Lecture 000

Why are we here?

Edward Rubin 09 January 2020

Admin

Admin

In-class today

- **Course website:** https://github.com/edrubin/EC524W20/
- Syllabus (on website)

todo list

- Assignment (from Tuesday) due Thursday
- Readings for next time:
 - ISL Ch1–Ch2
 - Prediction Policy Problems by Kleinberg et al. (2015)

What's different?

We've got a whole class on **prediction**. Why?

What's different?

We've got a whole class on **prediction**. Why?

Up to this point, we've focused on causal **identification/inference** of β , *i.e.*,

 $\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + u_i$

meaning we want an unbiased (consistent) and precise estimate $\hat{\beta}$.

What's different?

We've got a whole class on **prediction**. Why?

Up to this point, we've focused on causal **identification/inference** of β , *i.e.*,

 $\mathbf{Y}_i = \mathbf{X}_i \boldsymbol{\beta} + \boldsymbol{u}_i$

meaning we want an unbiased (consistent) and precise estimate $\hat{\beta}$.

With **prediction**, we shift our focus to accurately estimating outcomes.

In other words, how can we best construct $\hat{\mathbf{Y}}_i$?

... so?

So we want "nice"-performing estimates \hat{y} instead of $\hat{\beta}$.

Q Can't we just use the same methods (*i.e.*, OLS)?

... so?

So we want "nice"-performing estimates \hat{y} instead of $\hat{\beta}$.

Q Can't we just use the same methods (*i.e.*, OLS)?

A It depends.

... so?

So we want "nice"-performing estimates \hat{y} instead of \hat{eta} .

Q Can't we just use the same methods (*i.e.*, OLS)?

A It depends. How well does your **linear**-regression model approximate the underlying data? (And how do you plan to select your model?)

... so?

So we want "nice"-performing estimates \hat{y} instead of $\hat{\beta}$.

Q Can't we just use the same methods (*i.e.*, OLS)?

A It depends. How well does your **linear**-regression model approximate the underlying data? (And how do you plan to select your model?)

Recall Least-squares regression is a great **linear** estimator.

Data data be tricky[†]—as can understanding many relationships.

† "Tricky" might mean nonlinear... or many other things...

Linear regression

•

Linear regression, linear regression (x^4) , KNN (100)

Х

I

Linear regression, linear regression (x^4) , KNN (100), KNN (10)

Linear regression, linear regression (x^4) , KNN (100), KNN (10), random forest

Note That example was only in one dimension...

Tradeoffs

In prediction, we constantly face many tradeoffs, e.g.,

- **flexibility** and **parametric structure** (and interpretability)
- performance in **training** and **test** samples
- variance and bias

Tradeoffs

In prediction, we constantly face many tradeoffs, e.g.,

- **flexibility** and **parametric structure** (and interpretability)
- performance in **training** and **test** samples
- variance and bias

As your economic training should have predicted, in each setting, we need to **balance the additional benefits and costs** of adjusting these tradeoffs.

Tradeoffs

In prediction, we constantly face many tradeoffs, e.g.,

- **flexibility** and **parametric structure** (and interpretability)
- performance in **training** and **test** samples
- variance and bias

As your economic training should have predicted, in each setting, we need to **balance the additional benefits and costs** of adjusting these tradeoffs.

Many machine-learning (ML) techniques/algorithms are crafted to optimize with these tradeoffs, but the practitioner (you) still needs to be careful.

There are many reasons to step outside the world of linear regression...

There are many reasons to step outside the world of linear regression...

Multi-class classification problems

- Rather than {0,1}, we need to classify y_i into 1 of K classes
- *E.g.*, ER patients: {heart attack, drug overdose, stroke, nothing}

There are many reasons to step outside the world of linear regression...

Multi-class classification problems

- Rather than {0,1}, we need to classify y_i into 1 of K classes
- *E.g.*, ER patients: {heart attack, drug overdose, stroke, nothing}

Text analysis and image recognition

- Comb though sentences (pixels) to glean insights from relationships
- E.g., detect sentiments in tweets or roof-top solar in satellite imagery

There are many reasons to step outside the world of linear regression...

Multi-class classification problems

- Rather than {0,1}, we need to classify y_i into 1 of K classes
- *E.g.*, ER patients: {heart attack, drug overdose, stroke, nothing}

Text analysis and image recognition

- Comb though sentences (pixels) to glean insights from relationships
- *E.g.*, detect sentiments in tweets or roof-top solar in satellite imagery

Unsupervised learning

- You don't know groupings, but you think there are relevant groups
- E.g., classify spatial data into groups

Stanford University (Stanford, CA) researchers have developed a deep-learning algorithm that can evaluate chest X-ray images for signs of disease at a level exceeding practicing radiologists.

Parking Lot Vehicle Detection Using Deep Learning

Gender Classifier	Darker Male	Darker Female	Lighter Male	Lighter Female	Largest Gap
Microsoft	94.0%	79.2%	100%	98.3%	20.8%
FACE++	99.3%	65.5%	99.2%	94.0%	33.8%
IBM	88.0%	65.3%	99.7%	92.9%	34.4%

Q What have you learned/noticed in your first project?

Next time Start formal building blocks of prediction.

Sources

Sources (articles) of images

- Deep learning and radiology
- Parking lot detection
- New Yorker writing
- Gender Shades

Table of contents

Admin

• Today and upcoming

What's the goal?

- What's difference?
- Graphical example
- Tradeoffs
- More goals
- Examples

Other

• Image sources