/feature selection.

We will still need to carefully select .

βj

λ ∣∣βj∣∣

λ
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x  a matrix of predictors
y  outcome variable as a vector
standardize  ( T  or F )
alpha  elasticnet parameter

alpha=0  gives ridge
alpha=1  gives lasso

lambda  tuning parameter
(sequence of numbers)
nlambda  alternatively, R picks a
sequence of values for 

Lasso

Example
We can also use glmnet()  for lasso.

Recall The key arguments for glmnet()  are

λ
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Lasso

Example
Again, we define a decreasing sequence for , and we're set.

# Define our range of lambdas (glmnet wants decreasing range)
lambdas = 10^seq(from = 5, to = -2, length = 100)
# Fit ridge regression
est_lasso = glmnet(
  x = credit_stnd %>% dplyr��select(�balance) %>% as.matrix(),
  y = credit_stnd$balance,
  standardize = T,
  alpha = 1,
  lambda = lambdas
)

The glmnet  output ( est_lasso  here) contains estimated coefficients for .
You can use predict()  to get coefficients for additional values of .

λ

λ

λ
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Lasso coefficents for  between 0.01 and 100,000λ



Compare lasso's tendency to force coefficients to zero with our previous
ridge-regression results.



Ridge regression coefficents for  between 0.01 and 100,000λ



Lasso

Example
We can also cross validate  with cv.glmnet() .

# Define our lambdas
lambdas = 10^seq(from = 5, to = -2, length = 100)
# Cross validation
lasso_cv = cv.glmnet(
  x = credit_stnd %>% dplyr��select(�balance) %>% as.matrix(),
  y = credit_stnd$balance,
  alpha = 1,
  standardize = T,
  lambda = lambdas,
  # New: How we make decisions and number of folds
  type.measure = "mse",
  nfolds = 5
)

λ
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Cross-validated RMSE and : Which  minimizes CV RMSE?λ λ



Again, you will have a minimum farther away from your extremes...



Cross-validated RMSE and : Which  minimizes CV RMSE?λ λ



So which shrinkage method should you choose?



Ridge regression 

+ shrinks  near 0 
- many small  
- doesn't work for selection 
- difficult to interpret output 
+ better when all  0 

Best:  is large & 

Lasso 

+ shrinks  to 0 
+ many  0 
+ great for selection 
+ sparse models easier to interpret
- implicitly assumes some  0 

Best:  is large & many  0

[N]either ridge... nor the lasso will universally dominate the other.

ISL, p. 224

Ridge or lasso?

β̂j

β̂j

βj ≠

p βj ≈ βk

β̂j

β̂j =

β =

p βj ≈
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Ridge and lasso

Why not both?
Elasticnet combines ridge regression and lasso.

(We now have two tuning parameters:  and .

Remember the alpha  argument in glmnet() ?

 specifies ridge
 specifies lasso

min
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Ridge and lasso

Why not both?
We can use train()  from caret  to cross validate  and .

Note You need to consider all combinations of the two parameters. 
This combination can create a lot of models to estimate.

For example,

1,000 values of 
1,000 values of 

leaves you with 1,000,000 models to estimate.†

α λ

λ

α

† 5,000,000 if you are doing 5-fold CV!
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# Our range of λ
lambdas = 10^seq(from = 5, to = -2, length = 1e3)
# Our range of α
alphas = seq(from = 0, to = 1, by = 0.1)
# Ridge regression with cross validation
net_cv = train(
  # The formula
  balance ~ .,
  # The dataset
  data = credit_stnd,
  # The 'glmnet' package does ridge and lasso
  method = "glmnet",
  # 5-fold cross validation
  trControl = trainControl("cv", number = 10),
  # The parameters of 'glmnet'
  tuneGrid = expand.grid(alpha = alphas, lambda = lambdas)
)



Sources
These notes draw upon

An Introduction to Statistical Learning (ISL)
James, Witten, Hastie, and Tibshirani
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