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Schedule

Last Time

e Introduction to time series
e Midterm

Today

Autocorrelation

3/ 64



R showcase

Functions

Writing your own functions.

4 | 64



Writing functions

Functions are everywhere

Everything you do in R involves some sort of function, e.g.,

e mean()
e 1m()
e summary()

e read csv()

e ggplot()

o +

The basic idea in R is doing things to objects with functions.
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Writing functions

Functions can help

We write functions to make life easier. Instead of copying and pasting the
same line of code a million times, you can write one function.

In R, you use the function() function to write functions.”

the_name <« function(argl, arg2) {

}

e the_name: The name we are giving to our new function.
e argl: The first argument of our function.
e arg2:The second argument of our function.

t Meta.
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Writing functions

Our first real function

Let's write a function that multiplies two numbers. (It needs two
arguments.)

the_product ¢« function(x, y) {
X %y

}
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Writing functions

Our first real function

Let's write a function that multiplies two numbers. (It needs two
arguments.)

the_product ¢« function(x, y) {
X %y

}

Did it work?
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Writing functions

Our first real function

Let's write a function that multiplies two numbers. (It needs two
arguments.)

the_product ¢« function(x, y) {
X %y

}
Did it work?

the_product(7, 15)

#> [1] 105

%
[ L
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Writing functions

Functions can do anything

.. that you tell them.

If you are going to repeat a task (e.g., a simulation), then you have a good
situation for writing your own function.

R offers many functions (via its many packages), but you will sometimes
find a scenario for which no one has written a function.

Now you know how to write your own.

ad_1ib <« function(nounl, verbl, noun2) {
paste("The next", nounl, "of our lecture", verbl, noun2)

}
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Writing functions

ad_lib(nounl = "part", verbl = "reviews", noun2 = "time series.")

#> [1] "The next part of our lecture reviews time series."
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Time series
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Time series

Review

Changes to our model/framework.

Our model now has ¢ subscripts for time periods.

Dynamic models allow lags of explanatory and/or outcome variables.

We changed our exogeneity assumption to contemporaneous
exogeneity, i.e., E[u;| X;] = 0

Including can lead to biased coefficient

estimates from OLS.

. make OLS inefficient.

1M/ 64



Autocorrelation
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Autocorrelation

What is it?

Autocorrelation occurs when our disturbances are correlated over time, i.e.,
Cov(uy, us) # 0 fort # s.
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Autocorrelation

What is it?

Autocorrelation occurs when our disturbances are correlated over time, i.e.,
Cov(uy, us) # 0 fort # s.

Another way to think about: If the shock from disturbance ¢ correlates with
"nearby" shocks int —1and ¢+ 1.

Note: Serial correlation and autocorrelation are the same thing.

Why is autocorrelation prevalent in time-series analyses?
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Positive autocorrelation: Disturbances (u;) over time
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Positive autocorrelation: Outcomes (y;) over time

y
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Negative autocorrelation: Disturbances (u;) over time
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Negative autocorrelation: Outcomes (y;) over time

y
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Autocorrelation

In static time-series models

Let's start with a very common model: a static time-series model whose
disturbances exhibit first-order autocorrelation, a.k.a. AR(1):

Births; = 8y + B1Income; + u;

where
Ut = pUt—1 + E¢

and the g, are independently and identically distributed (i.i.d.).

18 | 64



Autocorrelation

In static time-series models

Let's start with a very common model: a static time-series model whose
disturbances exhibit first-order autocorrelation, a.k.a. AR(1):

Births; = 8y + B1Income; + u;
where
Ut = PU—1 T E¢
and the g, are independently and identically distributed (i.i.d.).
Second-order autocorrelation, or AR(2), would be

U = P1Ut—1 + P2Ui—2 + €
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Autocorrelation

In static time-series models

An model/process has a disturbance structure of
p
Uy = Z Pjut—j + €
j=1

allowing the current disturbance to correlated with up to p of its lags.
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Autocorrelation

OLS

For static models or dynamic models with lagged explanatory variables, in
the presence of autocorrelation

1. OLS provides unbiased estimates for the coefficients.
2. OLS creates biased estimates for the standard errors.
3. OLS is inefficient.

Recall: Same implications as heteroskedasticity.

Autocorrelation get trickier with lagged outcome variables.
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Autocorrelation

OLS and lagged outcome variables

Consider a model with one lag of the outcome variable—ADL(1, 0)—model
with AR(1) disturbances

Births; = By + B1Income; + ByBirths; ; + u;
where

Ut = PUt—1 + E¢
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Autocorrelation

OLS and lagged outcome variables

Consider a model with one lag of the outcome variable—ADL(1, 0)—model
with AR(1) disturbances

Births; = By + B1Income; + ByBirths; ; + u;
where
Ut = PUt—1 + E¢

Problem: Both Births;_; (a regressor in the model for time ¢) and wu; (the
disturbance for time t) depend upon us_1. l.e., a regressor is correlated with
its contemporaneous disturbance.

Q: Why is this a problem?

A: It violates contemporaneous exogenelty, I.e., Cov(xy, us) # 0.
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Autocorrelation

OLS and lagged outcome variables

To see this problem, first write out the model for t and ¢ — 1:

Births; = By + B1Income; + ByBirths; 1 + wu,
Births;_; = B¢ + fi1Income;_; + B9Births; o + u;_1

and now note that u; = pu;_1 + €. Substituting...

Ut
/A
r N\

Births; = By + BiIncome; + BoBirths; | + (pu; 1 + &) (1)
BiI‘thSt_l = 50 -+ 511I1COII16,5_1 + IBQBirthSt_2 + U1 (2)

In (1), we can see that u; depends upon (covaries with) u; ;.
In (2), we can see that Births; 1, a regressor in (1), also covaries with u;_.
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Autocorrelation

OLS and lagged outcome variables

To see this problem, first write out the model for t and ¢ — 1:

Births; = By + B1Income; + ByBirths; 1 + wu,
Births;_; = B¢ + fi1Income;_; + B9Births; o + u;_1

and now note that u; = pu;_1 + €. Substituting...

Ut
/A
r N\

Births; = By + BiIncome; + BoBirths; | + (pu; 1 + &) (1)
BiI‘thSt_l = 50 -+ 511I1COII16,5_1 + IBQBirthSt_2 + U1 (2)

In (1), we can see that u; depends upon (covaries with) u; ;.
In (2), we can see that Births; 1, a regressor in (1), also covaries with u;_.

. This model violates our contemporaneous exogeneity requirement.
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Autocorrelation

OLS and lagged outcome variables

Implications: For models with lagged outcome variables and
autocorrelated disturbances

1. The models violate contemporaneous exogeneity.

2. OLS is biased and inconsistent for the coefficients.
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Autocorrelation

OLS and lagged outcome variables

Intuition? Why is OLS inconsistent and biased when we violate exogeneity?
Think back to omitted-variable bias...

yr = Bo + Brxe + uy

When Cov(z;, us) # 0, we cannot separate the effect of u; on y; from the
effect of x; on y;. Thus, we get inconsistent estimates for f;.
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OLS and lagged outcome variables

Intuition? Why is OLS inconsistent and biased when we violate exogeneity?
Think back to omitted-variable bias...

yr = Bo + Brxe + uy

When Cov(z;, us) # 0, we cannot separate the effect of u; on y; from the
effect of x; on y;. Thus, we get inconsistent estimates for #y. Similarly,

Uy

A\

Births; = By + BiIncome; + B2Births;—1 + (put—1 + &¢) (1)

we cannot separate the effects of u; on Births; from Births;_; on Births;,
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Autocorrelation

OLS and lagged outcome variables

Intuition? Why is OLS inconsistent and biased when we violate exogeneity?
Think back to omitted-variable bias...

yr = Bo + Brxe + uy

When Cov(z;, us) # 0, we cannot separate the effect of u; on y; from the
effect of x; on y;. Thus, we get inconsistent estimates for #y. Similarly,

Uy

A\

Births; = By + BiIncome; + B2Births;—1 + (put—1 + &¢) (1)

we cannot separate the effects of u; on Births; from Births;_; on Births;,
because both u; and Births,_; depend upon u;_;. 82 is biased (w/ OLS).
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Autocorrelation and bias

Simulation

To see how this bias can look, let's run a simulation.

yr = 1+ 22 + 0.9y 1 + uy
U = O.Qut_l + &

One (easy) way generate 100 disturbances from AR(1), with p = 0.9:

arima.sim(model = list(ar = c(0.9)), n = 100)
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Autocorrelation and bias

Simulation

To see how this bias can look, let's run a simulation.

Yy = 14 2z + 0.9y 1 + uy
Ut — O.Qut_l + E¢

One (easy) way generate 100 disturbances from AR(1), with p = 0.9:

arima.sim(model = list(ar = c(0.9)), n = 100)

We are going to run 10,000 iterations with T' = 100.
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Autocorrelation and bias

Simulation

To see how this bias can look, let's run a simulation.

yr = 1+ 22 + 0.9y 1 + uy
U = O.Qut_l + &

One (easy) way generate 100 disturbances from AR(1), with p = 0.9:
arima.sim(model = list(ar = c(0.9)), n = 100)
We are going to run 10,000 iterations with T' = 100.

Q: Will this simulation tell us about bias or consistency?
A: Bias. We would need to let T" — oo to consider consistency.
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Autocorrelation and bias

Simulation

Outline of our simulation:

1. Generate T=100 values of X
2. Generate T=100 values of u
o Generate T=100 values of €
o Use € and p=0.9 to calculate u; = p Uy + &
3. Calculate y, = By + By X¢ + By Vi1 + Uy
4. Regress y on x; record estimates

Repeat 1-4 10,000 times
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Distribution of OLS estimates, 3, v =1+ 2z + 0.5y, 1 + w

Density

0.5 0.6 0.7 0.8 0.9 1.0
Estimate
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Distribution of OLS estimates, Bl yr = 1+ 2z + 0.5y;_1 + uy

1.50 1.75 2.00 2.25 2.50
Estimate
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Testing for autocorrelation
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Testing for autocorrelation

Static models

Suppose we have the static model,
BiI‘thSt = B() + ﬂllncomet + Ut (A)

and we want to test for an AR(1) process in our disturbances u;.
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Testing for autocorrelation

Static models

Suppose we have the static model,
Births; = By + B1Income; + u; (A)
and we want to test for an AR(1) process in our disturbances u;.
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Testing for autocorrelation

Static models

Suppose we have the static model,
BiI‘thSt = B() + ﬂllncomet + Ut (A)
and we want to test for an AR(1) process in our disturbances u;.

Test for autocorrelation: Test for correlation in the lags of our residuals:
€t = Pet—1 + Ut
Does p differ significantly from zero?

Familiar idea: Use residuals to learn about disturbances.
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Testing for autocorrelation

Static models

Specifically, to test for AR(1) disturbances in the static model

BiI‘thSt = 50 + ﬂllncomet -+ Ut (A)

1. Estimate (A) via OLS.

2. Calculate residuals from the OLS regression in step 1.

3. Regress the residuals on their lags (without an intercept).
€t = P €1 + Vi

4. Use a t test to determine whether there is statistically
significant evidence that p differs from zero.

5. Rejecting H, implies significant evidence of autocorrelation.
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For an example, let's return to our plot of negative autocorrelation.
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Negative autocorrelation: Disturbances (u;) over time
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Testing for autocorrelation

Example: Static model and AR(1)

Step 1: Estimate the static model (y; = By + Brx: + uy) with OLS

reg est « 1lm(y ~ x, data = ar_df)
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Testing for autocorrelation

Example: Static model and AR(1)

Step 1: Estimate the static model (y; = By + Brx: + uy) with OLS

reg est « 1lm(y ~ x, data = ar_df)

Step 2: Add the residuals to our dataset

ar_df$e « residuals(reg est)

Step 3: Regress the residual on its lag (no intercept)

reg resid <« 1m(e ~ -1 + lag(e), data = ar_df)
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Testing for autocorrelation

Example: Static model and AR(1)

Step 4: t test for the estimated (p) coefficient in step 3.

tidy(reg_resid)

#>
#>
#>
#>

# A tibble: 1 x 5

term
<chr>

1 lag(e)

estimate std.error statistic p.value

<dbl>
-0.851

<dbl>
0.0535

<dbl> <dbl>
-15.9 6.88e-29
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Testing for autocorrelation

Example: Static model and AR(1)

Step 4: t test for the estimated (p) coefficient in step 3.

tidy(reg_resid)

#> # A tibble: 1 x 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>

#> 1 lag(e) -0.851 0.0535 -15.9 6.88e-29

That's a very small p-value—much smaller than 0.05.
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Testing for autocorrelation

Example: Static model and AR(1)

Step 4: t test for the estimated (p) coefficient in step 3.
tidy(reg_resid)

#> # A tibble: 1 x 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 lag(e) -0.851 0.0535 -15.9 6.88e-29

That's a very small p-value—much smaller than 0.05.

Reject H, (H, was p = 0, i.e,, no autocorrelation).
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Testing for autocorrelation

Example: Static model and AR(1)

Step 4: t test for the estimated (p) coefficient in step 3.
tidy(reg_resid)

#> # A tibble: 1 x 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 lag(e) -0.851 0.0535 -15.9 6.88e-29

That's a very small p-value—much smaller than 0.05.

Reject H, (H, was p = 0, i.e,, no autocorrelation).

Step 5: Conclude. Statistically significant evidence of autocorrelation.
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Testing for autocorrelation

Example: Static model and AR(3)

What if we wanted to test for AR(3)?
o We add more lags of residuals to the regression in Step 3.

« We jointly test the significance of the coefficients (i.e., LM or F).

Let's do it.
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Testing for autocorrelation

Example: Static model and AR(3)

Step 1: Estimate the static model (y; = By + Brx: + uy) with OLS

reg est « 1lm(y ~ x, data = ar_df)
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Example: Static model and AR(3)

Step 1: Estimate the static model (y; = By + Brx: + uy) with OLS

reg est « 1lm(y ~ x, data = ar_df)

Step 2: Add the residuals to our dataset

ar_df$e « residuals(reg est)

Step 3: Regress the residual on its lag (no intercept)

reg ar3 <« 1lm(e ~ -1 + lag(e) + lag(e, 2) + lag(e, 3), data = ar_df)
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Testing for autocorrelation

Example: Static model and AR(3)

Step 1: Estimate the static model (y; = By + Brx: + uy) with OLS

reg est « 1lm(y ~ x, data = ar_df)

Step 2: Add the residuals to our dataset

ar_df$e « residuals(reg est)

Step 3: Regress the residual on its lag (no intercept)

reg ar3 <« 1lm(e ~ -1 + lag(e) + lag(e, 2) + lag(e, 3), data = ar_df)

Note: lag(v, n) from dplyr takes the n' lag of the variable v.
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Testing for autocorrelation

Example: Static model and AR(3)

Step 4: Calculate the LM = n x R2 test statistic—distributed x?.

k is the number of regressors in the regression in Step 3 (here, k = 3).

r2_e <« summary(reg ar3)$r.squared

(Im_stat « 100 * r2 _e)

#> [1] 72.38204

(pchisq(q = 1m_stat, df = 3, lower.tail = F))

#> [1] 1.318485e-15
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Testing for autocorrelation

Example: Static model and AR(3)

Step 5: Conclude.
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Testing for autocorrelation

Example: Static model and AR(3)

Step 5: Conclude.
Recall: Our hypotheses consider the model

€t = P1€t—1 1T P26€t—2 1+ P3€t—3
which we are actually using to learn about the model

Ut = P1Ut—1 + p2Ut—2 + pP3Ut—3
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Recall: Our hypotheses consider the model

€t = P1€¢t—1 + P2€t—2 T P3€t_3
which we are actually using to learn about the model
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39 / 64



Testing for autocorrelation

Example: Static model and AR(3)
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Testing for autocorrelation

Example: Static model and AR(3)

Step 5: Conclude.
Recall: Our hypotheses consider the model

€t = P1€¢t—1 + P2€t—2 T P3€t_3
which we are actually using to learn about the model

Ut = P1Ut—1 + p2Ut—2 + pP3Ut—3
Ho:pr=p2=p3 =0 vs. Hp p; # 0foratleast one jin {1, 2, 3}

Our p-value is less than 0.05. Reject H,,.

Conclude there is statistically significant evidence of autocorrelation.
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Testing for autocorrelation

Dynamic models with lagged outcome variables

Recall: OLS is biased and inconsistent when our model has both
1. a lagged dependent variable

2. autocorrelated disturbances
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Testing for autocorrelation

Dynamic models with lagged outcome variables

Recall: OLS is biased and inconsistent when our model has both
1. a lagged dependent variable
2. autocorrelated disturbances
Problem: If OLS is biased for B, then it is also biased for ;.
. We can't apply our nice trick of just using e; to learn about u;.
Solution: Breusch-Godfrey test includes the other explanatory variables,

€ = Yo + V1Tt + Yoot + -+ P1€t—1 + P26t 2 + - T &

~

Explanatory variables (RHS) Lagged residuals
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Testing for autocorrelation

Dynamic models with lagged outcome variables

Specifically, to test for AR(2) disturbances in the ADL(1, 0) model

Births; = By + B1Income; + BoBirths; 1 + wu, (B)

1. Estimate (B) via OLS.

2. Calculate residuals (e;) from the OLS regression in step 1.

3. Regress residuals on an intercept, explanatory variables, and
lagged residuals.

€ = Yo + Y1 Income; + y3; Births,; + p; €4 + Py €, + Vq
4. Conduct LM or F test for p; = p, = 0.

5. Rejecting H, implies significant evidence of AR(2).
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Testing for autocorrelation

Dynamic models with lagged outcome variables

For an example, let's consider the relationship between monthly
presidential approval ratings and oil prices during President George W.

Bush's' presidency.

We will specify the process as ADL(1, 0) and test for an AR(2) process in our
disturbances.

Approval, = By + B1Approval, ; + B2Price; + u;

T Fun with approval ratings.
42 | 64


https://projects.fivethirtyeight.com/trump-approval-ratings/

Testing for autocorrelation

Dynamic models with lagged outcome variables

For an example, let's consider the relationship between monthly
presidential approval ratings and oil prices during President George W.

Bush's' presidency.

We will specify the process as ADL(1, 0) and test for an AR(2) process in our
disturbances.

Approval, = By + B1Approval, ; + B2Price; + u;

Note: We're ignoring any other violations of exogeneity for the moment.

T Fun with approval ratings.
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Monthly presidential approval ratings, 2001-2006

Rating o
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Approval rating vs. its one-month lag, 2001-2006
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Approval rating vs. its two-month lag, 2001-2006
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Oil prices, 2001-2006
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Approval rating vs. oil prices, 2001-2006
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Testing for autocorrelation

Example: Approval ratings and oll prices

Step 1: Estimate our ADL(1, 0) model with OLS.

ols_est « 1m(
approve ~ lag(approve) + price oil,
data = approval_df

)

tidy(ols_est)

#> # A tibble: 3 x 5

#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 16.2 7.86 2.06 4.40e- 2
#> 2 lag(approve) 0.841 0.0752 11.2 2.17e-16
#> 3 price_oil -0.0410 0.0215 -1.90 6.15e- 2
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Testing for autocorrelation

Example: Approval ratings and oll prices

Step 2: Record residuals from the OLS regression.

# Grab residuals
approval_df$e <« c(NA, residuals(ols_est))
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Testing for autocorrelation

Example: Approval ratings and oll prices

Step 2: Record residuals from the OLS regression.

approval_df$e <« c(NA, residuals(ols_est))

Note: We add an NA because we use a lag—the first element is missing.
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Testing for autocorrelation

Example: Approval ratings and oll prices

Step 2: Record residuals from the OLS regression.

approval_df$e <« c(NA, residuals(ols_est))

Note: We add an NA because we use a lag—the first element is missing.

Eg,
{1, 2, 3, 4, 5, 6, 7, 8, 9} = x
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Testing for autocorrelation

Example: Approval ratings and oll prices

Step 2: Record residuals from the OLS regression.

approval_df$e <« c(NA, residuals(ols_est))

Note: We add an NA because we use a lag—the first element is missing.

Eg.
{1, 2, 3, 4, 5, 6, 7, 8, 9} = x
{?, 1, 2, 3, 4, 5, 6, 7, 8} = lag(x)
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Testing for autocorrelation

Example: Approval ratings and oll prices

Step 2: Record residuals from the OLS regression.

approval_df$e <« c(NA, residuals(ols_est))

Note: We add an NA because we use a lag—the first element is missing.

Fg.,

{1, 2, 3, 4, 5, 6, 7, 8, 9} = x

{?, 1, 2, 3, 4, 5, 6, 7, 8} = lag(x)
{?, 2, 1, 2, 3, 4, 5, 6, 7} = lag(x, 2)
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Testing for autocorrelation

Example: Approval ratings and oll prices

Step 2: Record residuals from the OLS regression.

approval_df$e <« c(NA, residuals(ols_est))

Note: We add an NA because we use a lag—the first element is missing.

Fg.,

{1, 2, 3, 4, 5, 6, 7, 8, 9} = x

{?, 1, 2, 3, 4, 5, 6, 7, 8} = lag(x)
{?, 2, 1, 2, 3, 4, 5, 6, 7} = lag(x, 2)
{?, 2, 72,1, 2, 3, 4, 5, 6} = lag(x, 3)
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Testing for autocorrelation

Example: Approval ratings and oll prices

e

Time
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Testing for autocorrelation

Example: Approval ratings and oll prices

Step 3: Regress residuals on an intercept, the explanatory variables, and
lagged residuals.

bg reg « 1m(
e ~ lag(approve) + price_oil + lag(e) + lag(e, 2),
data = approval_df

)
#> Estimate Std. Error t value Pr(>|t])
#> (Intercept) 7.92474 9.30455 0.852 0.3979
#> lag(approve) -0.08503 0.09192 -0.925 0.3589
#> price_oil -0.01690 0.02407 -0.702 0.4854
#> lag(e) 0.25236 0.14648 1.723 0.0903 .
#> lag(e, 2) 0.07865 0.14471 0.544 0.5889
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Testing for autocorrelation

Example: Approval ratings and oll prices

Step 4 F (or LM) test for p; = py = 0.

Recall: We can test joint significance using an F' test that compares the
restricted (here: p; = py = 0) and unrestricted models.

F (SSE, — SSE,) /q
L SSE,/ (n — p)

where ¢ is the number of restrictions and p is the number of parameters in
our unrestricted model (include the intercept).

We can use the waldtest() function from the lmtest package for this test.
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Testing for autocorrelation

Example: Approval ratings and oll prices

Step 4 F (or LM) test for p; = py = 0.

# BG regression

bg reg « 1m(
e ~ lag(approve) + price_oil + lag(e) + lag(e, 2),
data = approval_df

)

# Test significance of the lags using 'waldtest' from 'lmtest' package

p_load(lmtest)
waldtest(bg reg, c("lag(e)", "lag(e, 2)"))

Here, we're telling waldtest to test

o the model we specified in bg_reg (our unrestricted model)
« against a model without lag(e) and lag(e, 2) (our restricted model)
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Testing for autocorrelation

Example: Approval ratings and oll prices

Step 4 F (or LM) test for p; = py = 0.

bg reg « 1m(
e ~ lag(approve) + price_oil + lag(e) + lag(e, 2),
data = approval_df

)

p_load(lmtest)
waldtest(bg reg, c("lag(e)", "lag(e, 2)"))

#> Wald test

#>

#> Model 1: e ~ lag(approve) + price_oil + lag(e) + lag(e, 2)
#> Model 2: e ~ lag(approve) + price_oil

#> Res.Df Df F Pr(>F)
#> 1 57
#> 2 590 -2 1.6153 0.2078
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Testing for autocorrelation

Example: Approval ratings and oll prices

Step 5: Conclusion of hypothesis test
With a p-value of ~0.208, we fail to reject the null hypothesis.
e We cannot reject p; = ps = 0.

e We cannot reject "no autocorrelation".
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Testing for autocorrelation

Example: Approval ratings and oll prices

Step 5: Conclusion of hypothesis test
With a p-value of ~0.208, we fail to reject the null hypothesis.
e We cannot reject p; = ps = 0.
e We cannot reject "no autocorrelation".
However, we tested for a specific type of autocorrelation: AR(2).
We might get different answers with different tests.

The p-value for AR(1) is 0.0896—suggestive of first-order autocorrelation.
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Living with autocorrelation
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Autocorrelation

Working with it

Suppose we believe autocorrelation is present. What do we do?
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Autocorrelation

Working with it
Suppose we believe autocorrelation is present. What do we do?

'll give you three options.”

1. Misspecification
2. Serial-correlation robust standard errors (a.k.a. Newey-West)

3. FGLS

T You should take EC 422 to go much deeper into time-series analysis/forecasting.
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Autocorrelation

Option 1: Misspecification

Misspecification with autocorrelation is very similar to our discussion with
heteroskedasticity.

By incorrectly specifying your model, you can create autocorrelation.

Omitting variables that are correlated through time will cause your
disturbances to be correlated through time.
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Autocorrelation

Option 1: Misspecification
Example: Suppose births depend upon income and previous births

Births; = By + B1Births;_; + BsIncome; + u;
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Autocorrelation

Option 1: Misspecification

Example: Suppose births depend upon income and previous births
Births; = By + B1Births; ;1 + BsIncome; + u;

but we write down the model as only depending upon previous births, i.e,

BiI‘thSt = ﬁo -+ ,BlBiI'thSt_l -+ V¢
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Autocorrelation

Option 1: Misspecification
Example: Suppose births depend upon income and previous births
Births; = By + B1Births;_; + BsIncome; + u;
but we write down the model as only depending upon previous births, i.e,
Births; = By + B1Births;_; + v;
Then our disturbance vy is

v = Bolncome; + uy
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Autocorrelation

Option 1: Misspecification
Example: Suppose births depend upon income and previous births
Births; = By + B1Births;_; + BsIncome; + u;
but we write down the model as only depending upon previous births, i.e,
Births; = By + B1Births;_; + v;
Then our disturbance vy is
v = PB2lncome; + uy

which is likely autocorrelated, since income is correlated in time.
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Autocorrelation

Option 1: Misspecification
Example: Suppose births depend upon income and previous births
Births; = By + B1Births; ;1 + BsIncome; + u;
but we write down the model as only depending upon previous births, i.e,
Births; = By + B1Births;_; + v;
Then our disturbance vy is
v = PB2lncome; + uy
which is likely autocorrelated, since income is correlated in time.

Note: This autocorrelation has nothing to do with u;.
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Autocorrelation

Option 1: Misspecification
"Proof"

v; = Bolncome; + uy
v;—1 = Bolncome; 1 + uz_q

Cov (v, v4_1)
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Autocorrelation

Option 1: Misspecification
"Proof"

v; = Bolncome; + uy
v;—1 = Bolncome; 1 + uz_q

Cov (v, v4_1)

= Cov(fBsIncome; + u;, Bolncome; 1 + uy 1)
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Autocorrelation

Option 1: Misspecification
"Proof"

v; = Bolncome; + uy
v;—1 = Bolncome; 1 + uz_q

Cov(vg, v;_1)
= Cov(fBsIncome; + u;, Bolncome; 1 + uy 1)

= Cov(fsIncome;, fyIncome; |) 4 Cov(BzIncome;, uy)

+ Cov(uy, Bolncome; 1) + Cov(ug, uz_1)
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Autocorrelation

Option 1: Misspecification
"Proof"

v; = Bolncome; + uy
v;—1 = Bolncome; 1 + uz_q

Cov(vg, v;_1)
= Cov(fBsIncome; + u;, Bolncome; 1 + uy 1)

= Cov(fsIncome;, fyIncome; |) 4 Cov(BzIncome;, uy)

+ Cov(uy, Bolncome; 1) + Cov(ug, uz_1)

+ 0 (in general) even if u, is exogenous and without autocorrelation.
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Autocorrelation

Option 2: Newey-West standard errors

As was also the case with heteroskedasticity, you can still estimate
consistent standard errors (and inference) in the presence of
autocorrelation.

These standard errors are called serial-correlation robust standard errors
(or Newey-West standard errors).

We are not going to derive the estimator for these standard errors.
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Autocorrelation

Option 3: FGLS

If we do not have a lagged outcome variable, then feasible generalized least
squares (FGLS) can give us efficient and consistent standard errors.
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Autocorrelation

Option 3: FGLS

If we do not have a lagged outcome variable, then feasible generalized least
squares (FGLS) can give us efficient and consistent standard errors.

Let's start with a simple static model that includes an AR(1) disturbance w;.

BiI‘thSt = B() + ﬂllncomet + Ut (1)
Ut = PU—1 + E¢ (2)
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Autocorrelation

Option 3: FGLS

If we do not have a lagged outcome variable, then feasible generalized least
squares (FGLS) can give us efficient and consistent standard errors.

Let's start with a simple static model that includes an AR(1) disturbance w;.

BiI‘thSt = B() + ﬂllncomet + Ut (1)
U = PUt—1 + E (2)

Now our old trick: Write out (1) for period ¢ — 1 (and then multiple by p)

Births; 1 = By + BiIncome;_; + us_1 (3)
pBirths;_1 = pBy + pBiIlncome;_1 + pus_q (4)
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Autocorrelation

Option 3: FGLS

If we do not have a lagged outcome variable, then feasible generalized least
squares (FGLS) can give us efficient and consistent standard errors.

Let's start with a simple static model that includes an AR(1) disturbance w;.

BiI‘thSt = B() + ﬂllncomet + Uy (1)
Ut = PU—1 + E¢ (2)

Now our old trick: Write out (1) for period ¢ — 1 (and then multiple by p)

Births; 1 = By + BiIncome;_; + us_1 (3)
pBirths;_1 = pBy + pBiIlncome;_1 + pus_q (4)

And now subtract (4) from (1)...
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Autocorrelation

Option 3: FGLS

Births; — pBirths; 1 =8y (1 — p) +
B1Income; — pBiIncome; 1+

Ut — put—1

62 | 64



Autocorrelation

Option 3: FGLS

Births; — pBirths; 1 =8y (1 — p) +
B1Income; — pBiIncome; 1+

Ut — put—1
which gives us a very specific dynamic model

Births; =8y (1 — p) + pBirths; 1+
Bi1Income; — pBiIncome; 1+

Ut — PpUt—1
—¢,
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Autocorrelation

Option 3: FGLS

Births; — pBirths; 1 =8y (1 — p) +
B1Income; — pBiIncome; 1+

Ut — put—1
which gives us a very specific dynamic model

Births; =8y (1 — p) + pBirths; 1+
Bi1Income; — pBiIncome; 1+

Ut — PpUt—1
—¢,

=P (1 — p) + pBirths; 1+
B1Income; — pBiIncome; 1 + &;

that happens to be free of autocorrelation.
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Autocorrelation

Option 3: FGLS

This transformed model is free of autocorrelation.

Births; =5 (1 — p) + pBirths; 1+
B1Income; — pBiIncome; 1 + &;

Q: How do we actually estimate this model? (We don't know p.)
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Autocorrelation

Option 3: FGLS

This transformed model is free of autocorrelation.

Births; =5 (1 — p) + pBirths; 1+
B1Income; — pBiIncome; 1 + &;

Q: How do we actually estimate this model? (We don't know p.)
A: FGLS (of course)...
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Autocorrelation

Option 3: FGLS

This transformed model is free of autocorrelation.

Births; =5 (1 — p) + pBirths; 1+
B1Income; — pBiIncome; 1 + &;

Q: How do we actually estimate this model? (We don't know p.)
A: FGLS (of course)...

1. Estimate the original (untransformed) model; save residuals.
2. Estimate p: Regress residuals on their lags (no intercept).
3. Estimate the transformed model, plugging in p for p.

63 | 64



Table of contents

Admin Autocorrelation
1. Schedule 1. Introduction
2. R showcase 2. In static models
o ggplot2 3. OLS and bias/consistency
o Writing functions o Static models
3. Review: Time series o Dynamic models with lagged y

4. Simulation: Bias
5. Testing for autocorrelation

o Static models

o Dynamic models with lagged y
6. Working with autocorrelation

o Misspecification

o Newey-West standard errors

o FGLS

64 | 64



