Lecture 004

Regression strikes back

Edward Rubin 28 January 2020

Admin

Admin

Today

In-class

- A roadmap (where are we going?)
- Linear regression and model selection

Admin

Upcoming

Readings

• Today

• ISL Ch. 3 and 6.1

• Next

• *ISL* Ch. 6 and 4

Problem sets

- Due tonight! (How did it go?)
- Next: After we finish this set of notes

Roadmap

Where are we?

We've essentially covered the central topics in statistical learning[†]

- Prediction and inference
- Supervised vs. unsupervised methods
- Regression and classification problems
- The dangers of overfitting
- The bias-variance tradeoff
- Model assessment
- Holdouts, validation sets, and cross validation⁺⁺
- Model training and tuning
- Simulation

† Plus a few of the "basic" methods: OLS regression and KNN.†† And the bootstrap!

Roadmap

Where are we going?

Next, we will cover many common machine-learning algorithms, e.g.,

- Decision trees and random forests
- SVM
- Neural nets
- Clustering
- Ensemble techniques

But first, we return to good old **linear regression**—in a new light...

- Linear regression
- Variable/model selection and LASSO/Ridge regression
- *Plus:* Logistic regression and discriminant analysis

Roadmap

Why return to regression?

Motivation 1

We have new tools. It might help to first apply them in a **familiar** setting.

Motivation 2

We have new tools. Maybe linear regression will be (even) **better now?**

Motivation 3

many fancy statistical learning approaches can be seen as **generalizations or extensions of linear regression**.

Source: ISL, p. 59; emphasis added

Regression regression

Recall Linear regression "fits" coefficients β_0, \ldots, β_p for a model

$$y_i = eta_0 + eta_1 x_{1,i} + eta_2 x_{2,i} + \dots + eta_p x_{p,i} + arepsilon_i$$

and is often applied in two distinct settings with fairly distinct goals:

- 1. **Causal inference** estimates and interprets the coefficients.
- 2. **Prediction** focuses on accurately estimating outcomes.

Regardless of the goal, the way we "fit" (estimate) the model is the same.

Fitting the regression line

As is the case with many statistical learning methods, regression focuses on minimizing some measure of loss/error.

 $e_i = y_i - \hat{y}_i$

Linear regression uses the L₂ loss function—also called *residual sum of squares* (RSS) or *sum of squared errors* (SSE)

$$ext{RSS}=e_1+e_2+\dots+e_n^2=\sum_{i=1}^n e_i^2,$$

Specifically: OLS chooses the $\hat{\beta}_i$ that **minimize RSS**.

Performance

There's a large variety of ways to assess the fit[†] of linear-regression models.

Residual standard error (RSE)

$${
m RSE} = \sqrt{rac{1}{n-p-1}} {
m RSS} = \sqrt{rac{1}{n-p-1}} \sum_{i=1}^n {(y_i - {\hat y}_i)}^2$$

R-squared (**R**²)

$$R^2 = rac{\mathrm{TSS} - \mathrm{RSS}}{\mathrm{TSS}} = 1 - rac{\mathrm{RSS}}{\mathrm{TSS}} \quad \mathrm{where} \quad \mathrm{TSS} = \sum_{i=1}^n ig(y_i - ar{y}ig)^2$$

t or predictive performance

Performance and overfit

As we've seen throughout the course, we need to be careful **not to overfit**.

R² provides no protection against overfitting—and actually encourages it.

$$R^2 = 1 - rac{ ext{RSS}}{ ext{TSS}}$$

Add a new variable: RSS \downarrow and TSS is unchanged. Thus, R² increases.

RSE *slightly* penalizes additional variables:

$$ext{RSE} = \sqrt{rac{1}{n-p-1} ext{RSS}}$$

Add a new variable: RSS \downarrow but p increases. Thus, RSE's change is uncertain.

Example

Let's see how **R²** and **RSE** perform with 500 very weak predictors.

To address overfitting, we can compare **in-** vs. **out-of-sample** performance.

In-sample R² mechanically increases as we add predictors.

In-sample R² mechanically increases as we add predictors. **Out-of-sample R²** does not.

What about RSE? Does its penalty *help*?

Despite its penalty for adding variables, **in-sample RSE** still can overfit,

Despite its penalty for adding variables, **in-sample RSE** still can overfit, as evidenced by **out-of-sample RSE**.

Penalization

RSE is not the only way to penalization the addition of variables.[†]

Adjusted R² is another *classic* solution.

$$ext{Adjusted } R^2 = 1 - rac{ ext{RSS}/(n-p-1)}{ ext{TSS}/(n-1)}$$

Adj. R² attempts to "fix" R² by **adding a penalty for the number of variables**.

- **RSS** always decreases when a new variable is added.
- $\operatorname{RSS}/(n-p-1)$ may increase or decrease with a new variable.

† We'll talk about other penalization methods (LASSO and Ridge) shortly.

However, **in-sample adjusted R²** still can overfit.

However, **in-sample adjusted R²** still can overfit. Illustrated by **out-of-sample adjusted R²**.

A better way?

R², adjusted R², and RSE each offer some flavor of model fit, but they appear **limited in their abilities to prevent overfitting**.

We want a method to optimally select a (linear) model—balancing variance and bias and avoiding overfit.

We'll discuss two (related) methods today:

- 1. Subset selection chooses a (sub)set of our p potential predictors
- 2. **Shrinkage** fits a model using all *p* variables but "shrinks" its coefficients

Subset selection

In subset selection, we

- 1. whittle down the p potential predictors (using some magic/algorithm)
- 2. estimate the chosen linear model using OLS

How do we do the *whittling* (selection)? We've go **options**.

- Best subset selection fits a model for every possible subset.
- Forward stepwise selection starts with only an intercept and tries to build up to the best model (using some fit criterion).
- Backward stepwise selection starts with all *p* variables and tries to drop variables until it hits the best model (using some fit criterion).
- Hybrid approaches are what their name implies (*i.e.*, hybrids).

Best subset selection

Best subset selection is based upon a simple idea: Estimate a model for every possible subset of variables; then compare their performances.

Q So what's the problem? (Why do we need other selection methods?) A "a model for **every possible subset**" can mean **a lot** (2^p) of models.

E.g.,

- 10 predictors \rightarrow 1,024 models to fit
- 25 predictors \rightarrow >33.5 million models to fit
- 100 predictors ightarrow ~1.5 trillion models to fit

Even with plentiful, cheap computational power, we can run into barriers.

Best subset selection

Computational constraints aside, we can implement **best subset selection** as

- 1. Define \mathcal{M}_0 as the model with no predictors.
- 2. For k in 1 to p:
 - \circ Fit every possible model with k predictors.
 - \circ Define \mathcal{M}_k as the "best" model with k predictors.
- 3. Select the "best" model from $\mathcal{M}_0, \, \ldots, \, \mathcal{M}_p$.

As we've seen, RSS declines (and R^2 increases) with p, so we should use a cross-validated measure of model performance in step 3.[†]

† Back to our distinction between test *vs.* training performance.

Example dataset: Credit

We're going to use the Credit dataset from ISL's R package ISLR.

ID 🔷	Income 🔶	Limit 🔶	Rating 🛊	Cards 🛊	Age 🛊	Education 🔶	Gender 🔶	Student 🛊	Marr
1	14.891	3606	283	2	34	11	Male	No	Yes
2	106.025	6645	483	3	82	15	Female	Yes	Yes
3	104.593	7075	514	4	71	11	Male	No	No
4	148.924	9504	681	3	36	11	Female	No	No
5	55.882	4897	357	2	68	16	Male	No	Yes
6	80.18	8047	569	4	77	10	Male	No	No
7	20.996	3388	259	2	37	12	Female	No	No
8	71.408	7114	512	2	87	9	Male	No	No
9	15.125	3300	266	5	66	13	Female	No	No
10	71.061	6819	491	3	41 7115 011		Female	Yes	Yes 6 / 42

Example dataset: Credit

We need to pre-process the dataset before we can select a model...

	income 🔶	limit 🔶	rating 🛊	cards	age 🛊	education 🛊	i_female 🛊	i_student 🛊	i_married
-	14.891	3606	283	2	34	11	0	0	
	106.025	6645	483	3	82	15	1	1	
	104.593	7075	514	4	71	11	0	0	
	148.924	9504	681	3	36	11	1	0	
	55.882	4897	357	2	68	16	0	0	
	80.18	8047	569	4	77	10	0	0	
	20.996	3388	259	2	37	12	1	0	
	71.408	7114	512	2	87	9	0	0	
	15.125	3300	266	5	66	13	1	0	
	71.061	6819	491	3	41	19	1	1	

Now the dataset on has 400 observations on 12 variables (2,048 subsets). 27 / 42

Best subset selection

From here, you would

- 1. Estimate cross-validated error for each \mathcal{M}_k .
- 2. Choose the \mathcal{M}_k that minimizes the CV error.
- 3. Train the chosen model on the full dataset.

Best subset selection

Warnings

- Computationally intensive
- Selected models may not be "right" (squared terms with linear terms)
- You need to protect against overfitting when choosing across \mathcal{M}_k
- Also should worry about overfitting when p is "big"
- Dependent upon the variables you provide

Benefits

- Comprehensive search across provided variables
- Resulting model—when estimated with OLS—has OLS properties
- Can be applied to other (non-OLS) estimators

Stepwise selection

Stepwise selection provides a less computational intensive alternative to best subset selection.

The basic idea behind **stepwise selection**

- 1. Start with an arbitrary model.
- 2. Try to find a "better" model by adding/removing variables.
- 3. Repeat.
- 4. Stop when you have the best model. (Or choose the best model.)

The two most-common varieties of stepwise selection:

- Forward starts with only intercept (\mathcal{M}_0) and adds variables
- Backward starts with all variables (\mathcal{M}_p) and removes variables

Forward stepwise selection

The process...

- 1. Start with a model with only an intercept (no predictors), $\mathcal{M}_0.$
- 2. For $k=0,\,\ldots,\,p$:
 - \circ Estimate a model for each of the remaining p-k predictors, separately adding the predictors to model \mathcal{M}_k .
 - \circ Define \mathcal{M}_{k+1} as the "best" model of the p-k models.
- 3. Select the "best" model from $\mathcal{M}_0, \, \ldots, \, \mathcal{M}_p$.

What do we mean by "best"?

- **2:** *best* is often RSS or R^2 .
- **3:** *best* should be a cross-validated fit criterion.

Forward stepwise selection with caret in R

```
train_forward = train(
  y = credit_dt[["balance"]],
  x = credit_dt %>% dplyr::select(-balance),
  trControl = trainControl(method = "cv", number = 5),
  method = "leapForward",
  tuneGrid = expand.grid(nvmax = 1:11)
)
```

N vars 🔷	RMSE 🔶	R2 🔶	MAE 🔶
1	232.57	0.745	175.2
2	163.13	0.874	121.9
3	103.31	0.950	83.8
4	101.04	0.952	81.8
5	99.32	0.954	79.6
6	99.68	0.953	80.0
7	99.96	0.953	80.4
8	99.99	0.953	80.4
9	99.85	0.953	80.2

Backward stepwise selection

The process for **backward stepwise selection** is quite similar...

- 1. Start with a model that includes all p predictors: \mathcal{M}_p .
- 2. For $k=p,\,p-1,\,\ldots,\,1$:
 - \circ Estimate k models, where each model removes exactly one of the k predictors from \mathcal{M}_k .
 - \circ Define \mathcal{M}_{k-1} as the "best" of the k models.
- 3. Select the "best" model from $\mathcal{M}_0, \ldots, \mathcal{M}_p$.

What do we mean by "best"?

- **2:** *best* is often RSS or R^2 .
- **3:** *best* should be a cross-validated fit criterion.

Backward stepwise selection with caret in R

```
train_backward = train(
  y = credit_dt[["balance"]],
  x = credit_dt %>% dplyr::select(-balance),
  trControl = trainControl(method = "cv", number = 5),
  method = "leapBackward",
  tuneGrid = expand.grid(nvmax = 1:11)
)
```

N vars 🔶	RMSE 🔶	R2 🔷	MAE 🔶
1	233.06	0.743	177.6
2	165.41	0.871	124.9
3	104.30	0.949	83.8
4	99.88	0.954	79.5
5	99.40	0.954	79.4
6	99.41	0.954	79.4
7	99.64	0.954	79.5
8	100.02	0.953	79.7
9	100.00	0.953	79.9

Note: **forward** and **backward** step. selection can choose different models.

Stepwise selection

Notes on stepwise selection

- Less computationally intensive (relative to best subset selection)
 - \circ With p=20, BSS fits 1,048,576 models.
 - \circ With p=20, foward/backward selection fits 211 models.
- There is **no guarantee** that stepwise selection finds the best model.
- **Best** is defined by your fit criterion (as always).
- Again, **cross validation is key** to avoiding overfitting.

Criteria

Which model you choose is a function of **how you define "best"**.

And we have many options... We've seen RSS, (R)MSE, RSE, MA, R², Adj. R².

Of course, there's more. Each **penalizes** the *d* predictors differently.

$$egin{aligned} C_p &= rac{1}{n} \Big(ext{RSS} + 2 d \hat{\sigma}^2 \Big) \ ext{AIC} &= rac{1}{n \hat{\sigma}^2} \Big(ext{RSS} + 2 d \hat{\sigma}^2 \Big) \ ext{BIC} &= rac{1}{n \hat{\sigma}^2} \Big(ext{RSS} + \log(n) d \hat{\sigma}^2 \Big) \end{aligned}$$

Criteria

 C_p , AIC, and BIC all have rigorous theoretical justifications... the adjusted R^2 is not as well motivated in statistical theory

ISL, p. 213

In general, we will stick with cross-validated criteria, but you still need to choose a selection criterion.

Sources

These notes draw upon

• An Introduction to Statistical Learning (ISL)

James, Witten, Hastie, and Tibshirani

Table of contents

Admin

- Today
- Upcoming
- Roadmap

Linear regression

- Regression regression
- Performance
- Overfit

Model selection

- A better way?
- Subset selection
 - Best subset selection
 - Stepwise selection
 - Forward
 - Backward
 - Notes
- Criteria

Other

• Sources/references