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R showcase
R Markdown

Simple mark-up language for for combining/creating documents,
equations, figures, R, and more
Basics of Markdown
E.g., **I'm bold** , *I'm italic* , I = "code"

Econometrics with R

(Currently) free, online textbook
Written and published using R (and probably R Markdown)
Warning: I haven't read the full book.

Related: Tyler Ransom has a great cheatsheet for econometrics.
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https://rmarkdown.rstudio.com/
https://rmarkdown.rstudio.com/authoring_basics.html
https://www.econometrics-with-r.org/
https://github.com/tyleransom/EconometricsLabs/blob/master/econometricsCheatSheet.pdf


Schedule

Last Time
We wrapped up our review.

Today
Heteroskedasticity
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Schedule

This week
First assignment!

Submit one file (HTML, PDF, or Word) that includes

1. Your written answers
2. Figures and regression output
3. The R code that generated your answers.

This file should be a rendered RMarkdown or Quarto file ( .rmd  or .qmd ).

Important

We should be able to easily find your answers for each question.
Do not copy. (You will receive a zero.)
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Prerequisite material
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Prerequisite material

The  distribution
Some test statistics are distributed as  random variables.

The  distribution is just another example of a common (named)
distribution (like the Normal distribution, the  distribution, and the ).

The shape of the  distribution depends on a single parameter:

We will call this parameter 
Our test statistics will refer to  as degrees of freedom.

χ2

χ2
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Prerequisite material

The  distribution
Three examples of : , , and 

χ2

χ2
k

k = 1 k = 2 k = 9
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Prerequisite material

The  distribution
Probability of observing a more extreme test statistic  under H0

χ2

L̂M
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Heteroskedasticity
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Heteroskedasticity
Let's write down our current assumptions
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5. The disurbances have constant variance  and zero covariance, i.e.,

 for 

xk yi

y βk ui
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Heteroskedasticity
Let's write down our current assumptions

1. Our sample (the 's and ) was randomly drawn from the population.

2.  is a linear function of the 's and .

3. There is no perfect multicollinearity in our sample.

4. The explanatory variables are exogenous: .

5. The disurbances have constant variance  and zero covariance, i.e.,

 for 

6. The disturbances come from a Normal distribution, i.e., .

xk yi

y βk ui

E[u|X] = 0 (⟹ E[u] = 0)

σ2

E[u2
i
∣∣X] = Var(ui|X) = σ2

⟹ Var(ui) = σ2

Cov(ui, uj∣∣X) = E[uiuj∣∣X] = 0 i ≠ j

ui
iid
∼ N(0,σ2)
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Heteroskedasticity
Today we're focusing on assumption #5:
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Heteroskedasticity
Today we're focusing on assumption #5:

5. The disurbances have constant variance  and zero
covariance, i.e.,

 for 

Specifically, we will focus on the assumption of constant variance (also
known as homoskedasticity).

Violation of this assumption:

Heteroskedasticity:  and  for some .

In other words: Our disturbances have different variances.

σ2

E[u2
i
∣∣X] = Var(ui|X) = σ2

⟹ Var(ui) = σ2

Cov(ui, uj∣∣X) = E[uiuj∣∣X] = 0 i ≠ j

Var(ui) = σ2
i

σ2
i

≠ σ2
j

i ≠ j
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Heteroskedasticity
Classic example of heteroskedasticity: The funnel

Variance of  increases with u x
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Heteroskedasticity
Another example of heteroskedasticity: (double funnel?)

Variance of  increasing at the extremes of u x
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Heteroskedasticity
Another example of heteroskedasticity:

Differing variances of  by groupu
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Heteroskedasticity

What and why?
Heteroskedasticity is present when the variance of  changes with any
combination of our explanatory variables , through  (henceforth: ).

u

x1 xk X
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Heteroskedasticity

What and why?
Heteroskedasticity is present when the variance of  changes with any
combination of our explanatory variables , through  (henceforth: ).

It's very common in practice—and should probably be our default.

Why we care: Heteroskedasticity shows us how small violations of our
assumptions can affect OLS's performance.

u

x1 xk X
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Heteroskedasticity

Consequences
So what are the consquences of heteroskedasticity? Bias? Inefficiency?

First, let's check if it has consquences for the the unbiasedness of OLS.
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Heteroskedasticity

Consequences
So what are the consquences of heteroskedasticity? Bias? Inefficiency?

First, let's check if it has consquences for the the unbiasedness of OLS.

Recall1: OLS being unbiased means  for all .

Recall2: We previously showed 

It will actually help us to rewrite this estimator as

E[β̂k
∣∣X] = βk k

β̂1 =
∑i (yi − ¯̄̄y) (xi − ¯̄x̄)

∑
i
(xi − ¯̄x̄)2

β̂1 = β1 +
∑i (xi − ¯̄x̄)ui

∑i (xi − ¯̄x̄)2
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Heteroskedasticity
Proof: Assuming yi = β0 + β1xi + ui

β̂1 =

=

=

=

= β1 +

∑i (yi − ¯̄̄y) (xi − ¯̄x̄)

∑i (xi − ¯̄x̄)2

∑i ([β0 + β1xi + ui] − [β0 + β1
¯̄x̄ + ¯̄ū]) (xi − ¯̄x̄)

∑i (xi − ¯̄x̄)2

∑i (β1 [xi − ¯̄x̄] + [ui − ¯̄ū]) (xi − ¯̄x̄)

∑i (xi − ¯̄x̄)2

∑i (β1[xi − ¯̄x̄]2
+ [xi − ¯̄x̄] [ui − ¯̄ū])

∑i (xi − ¯̄x̄)2

∑i (xi − ¯̄x̄) (ui − ¯̄ū)

∑i (xi − ¯̄x̄)
2
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Heteroskedasticity

β̂1 = ⋯ = β1 +

= β1 +

= β1 +

= β1 +

= β1 +

= β1 + 😅

∑i (xi − ¯̄x̄) (ui − ¯̄ū)

∑i (xi − ¯̄x̄)
2

∑i (xi − ¯̄x̄)ui − ¯̄ū∑i (xi − ¯̄x̄)

∑i (xi − ¯̄x̄)2

∑i (xi − ¯̄x̄)ui − ¯̄ū (∑i xi − ∑i
¯̄x̄)

∑i (xi − ¯̄x̄)2

∑i (xi − ¯̄x̄)ui − ¯̄ū (∑i xi − n¯̄x̄)

∑i (xi − ¯̄x̄)2

∑i (xi − ¯̄x̄)ui − ¯̄ū (∑
i
xi − ∑

i
xi)

∑i (xi − ¯̄x̄)
2

∑i (xi − ¯̄x̄)ui

∑i (xi − ¯̄x̄)
2
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Heteroskedasticity

Consequences: Bias
We now want to see if heteroskedasticity biases the OLS estimator for .β1
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E[β̂1
∣∣X] = E[β1 +

∣
∣
∣
∣
X]

= β1 + E[ ∣
∣
∣
∣
X]

= β1 + E[ui|X]


=0

= β1
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∑i (xi − ¯̄x̄)2

∑i (xi − ¯̄x̄)ui

∑i (xi − ¯̄x̄)2

∑i (xi − ¯̄x̄)

∑i (xi − ¯̄x̄)2

20 / 71



Heteroskedasticity

Consequences: Bias
We now want to see if heteroskedasticity biases the OLS estimator for .

Phew. OLS is still unbiased for the .

β1

E[β̂1
∣∣X] = E[β1 +

∣
∣
∣
∣
X]

= β1 + E[ ∣
∣
∣
∣
X]

= β1 + E[ui|X]


=0

= β1

∑i (xi − ¯̄x̄)ui

∑i (xi − ¯̄x̄)2

∑i (xi − ¯̄x̄)ui

∑i (xi − ¯̄x̄)2

∑i (xi − ¯̄x̄)

∑i (xi − ¯̄x̄)2

βk
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Heteroskedasticity

Consequences: Efficiency
OLS's efficiency and inference do not survive heteroskedasticity.

In the presence of heteroskedasticity, OLS is no longer the most
efficient (best) linear unbiased estimator.
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Heteroskedasticity

Consequences: Efficiency
OLS's efficiency and inference do not survive heteroskedasticity.

In the presence of heteroskedasticity, OLS is no longer the most
efficient (best) linear unbiased estimator.

It would be more informative (efficient) to weight observations
inversely to their 's variance.

Downweight high-variance 's (too noisy to learn much).

Upweight observations with low-variance 's (more 'trustworthy').

Now you have the idea of weighted least squares (WLS)

ui

ui

ui
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Heteroskedasticity

Consequences: Inference
OLS standard errors are biased in the presence of heteroskedasticity.

Wrong confidence intervals

Problems for hypothesis testing (both  and  tests)t F
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Heteroskedasticity

Consequences: Inference
OLS standard errors are biased in the presence of heteroskedasticity.

Wrong confidence intervals

Problems for hypothesis testing (both  and  tests)

It's hard to learn much without sound inference.

t F
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Heteroskedasticity

Solutions
1. Tests to determine whether heteroskedasticity is present.

2. Remedies for (1) efficiency and (2) inference
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Testing for heteroskedasticity
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Testing for heteroskedasticity
While we might have solutions for heteroskedasticity, the efficiency of our
estimators depends upon whether or not heteroskedasticity is present.

1. The Goldfeld-Quandt test

2. The White test
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Testing for heteroskedasticity
While we might have solutions for heteroskedasticity, the efficiency of our
estimators depends upon whether or not heteroskedasticity is present.

1. The Goldfeld-Quandt test

2. The White test

Each of these tests† centers on the fact that we can use the OLS residual 
to estimate the population disturbance .

ei

ui

† There are many other options for testing, e.g., the Breusch-Pagan test.
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Testing for heteroskedasticity

The Goldfeld-Quandt test
Focuses on a specific type of heteroskedasticity: whether the variance of 
differs between two groups.†

Remember how we used our residuals to estimate the ?

We will use this same idea to determine whether there is evidence that our
two groups differ in the variances of their disturbances, effectively
comparing  and  from our two groups.

ui

σ2

s2 = =
SSE

n − 1

∑i e
2
i

n − 1

s2
1 s2

2

[†]: The G-Q test was one of the early tests of heteroskedasticity (1965).
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Testing for heteroskedasticity

The Goldfeld-Quandt test
Operationally,

1. Order your the observations by 

2. Split the data into two groups of size n⭑

G1: The first third
G2: The last third

3. Run separate regressions of  on  for G1 and G2

4. Record SSE1 and SSE2

5. Calculate the G-Q test statistic

x

y x
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Testing for heteroskedasticity

The Goldfeld-Quandt test
The G-Q test statistic

follows an  distribution (under the null hypothesis) with  and
 degrees of freedom.†

F(n⋆−k, n⋆−k) = =
SSE2/(n⋆ − k)

SSE1/(n⋆ − k)

SSE2

SSE1

F n⋆ − k

n⋆ − k
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Testing for heteroskedasticity

The Goldfeld-Quandt test
The G-Q test statistic

follows an  distribution (under the null hypothesis) with  and
 degrees of freedom.†

Notes

The G-Q test requires the disturbances follow normal distributions.
The G-Q assumes a very specific type/form of heteroskedasticity.
Performs very well if we know the form of potentially heteroskedasticity.

F(n⋆−k, n⋆−k) = =
SSE2/(n⋆ − k)

SSE1/(n⋆ − k)

SSE2

SSE1

F n⋆ − k

n⋆ − k

[†]: Goldfeld and Quandt suggested  of .  gives number of estimated parameters (i.e., 's).n⋆ (3/8)n k β̂j
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Testing for heteroskedasticity

The Goldfeld-Quandt test
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Testing for heteroskedasticity

The Goldfeld-Quandt test

 p-value 

 We reject H0:  and conclude there is statistically significant
evidence of heteroskedasticity.

F375, 375 = ≈ 17.5 ⟹
SSE2 = 18, 203.4

SSE1 = 1, 039.5
< 0.001

∴ σ2
1 = σ2

2
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Testing for heteroskedasticity

The Goldfeld-Quandt test
The problem...
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Testing for heteroskedasticity

The Goldfeld-Quandt test
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Testing for heteroskedasticity

The Goldfeld-Quandt test

 p-value 

 We fail to reject H0:  while heteroskedasticity is present.

F375, 375 = ≈ 1 ⟹
SSE2 = 14, 516.8

SSE1 = 14, 937.1
≈ 0.609

∴ σ2
1 = σ2

2
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Testing for heteroskedasticity

The White test
Breusch and Pagan (1981) attempted to solve this issue of being too
specific with the functional form of the heteroskedasticity.

Regress  on  and test for joint significance.
Allows the data to show if/how the variance of  correlates with .
If  correlates with , then we have heteroskedasticity.

e2
i

X = [1, x1, x2, … , xk]

ui X

σ2
i

X

34 / 71



Testing for heteroskedasticity

The White test
Breusch and Pagan (1981) attempted to solve this issue of being too
specific with the functional form of the heteroskedasticity.

Regress  on  and test for joint significance.
Allows the data to show if/how the variance of  correlates with .
If  correlates with , then we have heteroskedasticity.

However, we actually want to know if

Q: Can't we just test this hypothesis?

e2
i

X = [1, x1, x2, … , xk]

ui X

σ2
i

X

σ2
1 = σ2

2 = ⋯ = σ2
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Testing for heteroskedasticity

The White test
Breusch and Pagan (1981) attempted to solve this issue of being too
specific with the functional form of the heteroskedasticity.

Regress  on  and test for joint significance.
Allows the data to show if/how the variance of  correlates with .
If  correlates with , then we have heteroskedasticity.

However, we actually want to know if

Q: Can't we just test this hypothesis? A: Sort of.

e2
i

X = [1, x1, x2, … , xk]

ui X

σ2
i

X

σ2
1 = σ2

2 = ⋯ = σ2
n
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Testing for heteroskedasticity

The White test
Toward this goal, Hal White took advantage of the fact that we can replace
the homoskedasticity requirement with a weaker assumption:

Old: 

New:  is uncorrelated with the explanatory variables (i.e.,  for all ),
their squares (i.e., ), and the first-degree interactions (i.e., ).

Var(ui|X) = σ2

u2 xj j

x2
j

xjxh
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The White test
Toward this goal, Hal White took advantage of the fact that we can replace
the homoskedasticity requirement with a weaker assumption:

Old: 

New:  is uncorrelated with the explanatory variables (i.e.,  for all ),
their squares (i.e., ), and the first-degree interactions (i.e., ).

This new assumption is easier to explicitly test (hint: regression).

Var(ui|X) = σ2

u2 xj j

x2
j

xjxh

35 / 71



Testing for heteroskedasticity

The White test
An outline of White's test for heteroskedasticity:

1. Regress y on x1, x2, …, xk. Save residuals e.

2. Regress squared residuals on all explanatory variables, their
squares, and interactions.

3. Record Re2.

4. Calculate test statistic to test H0:  for all .

e2 = α0 +
k

∑
h=1

αhxh +
k

∑
j=1

αk+jx
2
j +

k−1

∑
ℓ=1

k

∑
m=ℓ+1

αℓ,mxℓxm + vi

αp = 0 p ≠ 0

36 / 71



Testing for heteroskedasticity

The White test
White's test statistic is

where  comes from the regression of  on the explanatory variables,
their squares, and their interactions.

Note: The  (for our ) equals the number of estimated parameters in the
regression above (the ), excluding the intercept .

LM = n × R2
e Under H0, LM

d
∼ χ2

k

R2
e e2

e2 = α0 +
k

∑
h=1

αhxh


Expl. variables

+
k

∑
j=1

αk+jx
2
j


Squared terms

+
k−1

∑
ℓ=1

k

∑
m=ℓ+1

αℓ,mxℓxm


Interactions

+ vi

k χ2
k

αj (α0)
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Testing for heteroskedasticity

The White test
Practical note: If a variable is equal to its square (e.g., binary variables),
then you don't (can't) include it. The same rule applies for interactions.
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Testing for heteroskedasticity

The White test
Example: Consider the model† 

Step 1: Estimate the model; obtain residuals .

Step 2: Regress  on explanatory variables, squares, and interactions.

Record the R2 from this equation (call it ).

Step 3: Test H0:  using .

y = β0 + β1x1 + β2x2 + β3x3 + u

(e)

e2

e2 =α0 + α1x1 + α2x2 + α3x3 + α4x
2
1 + α5x

2
2 + α6x

2
3

+ α7x1x2 + α8x1x3 + α9x2x3 + v

R2
e

α1 = α2 = ⋯ = α9 = 0 LM = nR2
e

d
∼ χ2

9

[†]: To simplify notation here, I'm dropping the  subscripts.i
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Testing for heteroskedasticity

The White test

The White test for this simple linear regression.

e2
i = α̂0 + α̂1x1i + α̂2x

2
1i

L̂M = 185.8 p-value < 0.001
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Testing for Heteroskedasticity
Examples

41 / 71



Testing for heteroskedasticity

Examples
Goal: Estimate the relationship between standardized test scores (outcome
variable) and (1) student-teacher ratio and (2) income, i.e.,

Potential issue: Heteroskedasticity... and we do not observe .

Solution:

1. Estimate the relationship in  using OLS.
2. Test for heteroskedasticity.

Goldfeld-Quandt
White

(Test score)i = β0 + β1Ratioi + β2Incomei + ui (1)

ui

(1)
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Testing for heteroskedasticity

Examples
We will use testing data from the dataset Caschool  in the Ecdat  R package.

# Load packages
library(pacman)
p_load(tidyverse, Ecdat)
# Select and rename desired variables; assign to new dataset
test_df = select(Caschool, test_score = testscr, ratio = str, income = avginc)
# Format as tibble
test_df = as_tibble(test_df)
# View first 2 rows of the dataset
head(test_df, 2)

#> # A tibble: 2 × 3
#>   test_score ratio income
#>        <dbl> <dbl>  <dbl>
#> 1       691.  17.9  22.7 
#> 2       661.  21.5   9.82
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Testing for heteroskedasticity

Examples
Let's begin by estimating our model

# Estimate the model
est_model = lm(test_score ~ ratio + income, data = test_df)
# Summary of the estimate
tidy(est_model)

#> # A tibble: 3 × 5
#>   term        estimate std.error statistic   p.value
#>   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
#> 1 (Intercept)  639.       7.45       85.7  5.70e-267
#> 2 ratio         -0.649    0.354      -1.83 6.79e-  2
#> 3 income         1.84     0.0928     19.8  4.38e- 62

(Test score)i = β0 + β1Ratioi + β2Incomei + ui
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Testing for heteroskedasticity

Examples
Now, let's see what the residuals suggest about heteroskedasticity

# Add the residuals to our dataset
test_df$e = residuals(est_model)
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Testing for heteroskedasticity

Example: Goldfeld-Quandt
Income looks potentially heteroskedastic; let's test via Goldfeld-Quandt.

# Arrange the data by income
test_df = arrange(test_df, income)
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Income looks potentially heteroskedastic; let's test via Goldfeld-Quandt.

# Arrange the data by income
test_df = arrange(test_df, income)
# Re-estimate the model for the last and first 158 observations
est_model1 = lm(test_score ~ ratio + income, data = tail(test_df, 158))
est_model2 = lm(test_score ~ ratio + income, data = head(test_df, 158))
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Testing for heteroskedasticity

Example: Goldfeld-Quandt
Income looks potentially heteroskedastic; let's test via Goldfeld-Quandt.

# Arrange the data by income
test_df = arrange(test_df, income)
# Re-estimate the model for the last and first 158 observations
est_model1 = lm(test_score ~ ratio + income, data = tail(test_df, 158))
est_model2 = lm(test_score ~ ratio + income, data = head(test_df, 158))
# Grab the residuals from each regression
e_model1 = residuals(est_model1)
e_model2 = residuals(est_model2)
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Testing for heteroskedasticity

Example: Goldfeld-Quandt
Income looks potentially heteroskedastic; let's test via Goldfeld-Quandt.

# Arrange the data by income
test_df = arrange(test_df, income)
# Re-estimate the model for the last and first 158 observations
est_model1 = lm(test_score ~ ratio + income, data = tail(test_df, 158))
est_model2 = lm(test_score ~ ratio + income, data = head(test_df, 158))
# Grab the residuals from each regression
e_model1 = residuals(est_model1)
e_model2 = residuals(est_model2)
# Calculate SSE for each regression
(sse_model1 = sum(e_model1^2))

#> [1] 19305.01

(sse_model2 = sum(e_model2^2))

#> [1] 29537.83 46 / 71



Testing for heteroskedasticity

Example: Goldfeld-Quandt
Remember the Goldfeld-Quandt test statistic?

Fn⋆−k, n⋆−k =
SSE2

SSE1
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SSE1
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Testing for heteroskedasticity

Example: Goldfeld-Quandt
Remember the Goldfeld-Quandt test statistic?

 Test via 

# G-Q test statistic
(f_gq = sse_model2/sse_model1)

#> [1] 1.530061

Fn⋆−k, n⋆−k =
SSE2

SSE1
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Testing for heteroskedasticity

Example: Goldfeld-Quandt
Remember the Goldfeld-Quandt test statistic?

 Test via 

# G-Q test statistic
(f_gq = sse_model2/sse_model1)

#> [1] 1.530061

# p-value
pf(q = f_gq, df1 = 158-3, df2 = 158-3, lower.tail = F)

#> [1] 0.004226666

Fn⋆−k, n⋆−k =
SSE2

SSE1
≈

29, 537.83

19, 305.01
≈ 1.53 F158−3, 158−3
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Testing for heteroskedasticity

Example: Goldfeld-Quandt
The Goldfeld-Quandt test statistic and its null distribution
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Testing for heteroskedasticity

Example: Goldfeld-Quandt
Putting it all together:

H0:  vs. HA: 

Goldfeld-Quandt test statistic: 

p-value 

∴ Reject H0 (p-value is less than 0.05).

Conclusion: There is statistically significant evidence that .
Therefore, we find statistically significant evidence of heteroskedasticity (at
the 5-percent level).

σ2
1 = σ2

2 σ2
1 ≠ σ2

2

F ≈ 1.53

≈ 0.00423

σ2
1 ≠ σ2

2
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Testing for heteroskedasticity

Example: Goldfeld-Quandt
What if we had chosen to focus on student-to-teacher ratio?
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Testing for heteroskedasticity

Example: Goldfeld-Quandt
What if we had chosen to focus on student-to-teacher ratio?

# Arrange the data by ratio
test_df = arrange(test_df, ratio)
# Re-estimate the model for the last and first 158 observations
est_model3 = lm(test_score ~ ratio + income, data = tail(test_df, 158))
est_model4 = lm(test_score ~ ratio + income, data = head(test_df, 158))
# Grab the residuals from each regression
e_model3 = residuals(est_model3)
e_model4 = residuals(est_model4)
# Calculate SSE for each regression
(sse_model3 = sum(e_model3^2))

#> [1] 26243.52

(sse_model4 = sum(e_model4^2))

#> [1] 29101.52 50 / 71



Testing for heteroskedasticity

Example: Goldfeld-Quandt

which has a p-value of approximately 0.2603.

Fn⋆−k, n⋆−k = ≈ ≈ 1.11
SSE4

SSE3

29, 101.52

26, 243.52
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Testing for heteroskedasticity

Example: Goldfeld-Quandt

which has a p-value of approximately 0.2603.

∴ We would have failed to reject H0, concluding that we failed to find
statistically significant evidence of heteroskedasticity.

Fn⋆−k, n⋆−k = ≈ ≈ 1.11
SSE4

SSE3

29, 101.52

26, 243.52
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Testing for heteroskedasticity

Example: Goldfeld-Quandt

which has a p-value of approximately 0.2603.

∴ We would have failed to reject H0, concluding that we failed to find
statistically significant evidence of heteroskedasticity.

Lesson: Understand the limitations of estimators, tests, etc.

Fn⋆−k, n⋆−k = ≈ ≈ 1.11
SSE4

SSE3

29, 101.52

26, 243.52
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Heteroskedasticity

Example: White
Let's test the same model and data with the White test.

Recall: We saved our residuals as e  in our dataset, i.e.,

# Estimate the model
est_model = lm(test_score ~ ratio + income, data = test_df)
# Add the residuals to our dataset
test_df$e = residuals(est_model)
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Heteroskedasticity

Example: White
The White test adds squared terms and interactions to initial regression
specification (the right-hand side)

The White test tests the null hypothesis
H0: 

We just need to write some R code to test H0.

u
2
i

=α0 + α1Ratioi + α2Incomei

+ α3Ratio2
i

+ α4Income2
i

+ α5Ratioi × Incomei

+ wi

α1 = α2 = α3 = α4 = α5 = 0
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Heteroskedasticity

Example: White
Aside: R has funky notation for squared terms and interactions in lm() :

Squared terms use I() , e.g., lm(y ~ I(x^2))

Interactions use :  between the variables, e.g., lm(y ~ x1:x2)

Example: Regress y  on quadratic of x1  and x2 :

# Pretend quadratic regression w/ interactions
lm(y ~ x1 + x2 + I(x1^2) + I(x2^2) + x1:x2, data = pretend_df)
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Heteroskedasticity

Example: White
Step 1: Regress  on 1st degree, 2nd degree, and interactions

# Regress squared residuals on quadratic of explanatory variables
white_model = lm(
  I(e^2) ~ ratio + income + I(ratio^2) + I(income^2) + ratio:income,
  data = test_df
)
# Grab the R-squared
(white_r2 = summary(white_model)$r.squared)

e2
i
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Heteroskedasticity

Example: White
Step 2: Collect  from the regression.

# Regress squared residuals on quadratic of explanatory variables
white_model = lm(
  I(e^2) ~ ratio + income + I(ratio^2) + I(income^2) + ratio:income,
  data = test_df
)
# Grab the R-squared
(white_r2 = summary(white_model)$r.squared)

#> [1] 0.07332222

R2
e
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Heteroskedasticity

Example: White
Step 3: Calculate White test statistic 

# Regress squared residuals on quadratic of explanatory variables
white_model = lm(
  I(e^2) ~ ratio + income + I(ratio^2) + I(income^2) + ratio:income,
  data = test_df
)
# Grab the R-squared
white_r2 = summary(white_model)$r.squared
# Calculate the White test statistic
(white_stat = 420 * white_r2)

#> [1] 30.79533

LM = n × R2
e ≈ 420 × 0.073
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Heteroskedasticity

Example: White
Step 4: Calculate the associated p-value (where ); here, 

# Regress squared residuals on quadratic of explanatory variables
white_model = lm(
  I(e^2) ~ ratio + income + I(ratio^2) + I(income^2) + ratio:income,
  data = test_df
)
# Grab the R-squared
white_r2 = summary(white_model)$r.squared
# Calculate the White test statistic
white_stat = 420 * white_r2
# Calculate the p-value
pchisq(q = white_stat, df = 5, lower.tail = F)

#> [1] 1.028039e-05

LM
d
∼ χ2

k
k = 5
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Heteroskedasticity

Example: White
Putting everything together...
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Putting everything together...
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Heteroskedasticity

Example: White
Putting everything together...

H0:  vs. HA:  for some 

Our White test statistic: 

α1 = α2 = α3 = α4 = α5 = 0 αi ≠ 0 i ∈ {1, 2, … , 5}

u2
i =α0 + α1Ratioi + α2Incomei

+ α3Ratio2
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i

+ α5Ratioi × Incomei + wi

LM = n × R2
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Heteroskedasticity

Example: White
Putting everything together...

H0:  vs. HA:  for some 

Our White test statistic: 

Under the  distribution, this  has a p-value less than 0.001.

α1 = α2 = α3 = α4 = α5 = 0 αi ≠ 0 i ∈ {1, 2, … , 5}

u2
i =α0 + α1Ratioi + α2Incomei

+ α3Ratio2
i + α4Income2

i

+ α5Ratioi × Incomei + wi

LM = n × R2
e ≈ 420 × 0.073 ≈ 30.8
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Heteroskedasticity

Example: White
Putting everything together...

H0:  vs. HA:  for some 

Our White test statistic: 

Under the  distribution, this  has a p-value less than 0.001.

∴ We reject H0

α1 = α2 = α3 = α4 = α5 = 0 αi ≠ 0 i ∈ {1, 2, … , 5}

u2
i =α0 + α1Ratioi + α2Incomei

+ α3Ratio2
i + α4Income2

i

+ α5Ratioi × Incomei + wi

LM = n × R2
e ≈ 420 × 0.073 ≈ 30.8
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Heteroskedasticity

Example: White
Putting everything together...

H0:  vs. HA:  for some 

Our White test statistic: 

Under the  distribution, this  has a p-value less than 0.001.

∴ We reject H0 and conclude there is statistically significant evidence of
heteroskedasticity (at the 5-percent level).

α1 = α2 = α3 = α4 = α5 = 0 αi ≠ 0 i ∈ {1, 2, … , 5}

u2
i =α0 + α1Ratioi + α2Incomei

+ α3Ratio2
i + α4Income2

i

+ α5Ratioi × Incomei + wi

LM = n × R2
e ≈ 420 × 0.073 ≈ 30.8

χ2
5 L̂M
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Heteroskedasticity

Example: White
The White test statistic and its null distribution

57 / 71



Heteroskedasticity
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Heteroskedasticity

Review questions
Q: What is the definition of heteroskedasticity?

Q: Why are we concerned about heteroskedasticity?

Q: Does plotting  against , tell us anything about heteroskedasticity?

Q: Does plotting  against , tell us anything about heteroskedasticity?

Q: Since we cannot observe the 's, what do we use to learn about
heteroskedasticity?

Q: Which test do you recommend to test for heteroskedasticity? Why?

y x

e x

ui
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Heteroskedasticity

Review questions
Q: What is the definition of heteroskedasticity?
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Heteroskedasticity

Review questions
Q: What is the definition of heteroskedasticity?
A:
Math:  for some .
Words: There is a systematic relationship between the variance of 
and our explanatory variables.

Var(ui|X) ≠ Var(uj|X) i ≠ j

ui
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Heteroskedasticity

Review questions
Q: What is the definition of heteroskedasticity?

Q: Why are we concerned about heteroskedasticity?
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Heteroskedasticity

Review questions
Q: What is the definition of heteroskedasticity?

Q: Why are we concerned about heteroskedasticity?
A: It biases our standard errors—wrecking our statistical tests and
confidence intervals. Also: OLS is no longer the most efficient (best)
linear unbiased estimator.
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Heteroskedasticity

Review questions
Q: What is the definition of heteroskedasticity?

Q: Why are we concerned about heteroskedasticity?

Q: Does plotting  against , tell us anything about heteroskedasticity?
A: It's not exactly what we want, but since  is a function of  and , it
can still be informative. If  becomes more/less disperse as  changes,
we likely have heteroskedasticity.

y x

y x u

y x
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Q: Why are we concerned about heteroskedasticity?
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Heteroskedasticity

Review questions
Q: What is the definition of heteroskedasticity?

Q: Why are we concerned about heteroskedasticity?

Q: Does plotting  against , tell us anything about heteroskedasticity?

Q: Does plotting  against , tell us anything about heteroskedasticity?
A: Yes. The spread of  depicts its variance—and tells us something
about the variance of . Trends in this variance, along , suggest
heteroskedasticity.

y x

e x

e

u x
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Heteroskedasticity

Review questions
Q: What is the definition of heteroskedasticity?

Q: Why are we concerned about heteroskedasticity?

Q: Does plotting  against , tell us anything about heteroskedasticity?

Q: Does plotting  against , tell us anything about heteroskedasticity?

Q: Since we cannot observe the 's, what do we use to learn about
heteroskedasticity?
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Heteroskedasticity

Review questions
Q: What is the definition of heteroskedasticity?

Q: Why are we concerned about heteroskedasticity?

Q: Does plotting  against , tell us anything about heteroskedasticity?

Q: Does plotting  against , tell us anything about heteroskedasticity?

Q: Since we cannot observe the 's, what do we use to learn about
heteroskedasticity?
A: We use the 's to predict/learn about the 's. This trick is key for
almost everything we do with heteroskedasticity testing/correction.

y x

e x

ui

ei ui
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Heteroskedasticity

Review questions
Q: What is the definition of heteroskedasticity?

Q: Why are we concerned about heteroskedasticity?

Q: Does plotting  against , tell us anything about heteroskedasticity?

Q: Does plotting  against , tell us anything about heteroskedasticity?

Q: Since we cannot observe the 's, what do we use to learn about
heteroskedasticity?

Q: Which test do you recommend to test for heteroskedasticity? Why?

y x

e x

ui

58 / 71



Heteroskedasticity

Review questions
Q: What is the definition of heteroskedasticity?

Q: Why are we concerned about heteroskedasticity?

Q: Does plotting  against , tell us anything about heteroskedasticity?

Q: Does plotting  against , tell us anything about heteroskedasticity?

Q: Since we cannot observe the 's, what do we use to learn about
heteroskedasticity?

Q: Which test do you recommend to test for heteroskedasticity? Why?
A: I like White. Fewer assumptions. Fewer issues.

y x

e x

ui
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Next time: Living/working with heteroskedasticity.
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Appendix
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One more test...
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Testing for heteroskedasticity

The Breusch-Pagan test
Breusch and Pagan (1981) attempted to solve this issue of being too specific
with the functional form of the heteroskedasticity.

Allows the data to show if/how the variance of  correlates with .

If  correlates with , then we have heteroskedasticity.

Regresses  on  and tests for joint significance.

ui X

σ2
i

X

e2
i

X = [1, x1, x2, … , xk]

62 / 71



Testing for heteroskedasticity

The Breusch-Pagan test
How to implement:

1. Regress y on an intercept, x1, x2, …, xk.

2. Record residuals e.

3. Regress e2 on an intercept, x1, x2, …, xk.

4. Record R2.

5. Test hypothesis H0: 

e2
i = α0 + α1x1i + α2x2i + ⋯ + αkxki + vi

α1 = α2 = ⋯ = αk = 0
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Testing for heteroskedasticity

The Breusch-Pagan test
The B-P test statistic† is

where  is the  from the regression

Under the null,  is asymptotically distributed as .

LM = n × R2
e

R2
e R2

e2
i = α0 + α1x1i + α2x2i + ⋯ + αkxki + vi

LM χ2
k
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Testing for heteroskedasticity

The Breusch-Pagan test
The B-P test statistic† is

where  is the  from the regression

Under the null,  is asymptotically distributed as .

This test statistic tests H0: .

Rejecting the null hypothesis implies evidence of heteroskedasticity.

LM = n × R2
e

R2
e R2

e2
i = α0 + α1x1i + α2x2i + ⋯ + αkxki + vi

LM χ2
k

α1 = α2 = ⋯ = αk = 0

[†]: This specific form of the test statistic actually comes form Koenker (1981).
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Testing for heteroskedasticity

The Breusch-Pagan test
Problem: We're still assuming a fairly restrictive functional form between
our explanatory variables  and the variances of our disturbances .X σ2

i
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Testing for heteroskedasticity

The Breusch-Pagan test
Problem: We're still assuming a fairly restrictive functional form between
our explanatory variables  and the variances of our disturbances .

Result: B-P may still miss fairly simple forms of heteroskedasticity.

X σ2
i
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Testing for heteroskedasticity

The Breusch-Pagan test
Breusch-Pagan tests are still sensitive to functional form.

e2
i = α̂0 + α̂1x1i L̂M = 1.26 p-value ≈ 0.261

e2
i = α̂0 + α̂1x1i + α̂2x

2
1i

L̂M = 185.8 p-value < 0.001
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Testing for heteroskedasticity

Example: Breusch-Pagan
Let's test the same model with the Breusch Pagan.

Recall: We saved our residuals as e  in our dataset, i.e.,

test_df$e = residuals(est_model)
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Testing for heteroskedasticity

Example: Breusch-Pagan
In B-P, we first regress  on the explanatory variables,

# Regress squared residuals on explanatory variables
bp_model = lm(I(e^2) ~ ratio + income, data = test_df)

e2
i
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Testing for heteroskedasticity

Example: Breusch-Pagan
and use the resulting  to calculate a test statistic.

# Regress squared residuals on explanatory variables
bp_model = lm(I(e^2) ~ ratio + income, data = test_df)
# Grab the R-squared
(bp_r2 = summary(bp_model)$r.squared)

#> [1] 3.23205e-05

R2
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Testing for heteroskedasticity

Example: Breusch-Pagan
The Breusch-Pagan test statistic is

LM = n × R2
e
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Testing for heteroskedasticity

Example: Breusch-Pagan
The Breusch-Pagan test statistic is

 LM = n × R2
e ≈ 420 × 0.0000323
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Testing for heteroskedasticity

Example: Breusch-Pagan
The Breusch-Pagan test statistic is

  

which we test against a  distribution (here: ).†

LM = n × R2
e ≈ 420 × 0.0000323 ≈ 0.0136

χ2
k

k = 2
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Testing for heteroskedasticity

Example: Breusch-Pagan
The Breusch-Pagan test statistic is

  

which we test against a  distribution (here: ).†

# B-P test statistic
bp_stat = 420 * bp_r2
# Calculate the p-value
pchisq(q = bp_stat, df = 2, lower.tail = F)

#> [1] 0.9932357

LM = n × R2
e ≈ 420 × 0.0000323 ≈ 0.0136

χ2
k

k = 2

[†]:  is the number of explanatory variables (excluding the intercept).k

69 / 71



Testing for heteroskedasticity

Example: Breusch-Pagan
H0:  vs. HA:  and/or 

for the model 

α1 = α2 = 0 α1 ≠ 0 α2 ≠ 0

u2
i

= α0 + α1Ratioi + α2Incomei + wi
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Testing for heteroskedasticity

Example: Breusch-Pagan
H0:  vs. HA:  and/or 

for the model 

Breusch-Pagan test statistic: 

α1 = α2 = 0 α1 ≠ 0 α2 ≠ 0

u2
i

= α0 + α1Ratioi + α2Incomei + wi

L̂M ≈ 0.014
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Testing for heteroskedasticity

Example: Breusch-Pagan
H0:  vs. HA:  and/or 

for the model 

Breusch-Pagan test statistic: 

p-value 

α1 = α2 = 0 α1 ≠ 0 α2 ≠ 0

u2
i

= α0 + α1Ratioi + α2Incomei + wi

L̂M ≈ 0.014

≈ 0.993
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Testing for heteroskedasticity

Example: Breusch-Pagan
H0:  vs. HA:  and/or 

for the model 

Breusch-Pagan test statistic: 

p-value 

∴ Fail to reject H0 (the p-value is greater than 0.05)
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Testing for heteroskedasticity

Example: Breusch-Pagan
H0:  vs. HA:  and/or 

for the model 

Breusch-Pagan test statistic: 

p-value 

∴ Fail to reject H0 (the p-value is greater than 0.05)

Conclusion: We do not find statistically significant evidence of
heteroskedasticity at the 5-percent level.

α1 = α2 = 0 α1 ≠ 0 α2 ≠ 0

u2
i

= α0 + α1Ratioi + α2Incomei + wi

L̂M ≈ 0.014

≈ 0.993
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Testing for heteroskedasticity

Example: Breusch-Pagan
H0:  vs. HA:  and/or 

for the model 

Breusch-Pagan test statistic: 

p-value 

∴ Fail to reject H0 (the p-value is greater than 0.05)

Conclusion: We do not find statistically significant evidence of
heteroskedasticity at the 5-percent level. (We find no evidence of a linear
relationship between  and the explanatory variables.)

α1 = α2 = 0 α1 ≠ 0 α2 ≠ 0

u2
i

= α0 + α1Ratioi + α2Incomei + wi

L̂M ≈ 0.014

≈ 0.993

u2
i
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Testing for heteroskedasticity

Example: Breusch-Pagan
The Breusch-Pagan test statistic and its null distribution
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