Lecture 000

Why are we here?
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https://github.com/edrubin/EC524W20/
https://raw.githack.com/edrubin/EC524W20/master/syllabus/syllabus.pdf
https://github.com/edrubin/EC524W20/tree/master/projects/kaggle-house-prices
https://www.aeaweb.org/articles?id=10.1257/aer.p20151023
https://www.smart2zero.com/news/algorithm-beats-radiologists-diagnosing-x-rays
https://www.smart2zero.com/news/algorithm-beats-radiologists-diagnosing-x-rays
https://www.newyorker.com/magazine/2019/10/14/can-a-machine-learn-to-write-for-the-new-yorker
http://gendershades.org/overview.html

Admin



In-class today

o Course website: https://github.com/edrubin/EC524W20/
e Syllabus (on website)

TOoDO list

o Assignment (from Tuesday) due Thursday
e Readings for next time:
o |ISL Ch1-Ch2
o Prediction Policy Problems by Kleinberg et al. (2015)
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What's the goal?

What's different?

We've got a whole class on prediction. Why?
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What's different?

We've got a whole class on prediction. Why?

Up to this point, we've focused on causal identification/inference of 3, i.e,
Y, =X+ w

meaning we want an unbiased (consistent) and precise estimate 5
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What's the goal?

What's different?

We've got a whole class on prediction. Why?

Up to this point, we've focused on causal identification/inference of 3, i.e,
Y =X+ uy

meaning we want an unbiased (consistent) and precise estimate 5

With prediction, we shift our focus to accurately estimating outcomes.

In other words, how can we best construct Y;?
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What's the goal?

.. SO?

So we want "nice"-performing estimates g instead of 8.

Q Can't we just use the same methods (i.e., OLS)?
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Q Can't we just use the same methods (i.e., OLS)?

A It depends. How well does your linear-regression model approximate the
underlying data? (And how do you plan to select your model?)
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What's the goal?

.. SO?

So we want "nice"-performing estimates g instead of 8.
Q Can't we just use the same methods (i.e., OLS)?

A It depends. How well does your linear-regression model approximate the
underlying data? (And how do you plan to select your model?)

Recall Least-squares regression is a great linear estimator.
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Data data be tricky'—as can understanding many relationships.

T "Tricky" might mean nonlinear... or many other things...






Linear regression




Linear regression, linear regression (z*)
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Linear regression, linear regression (z*), KNN (100)
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Linear regression, linear regression (z*), KNN (100), KNN (10)
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Note That example was only in one dimension...



What's the goal?

Tradeoffs

In prediction, we constantly face many tradeoffs, e.g.,

o flexibility and parametric structure (and interpretability)
« performance in training and test samples
e variance and bias
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In prediction, we constantly face many tradeoffs, e.g.,

o flexibility and parametric structure (and interpretability)
« performance in training and test samples
e variance and bias

As your economic training should have predicted, in each setting, we need
to balance the additional benefits and costs of adjusting these tradeoffs.
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What's the goal?

Tradeoffs

In prediction, we constantly face many tradeoffs, e.g.,

o flexibility and parametric structure (and interpretability)
« performance in training and test samples
e variance and bias

As your economic training should have predicted, in each setting, we need
to balance the additional benefits and costs of adjusting these tradeoffs.

Many machine-learning (ML) techniques/algorithms are crafted to optimize
with these tradeoffs, but the practitioner (you) still needs to be careful.
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What's the goal?

There are many reasons to step outside the world of linear regression...
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There are many reasons to step outside the world of linear regression...
Multi-class classification problems

o Rather than {01}, we need to classify y; into 1 of K classes
e E£.g., ER patients: {heart attack, drug overdose, stroke, nothing}
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Text analysis and image recognition
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What's the goal?

There are many reasons to step outside the world of linear regression...
Multi-class classification problems

o Rather than {01}, we need to classify y; into 1 of K classes
e E£.g., ER patients: {heart attack, drug overdose, stroke, nothing}

Text analysis and image recognition

« Comb though sentences (pixels) to glean insights from relationships
e E.g., detect sentiments in tweets or roof-top solar in satellite imagery

Unsupervised learning

e You don't know groupings, but you think there are relevant groups
e E.g., classify spatial data into groups
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Stanford University (Stanford, CA ) researchers have developed a
deep-learning algorithm that can evaluate chest X-ray images for
signs of disease at a level exceeding practicing radiologists.



Parking Lot Vehicle Detection Using
Deep Learning




THE

NEW YORKER

A REPORTER AT LARGE OCTOBER 14, 2019 ISSUE

The Next Word

Where will ]Dredicz‘z’w text take us?

Text by John Seabrook
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Darker
Female
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Largest
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20.8%
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Q What have you learned/noticed in your first project?



Next time Start formal building blocks of prediction.



Sources

Sources (articles) of images

e Deep learning and radiology
e Parking lot detection

o New Yorker writing

e Gender Shades
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https://www.smart2zero.com/news/algorithm-beats-radiologists-diagnosing-x-rays
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https://www.newyorker.com/magazine/2019/10/14/can-a-machine-learn-to-write-for-the-new-yorker
http://gendershades.org/overview.html
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