
Lab 002
Cross validation and simulation

Edward Rubin
24 January 2020

AdminAdmin

Admin
In lab today

Check in
Cross validation and parameter tuning (with caret)
Simulation

Upcoming

Keep up with readings (ISL 3–4, 6)
Assignment will be posted soon

3 / 64

Check in

Some questions
(Be honest)

1. How is this class going?

Are there areas/topics you would like more coverage/review?
How is the speed?
How were the assignments?
Is there more we or you could be doing?

2. How is your quarter going?

3. How is your program going?

4. Anything else?

4 / 64

Cross validationCross validation

Cross validation

Review
Cross validation† (CV) aims to estimate out-of-sample performance

1. efficiently, using the full dataset to both train and test (validate)

2. without overfitting, separating observations used to train or test

CV (e.g., LOOCV and -fold) aids with several tasks

model selection: choosing key parameters for a model's flexibility
e.g., K in KNN, polynomials and interactions for regression (AKA tuning)

model assessment: determining how well the model performs
e.g., estimating the true test MSE, MAE, or error rate

† Plus other resampling (and specifically hold-out) methods

k

6 / 64

Cross validation

-fold cross validation, review
1. Divide training data into folds (mutally exclusive groups)
2. For each fold :

Train your model on all observations, excluding members of
Test and assess modeli on the members of fold , e.g., MSEi

3. Estimate test performance by averaging across folds, e.g., Avg(MSEi)

Each fold takes a turn at validation. The other folds train.

k

k

i

i

i

k − 1
7 / 64

Cross validation

-fold cross validation, review
1. Divide training data into folds (mutally exclusive groups)
2. For each fold :

Train your model on all observations, excluding members of
Test and assess modeli on the members of fold , e.g., MSEi

3. Estimate test performance by averaging across folds, e.g., Avg(MSEi)

For , fold number as the validation set produces MSEk=1.

k

k

i

i

i

k = 5 1
8 / 64

Cross validation

-fold cross validation, review
1. Divide training data into folds (mutally exclusive groups)
2. For each fold :

Train your model on all observations, excluding members of
Test and assess modeli on the members of fold , e.g., MSEi

3. Estimate test performance by averaging across folds, e.g., Avg(MSEi)

For , fold number as the validation set produces MSEk=2.

k

k

i

i

i

k = 5 2
9 / 64

Cross validation

-fold cross validation, review
1. Divide training data into folds (mutally exclusive groups)
2. For each fold :

Train your model on all observations, excluding members of
Test and assess modeli on the members of fold , e.g., MSEi

3. Estimate test performance by averaging across folds, e.g., Avg(MSEi)

For , fold number as the validation set produces MSEk=3.

k

k

i

i

i

k = 5 3
10 / 64

Cross validation

-fold cross validation, review
1. Divide training data into folds (mutally exclusive groups)
2. For each fold :

Train your model on all observations, excluding members of
Test and assess modeli on the members of fold , e.g., MSEi

3. Estimate test performance by averaging across folds, e.g., Avg(MSEi)

For , fold number as the validation set produces MSEk=4.

k

k

i

i

i

k = 5 4
11 / 64

Cross validation

-fold cross validation, review
1. Divide training data into folds (mutally exclusive groups)
2. For each fold :

Train your model on all observations, excluding members of
Test and assess modeli on the members of fold , e.g., MSEi

3. Estimate test performance by averaging across folds, e.g., Avg(MSEi)

For , fold number as the validation set produces MSEk=5.

k

k

i

i

i

k = 5 5
12 / 64

Cross validation

Independence
Resampling methods assume something similar to independence: our
resampling must match the original sampling procedure.

If observations are "linked" but we resample independently, CV may break.

If we have repeated observations on individuals through time :

It's pretty likely and are related—and maybe .
Initial sample may draw individuals , but standard CV ignores time.

In other case, some individuals are linked with other individuals, e.g.,

 and my be correlated if and live togother
Also: and could be correlated

i t

yi,t yi,t+1 yi,t+ℓ

i

yi,t yj,t i j

yi,t yj,t+ℓ

13 / 64

Cross validation

Independence
In other words: Spatial or temporal dependence between observations
breaks the separation between training and testing samples.

Breaking this separation train-test separation leads us back to

Overfitting the sample—since training and testing samples are linked

Overestimating model performance—the estimated test MSE will be
more of a training MSE.

Solutions to this problem involve matching the resampling process to the
original sampling and underlying dependence.

Examples: Spatial -fold CV (SKCV) and blocked time-series CVk

14 / 64

Cross validation

Dependence
Q So how big of a deal is this type of depedence?

A Let's see! (Sounds like it's time for a simulation.)

15 / 64

SimulationsSimulations

Simulations

Monte Carlo
Monte Carlo simulation† allows us model probabilistic questions.

1. Generate a population defined by some data-generating process (DGP),
a model of how your fake/simulated world works.1. Repeatedly draw
samples from your population. For each :

Apply the relevant methods, sampling techniques, estimators, etc.
Record your outcome(s) of interest (e.g., MSE or error rate), 1. Use
the distribution of the to learn about your methods, sampling
techniques, and/or estimators—the mean, bias, variability etc.

Ex1 We can change DGP in (1) to see how performance (3) changes.
Ex2 Holding DGP (1) constant, we can compare competing methods (2).

† Also called Monte Carlo methods, experiments, etc.

s s

Os

Os

17 / 64

Sound familiar? Monte Carlo is very related to resampling methods.

Monte Carlo

Introductory example: Define the question
It's always helpful to clearly define the question you want to answer, e.g.:

Example question: Is OLS unbiased when Uniform(0, 1)?

Now we know our goal: Determine unbiasedness (mean of distribution).

εi ∼

19 / 64

Monte Carlo

Introductory example: DGP and population
We'll use the DGP ,
where Uniform(0, 1), and N(0, 1).

Set seed
set.seed(123)
Define population size
pop_size = 1e4
Generate population
ols_pop = tibble(
 # Generate disturbances: Using Uniform(0,1)
 e = runif(pop_size, min = 0, max = 1),
 # Generate x: Using N(0,1)
 x = rnorm(pop_size),
 # Calculate y
 y = 3 + 6 * x + e
)

yi = 3 + 6xi + εi

εi ∼ xi ∼

20 / 64

You define the arugments.

Our function: Take the product
multiply = function(a, b, c) {
 a * b * c
}
Try the function
multiply(a = 1, b = 2, c = 3)

#> [1] 6

You can define default values too.

Our function: Take the product
multiply = function(a, b, c = 3) {
 a * b * c
}
Try the function
multiply(a = 1, b = 2)

#> [1] 6

Note Functions return the last unassigned object.

Monte Carlo

Aside: Writing custom functions
In R you can creat your own functions with the function() function.

21 / 64

super_fancy = function(a, b, c = 3) {
 # Test if 'c' �� 3
 if (c �� 3) {
 # If yes: divide 'a' by 'b'
 step1 = a / b
 } else {
 # If no: multiply 'a' by 'b'
 step1 = a * b
 }
 # Now add 7 to the result
 step2 = step1 * 7
 # And now multiply by zero
 step2 * 0
}

Try our function
super_fancy(a = 12, b = 7, c = 4)

#> [1] 0

Monte Carlo

Aside: Writing custom functions
Typically you will have a slightly more complex function, e.g.,

22 / 64

Monte Carlo

Introductory example: A single iteration
Now we want to write a function that

1. samples from the population ols_pop
2. estimates OLS regression on the sample
3. records the OLS estimate

ols_function = function(iter, sample_size) {
 # Draw a sample of size 'sample_size'
 ols_sample = sample_n(ols_pop, size = sample_size)
 # Estimate OLS
 ols_est = lm(y ~ x, data = ols_sample)
 # Return coefficients and iteration number
 data.frame(b0 = coef(ols_est)[1], b1 = coef(ols_est)[2], iter)
}

23 / 64

Monte Carlo

Introductory example: Run the simulation
For the simulation, we run our single-iteration function ols_function()
a bunch of times (like 10,000) and then collect the results.†

Set up parallelization (with 12 cores)
Warning: Can take a little time to run (esp w/out 12 cores)
plan(multiprocess, workers = 12)
Set seed
set.seed(12345)
Run simulation
ols_sim = future_lapply(
 X = 1:1e4,
 FUN = ols_function,
 sample_size = 50,
 future.seed = T
) %>% bind_rows()

† The apply() family and parallelization are both key here (future.apply combines them).
24 / 64

Monte Carlo

Introductory example: Results
Now we're ready to summarize the results.

We wanted to know if OLS is still unbiased.

Thus, plotting the distributions of estimates for and will be of
interest—especially the means of these distributions.

Recall: If an estimator is unbiased, then the mean of its distribution should
like up with the parameter it is attempting to estimate.

β0 β1

25 / 64

Considering OLS's unbiasedness: The distribution of β̂0

Considering OLS's unbiasedness: The distribution of β̂1

Monte Carlo

Introductory example: Conclusion
When our disturbances are distributed as Uniform(0,1)

1. OLS is biased for (the intercept)
2. OLS is still unbiased for (the slope)

... and we were able to learn all of this information by simulation.

β0

β1

28 / 64

Now back to our question on -fold cross validation and interdependence.k

Simulation: -fold CV and dependence

Our question
Let's write our previous question in a way we can try to answer it.

Question: How does correlation between observations affect the
performance of -fold cross validation?

k

k

30 / 64

Simulation: -fold CV and dependence

Our question
Let's write our previous question in a way we can try to answer it.

Question: How does correlation between observations affect the
performance of -fold cross validation?

We need to define some terms.

k

k

31 / 64

Simulation: -fold CV and dependence

Our question
Let's write our previous question in a way we can try to answer it.

Question: How does correlation between observations affect the
performance of -fold cross validation?

correlation between observations

Observations can correlate in many ways. Let's keep it simple: we will
simulate repeated observations (through time,) on individuals, .
DGP: Continuous has a predictor and two random disturbances

k

k

t i

yi,t xi,t

yi,t = 3xi,t − 2x2
i,t + 0.1x4

i,t + γi + εi,t

xi,t = 0.9xi,t−1 + ηi,t

εi,t = 0.9εi,t−1 + νi,t

32 / 64

Simulation: -fold CV and dependence

Our question
Let's write our previous question in a way we can try to answer it.

Question: How does correlation between observations affect the
performance of -fold cross validation?

performance

We will focus on MSE for observations the model never saw.
Note: En route, we will meet root mean squared error (RMSE).

k

k

RMSE = √MSE

33 / 64

Simulation: -fold CV and dependence

Our question
Let's write our previous question in a way we can try to answer it.

Question: How does correlation between observations affect the
performance of -fold cross validation?

-fold cross validation

We'll stick with 5-fold cross validation.
Our answer shouldn't change too much based upon .
Feel free to experiment later...

k

k

k

k

34 / 64

Set up population

Set seed
Define number of individuals N and time periods T

Set seed
set.seed(12345)
Size of the population
N = 1000
Number of time periods per individual
T = 50
Create the indices of our population
pop_df = expand_grid(
 i = 1�N,
 t = 1:T
)

Build population

Generate temporally correlated disturbances and predictor
Calculate outcome variable

Disturbance for (i,t): Correlated within time (not across individuals)
pop_df %��%
 group_by(i) %>%
 mutate(
 x = arima.sim(model = list(ar = c(0.9)), n = T) %>% as.numeric(),
 e_it = arima.sim(model = list(ar = c(0.9)), n = T) %>% as.numeric()
) %>% ungroup()
Disturbance for (i): Constant within individual
pop_df %��%
 group_by(i) %>%
 mutate(e_i = runif(n = 1, min = -100, max = 100)) %>%
 ungroup()
Calculate 'y'; drop disturbances
pop_df %��% mutate(
 y = e_i + 3 * x - 2 * x^2 + 0.1 * x^4 + e_it
) %>% select(i, t, y, x)

(xi,t)

yi,t

Notice the correlation within observation across time.

Viewing the correlation in and .xi,t yi,t

Next steps: Write out a single iteration (to become a function).

1. Draw a sample.

2. Estimate a model: We're going to use KNN regression.

3. Tune our model: We will use 5-fold CV to choose 'K'.

4. Assess the model's performance (CV and in the population).

Draw a sample
Define sample size (will be in input of our function)
n_i = 50
Draw sample
i_sampled = sample.int(N, size = n_i)
Draw a sample
sample_df = pop_df %>% filter(i %in% i_sampled)

sample.int(n, size) draws size integers between 1 and n .

Note that we are sampling individuals (i).

Tune and estimate a model
Define number of folds
k_folds = 5
k�fold CV
cv_output = train(
 # The relationshiop: y as a function of x
 y ~ .,
 # The method of estimating the model (linear regression)
 method = "knn",
 # The training data (which will be used for cross validation)
 data = sample_df %>% select(y, x),
 # Controls for the model training: k�fold cross validation
 trControl = trainControl(method = "cv", number = k_folds),
 # Allow cross validation to choose best value of K (# nearest neighbors)
 tuneGrid = expand.grid(k = seq(1, 500, by = 5))
)

train() (from the caret package) assists in many training/tuning tasks
(note tuneGrid argument)—including pre-processing data.

You can actually plot the results from train() , i.e.,

ggplot(cv_output) + theme_minimal()

The output from train() also contains a lot of additional information, e.g.,

cv_output$results

k RMSE Rsquared MAE RMSESD RsquaredSD MAESD

1 82.199 0.006 66.382 1.751 0.006 1.904

6 63.859 0.012 54.800 2.303 0.016 2.043

11 61.771 0.015 53.856 1.616 0.017 1.206

16 60.869 0.018 53.216 1.512 0.018 1.321

21 60.565 0.017 53.064 1.299 0.016 1.191

26 60.251 0.018 52.847 1.338 0.020 1.134

31 60.103 0.019 52.737 1.207 0.018 1.050

36 59.919 0.021 52.642 1.158 0.019 0.994

41 59.923 0.018 52.682 0.921 0.013 0.792

46 59.749 0.021 52.483 0.905 0.013 0.775

The output from train() also contains a lot of additional information, e.g.,

cv_output$resample

RMSE Rsquared MAE Resample

59.478 0.008 52.421 Fold4

60.316 0.015 52.723 Fold2

59.260 0.025 52.506 Fold3

58.917 0.032 51.603 Fold1

59.985 0.023 52.626 Fold5

Now we assess the performance of our chosen/tuned model.

1. Record the CV-based MSE (already calculated by train()).

2. Since we know the population, we can calculate the true test MSE.

(2) is usually not available to use—you can see how simulation helps.

Assess performance

Subset to unseen data (individuals not sampled)
Evaluate prediction performance on new individuals

Subset to unseen data
test_df = pop_df %>% filter(i %>% is_in(i_sampled) %>% not())
Make predictions on
predictions = predict(
 cv_output,
 newdata = test_df
)
Calculate RMSE in full population
rmse_true = mean((test_df$y - predictions)^2) %>% sqrt()
rmse_true

#> [1] 60.98547

Comparing CV RMSE to true test RMSE

Now we basically wrap the last 7 slides into a function and we're set!

Function: One iteration of the simulation
Our function for a single iteration of the simulation
sim_fun = function(iter, n_i = 50, k_folds = 5) {
 # Draw sample
 i_sampled = sample.int(N, size = n_i)
 # Draw a sample
 sample_df = pop_df %>% filter(i %in% i_sampled)
 # k�fold CV
 cv_output = cv_function(k_folds = k_folds)
 # Find the estimated MSE
 mse_est = mean(cv_output$resample$RMSE^2)
 # Subset to unseen data
 test_df = pop_df %>% filter(i %>% is_in(i_sampled) %>% not())
 # Make predictions on true test data
 predictions = predict(cv_output, newdata = test_df)
 # Calculate RMSE in full population
 mse_true = mean((test_df$y - predictions)^2)
 # Output results
 data.frame(iter, k = cv_output$bestTune$k, mse_est, mse_true)
}

Notice that we can define default values for our function's arguments.

Function: -fold CV of KNN model for a sample
Wrapper function for caret��train()
cv_function = function(k_folds) {
 # The relationship: y as a function of w and x
 y ~ .,
 # The method of estimating the model (linear regression)
 method = "knn",
 # The training data (which will be used for cross validation)
 data = sample_df %>% select(y, x),
 # Controls for the model training: k�fold cross validation
 trControl = trainControl(method = "cv", number = k_folds),
 # Allow cross validation to choose best value of K (# nearest neighbors)
 tuneGrid = expand.grid(k = seq(1, 200, by = 10))
}

Note This function would need to be defined first in a script.

k

Now run our one-iteration function sim_fun() for many iterations!

Run the simulation!
Set seed
set.seed(123)
Run simulation 1,000 times in parallel (and time)
tic()
sim_df = mclapply(
 X = 1:1e3,
 FUN = sim_fun,
 mc.cores = 11
) %>% bind_rows()
toc()
Save dataset
write_csv(
 x = sim_df,
 path = here("cv�sim�knn.csv")
)

tic() and toc() come from tictoc() and help with timing tasks.
mclapply() is a parallelized lapply() from parallel (sorry, no Windows).

How about some results?

With dependence: distributions of the true MSE and the CV-based MSE.

With independence across observations: true MSE and the CV-based MSE.

Dependence: Comparing true MSE and CV-based MSE (45° line)
Tendency to underestimate test MSE (rather than overestimate): 70.2%

Independence: Comparing true MSE and CV-based MSE (45° line)
Less likely (53.9%) to underestimate true, test MSE

Dependence: The difference between the true and CV-estimated MSE.

Independence: The difference between the true and CV-estimated MSE.

Dependence: Percent difference between the true and CV-estimated MSE.

Independence: Percent difference between the true and CV-estimated MSE.

Dependence: KNN flexibility (K) and percentage error

Independence: KNN flexibility (K) and percentage error

Admin

Today and upcoming
Check in

Cross validation

Review
Independence

Simulation

Monte Carlo
Introductory example
Writing functions

-fold CV and dependence

Simulation setup
Define/build population
Sample
Tune/train the model
Iteration function

Table of contents
k

64 / 64

