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Today
In-class

A roadmap (where are we going?)
Linear regression and model selection
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Upcoming
Readings

Today

ISL Ch. 3 and 6.1
Next

ISL Ch. 6 and 4

Problem sets

Due tonight! (How did it go?)
Next: After we finish this set of notes
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Roadmap

Where are we?
We've essentially covered the central topics in statistical learning†

Prediction and inference
Supervised vs. unsupervised methods
Regression and classification problems
The dangers of overfitting
The bias-variance tradeoff
Model assessment
Holdouts, validation sets, and cross validation††

Model training and tuning
Simulation

† Plus a few of the "basic" methods: OLS regression and KNN. 
†† And the bootstrap!
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Roadmap

Where are we going?
Next, we will cover many common machine-learning algorithms, e.g.,

Decision trees and random forests
SVM
Neural nets
Clustering
Ensemble techniques

But first, we return to good old linear regression—in a new light...

Linear regression
Variable/model selection and LASSO/Ridge regression
Plus: Logistic regression and discriminant analysis
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Roadmap

Why return to regression?
Motivation 1 
We have new tools. It might help to first apply them in a familiar setting.

Motivation 2 
We have new tools. Maybe linear regression will be (even) better now?

Motivation 3

many fancy statistical learning approaches can be seen as
generalizations or extensions of linear regression.

Source: ISL, p. 59; emphasis added
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Linear regression

Regression regression
Recall Linear regression "fits" coefficients  for a model

and is often applied in two distinct settings with fairly distinct goals:

1. Causal inference estimates and interprets the coefficients.

2. Prediction focuses on accurately estimating outcomes.

Regardless of the goal, the way we "fit" (estimate) the model is the same.

β0, … , βp

yi = β0 + β1x1,i + β2x2,i + ⋯ + βpxp,i + εi
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Linear regression

Fitting the regression line
As is the case with many statistical learning methods, regression focuses on
minimizing some measure of loss/error.

Linear regression uses the L2 loss function—also called residual sum of
squares (RSS) or sum of squared errors (SSE)

Specifically: OLS chooses the  that minimize RSS.

ei = yi − ŷ i

RSS = e1 + e2 + ⋯ + e2
n =

n

∑
i=1

e2
i

β̂j
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Linear regression

Performance
There's a large variety of ways to assess the fit† of linear-regression models.

Residual standard error (RSE)

R-squared (R2)

† or predictive performance

RSE = √ RSS =

 
⎷

n

∑
i=1

(yi − ŷ i)
21

n − p − 1

1

n − p − 1

R2 = = 1 − where TSS =
n

∑
i=1

(yi − ¯̄̄y)2TSS − RSS

TSS

RSS

TSS
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Linear regression

Performance and overfit
As we've seen throughout the course, we need to be careful not to overfit.

R2 provides no protection against overfitting—and actually encourages it.

Add a new variable: RSS  and TSS is unchanged. Thus, R2 increases.

RSE slightly penalizes additional variables:

Add a new variable: RSS  but  increases. Thus, RSE's change is uncertain.

R2 = 1 −
RSS

TSS

↓

RSE = √ RSS
1

n − p − 1

↓ p
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Example
Let's see how R2 and RSE perform with 500 very weak predictors.

To address overfitting, we can compare in- vs. out-of-sample performance.



In-sample R2 mechanically increases as we add predictors. 
Out-of-sample R2 does not.



In-sample R2 mechanically increases as we add predictors. 
Out-of-sample R2 does not.



What about RSE? Does its penalty help?



Despite its penalty for adding variables, in-sample RSE still can overfit, 
as evidenced by out-of-sample RSE.



Despite its penalty for adding variables, in-sample RSE still can overfit, 
as evidenced by out-of-sample RSE.



Linear regression

Penalization
RSE is not the only way to penalization the addition of variables.†

Adjusted R2 is another classic solution.

Adj. R2 attempts to "fix" R2 by adding a penalty for the number of variables.

 always decreases when a new variable is added.

 may increase or decrease with a new variable.

† We'll talk about other penalization methods (LASSO and Ridge) shortly.

Adjusted R2 = 1 −
RSS/(n − p − 1)

TSS/(n − 1)

RSS

RSS/(n − p − 1)
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However, in-sample adjusted R2 still can overfit. 
Illustrated by out-of-sample R2.



However, in-sample adjusted R2 still can overfit. 
Illustrated by out-of-sample adjusted R2.



Model selection

A better way?
R2, adjusted R2, and RSE each offer some flavor of model fit, but they
appear limited in their abilities to prevent overfitting.

We want a method to optimally select a (linear) model—balancing variance
and bias and avoiding overfit.

We'll discuss two (related) methods today:

1. Subset selection chooses a (sub)set of our  potential predictors

2. Shrinkage fits a model using all  variables but "shrinks" its coefficients

p

p
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Model selection

Subset selection
In subset selection, we

1. whittle down the  potential predictors (using some magic/algorithm)
2. estimate the chosen linear model using OLS

How do we do the whittling (selection)? We've go options.

Best subset selection fits a model for every possible subset.
Forward stepwise selection starts with only an intercept and tries to
build up to the best model (using some fit criterion).
Backward stepwise selection starts with all  variables and tries to drop
variables until it hits the best model (using some fit criterion).
Hybrid approaches are what their name implies (i.e., hybrids).

p

p
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Model selection

Best subset selection
Best subset selection is based upon a simple idea: Estimate a model for
every possible subset of variables; then compare their performances.

Q So what's the problem? (Why do we need other selection methods?)
A "a model for every possible subset" can mean a lot  of models.

E.g.,

10 predictors  1,024 models to fit
25 predictors  >33.5 million models to fit
100 predictors  ~1.5 trillion models to fit

Even with plentiful, cheap computational power, we can run into barriers.

(2p)

→

→

→
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Model selection

Best subset selection
Computational constraints aside, we can implement best subset selection as

1. Define  as the model with no predictors.

2. For  in 1 to :

Fit every possible model with  predictors.

Define  as the "best" model with  predictors.

3. Select the "best" model from .

As we've seen, RSS declines (and R2 increases) with , so we should use a
cross-validated measure of model performance in step 3.†

M0

k p

k

Mk k

M0, … , Mp

p

† Back to our distinction between test vs. training performance.
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Model selection

Example dataset: Credit
We're going to use the Credit  dataset from ISL's R package ISLR .

The Credit  dataset has 400 observations on 12 variables.

ID Income Limit Rating Cards Age Education Gender Student Marri

1 14.891 3606 283 2 34 11 Male No Yes

2 106.025 6645 483 3 82 15 Female Yes Yes

3 104.593 7075 514 4 71 11 Male No No

4 148.924 9504 681 3 36 11 Female No No

5 55.882 4897 357 2 68 16 Male No Yes

6 80.18 8047 569 4 77 10 Male No No

7 20.996 3388 259 2 37 12 Female No No

8 71.408 7114 512 2 87 9 Male No No

9 15.125 3300 266 5 66 13 Female No No

10 71.061 6819 491 3 41 19 Female Yes Yes
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Model selection

Example dataset: Credit
We need to pre-process the dataset before we can select a model...

Now the dataset on has 400 observations on 12 variables (2,048 subsets).

income limit rating cards age education i_female i_student i_married

14.891 3606 283 2 34 11 0 0

106.025 6645 483 3 82 15 1 1

104.593 7075 514 4 71 11 0 0 0

148.924 9504 681 3 36 11 1 0 0

55.882 4897 357 2 68 16 0 0

80.18 8047 569 4 77 10 0 0 0

20.996 3388 259 2 37 12 1 0 0

71.408 7114 512 2 87 9 0 0 0

15.125 3300 266 5 66 13 1 0 0

71.061 6819 491 3 41 19 1 1
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Model selection

Best subset selection
From here, you would

1. Estimate cross-validated error for each .

2. Choose the  that minimizes the CV error.

3. Train the chosen model on the full dataset.

Mk

Mk
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Model selection

Best subset selection
Warnings

Computationally intensive
Selected models may not be "right" (squared terms with linear terms)
You need to protect against overfitting when choosing across 
Also should worry about overfitting when  is "big"
Dependent upon the variables you provide

Benefits

Comprehensive search across provided variables
Resulting model—when estimated with OLS—has OLS properties
Can be applied to other (non-OLS) estimators

Mk

p
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Model selection

Stepwise selection
Stepwise selection provides a less computational intensive alternative to
best subset selection.

The basic idea behind stepwise selection

1. Start with an arbitrary model.

2. Try to find a "better" model by adding/removing variables.

3. Repeat.

4. Stop when you have the best model. (Or choose the best model.)

The two most-common varieties of stepwise selection:

Forward starts with only intercept  and adds variables
Backward starts with all variables  and removes variables

(M0)

(Mp)
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Model selection

Forward stepwise selection
The process...

1. Start with a model with only an intercept (no predictors), .

2. For :

Estimate a model for each of the remaining  predictors,

separately adding the predictors to model .

Define  as the "best" model of the  models.

3. Select the "best" model from .

What do we mean by "best"? 
 2: best is often RSS or R2. 
 3: best should be a cross-validated fit criterion.

M0

k = 0, … , p

p − k

Mk

Mk+1 p − k

M0, … , Mp
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Forward stepwise selection with caret  in R

train_forward = train(
  y = credit_dt[["balance"]],
  x = credit_dt %>% dplyr��select(�balance),
  trControl = trainControl(method = "cv", number = 5),
  method = "leapForward",
  tuneGrid = expand.grid(nvmax = 1:11)
)

N vars RMSE R2 MAE

1 232.57 0.745 175.2

2 163.13 0.874 121.9

3 103.31 0.950 83.8

4 101.04 0.952 81.8

5 99.32 0.954 79.6

6 99.68 0.953 80.0

7 99.96 0.953 80.4

8 99.99 0.953 80.4

9 99.85 0.953 80.2



Model selection

Backward stepwise selection
The process for backward stepwise selection is quite similar...

1. Start with a model that includes all  predictors: .

2. For :

Estimate  models, where each model removes exactly one of

the  predictors from .

Define  as the "best" of the  models.

3. Select the "best" model from .

What do we mean by "best"? 
 2: best is often RSS or R2. 
 3: best should be a cross-validated fit criterion.

p Mp

k = p, p − 1, … , 1

k

k Mk

Mk−1 k

M0, … , Mp
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Backward stepwise selection with caret  in R

train_backward = train(
  y = credit_dt[["balance"]],
  x = credit_dt %>% dplyr��select(�balance),
  trControl = trainControl(method = "cv", number = 5),
  method = "leapBackward",
  tuneGrid = expand.grid(nvmax = 1:11)
)

N vars RMSE R2 MAE

1 233.06 0.743 177.6

2 165.41 0.871 124.9

3 104.30 0.949 83.8

4 99.88 0.954 79.5

5 99.40 0.954 79.4

6 99.41 0.954 79.4

7 99.64 0.954 79.5

8 100.02 0.953 79.7

9 100.00 0.953 79.9



Note: forward and backward step. selection can choose different models.



Model selection

Stepwise selection
Notes on stepwise selection

Less computationally intensive (relative to best subset selection)

With , BSS fits 1,048,576 models.
With , foward/backward selection fits 211 models.

There is no guarantee that stepwise selection finds the best model.

Best is defined by your fit criterion (as always).

Again, cross validation is key to avoiding overfitting.

p = 20

p = 20
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Model selection

Criteria
Which model you choose is a function of how you define "best".

And we have many options... We've seen RSS, (R)MSE, RSE, MA, R2, Adj. R2.

Of course, there's more. Each penalizes the  predictors differently.d

Cp = (RSS + 2dσ̂2)

AIC = (RSS + 2dσ̂2)

BIC = (RSS + log(n)dσ̂2)

1

n

1

nσ̂
2

1

nσ̂
2
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Model selection

Criteria
, , and  all have rigorous theoretical justifications...

the adjusted  is not as well motivated in statistical theory

ISL, p. 213

In general, we will stick with cross-validated criteria, but you still need to
choose a selection criterion.

Cp AIC BIC

R2
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Sources
These notes draw upon

An Introduction to Statistical Learning (ISL)
James, Witten, Hastie, and Tibshirani
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http://faculty.marshall.usc.edu/gareth-james/ISL/
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