
Problem Set 2, Solutions
Heteroskedasticity, Consistency, and Time Series
EC 421: Introduction to Econometrics 

Due before noon (11:59am) on Saturday, 09 February 2019



DUE Your solutions to this problem set are due before noon on Saturday, 09 February 2019. Your files must
be uploaded to Canvas—including (1) your responses/answers to the question and (2) the R script you used
to generate your answers. Each student must turn in her/his own answers.

OBJECTIVE This problem set has three purposes: (1) reinforce the econometrics topics we reviewed in
class; (2) build your R toolset; (3) start building your intuition about causality and time series within
econometrics.

Heteroskedasticity
1. We are interested in using OLS to estimate the model

where  is a categorical variable that takes the values , , or .

Suppose that we know  and . We do not know , i.e., 
 for some unknown parameter .

1a. What value must  take for our model to be homoskedastic?

ANSWER

If , then we have homoskedastic disturbances.

1b. If , is OLS still unbiased? Is it still the most efficient linear estimator? Explain your answer.

ANSWER

If , then our disturbances are heteroskedastic. In the presence of heteroskedasticity, OLS is still
unbiased (we do not heteroskedasticity in our proof that OLS is unbiased). However, in the presence of
heteroskedasticity, OLS is no longer the most efficient linear unbiased estimator. WLS is more efficient.

1c. Goldfeld-Quandt In order to test whether the data we will use to estimate  are
homoskedastic/heteroskedastic, we will run a Goldfeld-Quandt test.

We estimate  for the upper one third of the dataset (sorted on ) and find SSE3=1,000. We estimate 
on the middle third and find SSE2=800. Finally, we estimate  on the lower third and find SSE1=600. Each of
these three groups has 100 observations.

Conduct a Goldfeld-Quandt test. State your hypotheses, calculate the G-Q test statistic, determine the p-
value, state your conclusion.

Hint: You can use the function pf(q, df1, df2, lower.tail = F)  to calculate the probability of observing
a value of q  or greater in an  distribution with df1  numerator degrees of freedom and df2  denominator
degrees of freedom.
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ANSWER

Hypotheses: We are testing the null hypothesis Ho:  against the alternative hypothesis Ha: .

Test statistic: Our Goldfeld-Quandt test statistic is .

We test this test statistic against an  distribution, which produces a p-value of

pf(q = 1000/600, df1 = 100-2, df2 = 100-2, lower.tail = F)

�� [1] 0.006061599

Conclusion: At the 0.05 level, we reject Ho and conclude that there is statistically significant evidence that 
 and  differ. Therefore we have statistically significant evidence of heteroskedasticity.

2. The dataset in this questions comes from "Where is the Land of Opportunity? The Geography of
Intergenerational Mobility in the United States" by Chetty, Hendren, Kline, and Saez—published in The
Quarterly Journal of Economics (QJE) in 2014. Our outcome variable will be the probability that an individual
born to parents in the bottom fifth of the income distribution makes it into the top fifth of the income
distribution. This measure differs from the main outcome in the paper, but it is also very interesting—and it
helps simplify our problem set. An individual observation in this dataset represents a commuting zone in
the United States.

2a. Open up Rstudio, an R script, load whichever packages you want, and load the dataset contained in
dataPS02.csv.

# Load 'pacman'
library(pacman)
# Load additional packages
p_load(tidyverse, broom, magrittr, ggplot2, ggthemes)
# Load the dataset
mobility_df �� read_csv("dataPS02.csv")
# Check the dataset
head(mobility_df)

�� # A tibble: 6 x 6
��   prob_q5_q1 i_urban share_black share_middlecla… share_divorced
��        <dbl>   <int>       <dbl>            <dbl>          <dbl>
�� 1     0.0621       1      0.0208            0.548         0.110 
�� 2     0.0537       1      0.0198            0.538         0.116 
�� 3     0.0731       0      0.0146            0.467         0.113 
�� 4     0.0563       1      0.0564            0.504         0.114 
�� 5     0.0446       1      0.174             0.500         0.0924
�� 6     0.0519       0      0.224             0.538         0.0956
�� # ��� with 1 more variable: share_married <dbl>
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2b Describe the distribution of our main variable of interest (prob_q5_q1 ). You can provide statistical or
graphical descriptions of this variable—try summary(dataset$variable)  and hist(dataset$variable) ,
among others.

ANSWER

There is substantial variation in the probability an individual born to parents in the bottom fifth of the
income distribution moves up to the top fifth. Some commuting zones nearly have zero probability, while
others (the upper extremes) are approximately 30 percent probable. The median is approximately 0.089.

# Summarize variable
summary(mobility_df$prob_q5_q1)

��    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
�� 0.02210 0.06588 0.08889 0.09761 0.11715 0.35714

# A histogram using 'hist'
hist(
  mobility_df$prob_q5_q1,
  breaks = 25,
  col = "grey85",
  xlab = "Probability",
  main = "Histogram: Probability of moving from Q5 to Q1"
)
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# A histogram using 'ggplot'
ggplot(data = mobility_df, aes(x = prob_q5_q1)) +
  geom_histogram(fill = "darkslategrey", color = "white", alpha = 0.85) +
  xlab("Probability") +
  ggtitle("Histogram: Probability of moving from Q5 to Q1") +
  theme_pander()

2c. Regress the probability an individual moves from the bottom fifth of income to the top fifth of income
(prob_q5_q1 ) on an intercept and the share of the commuting zone that is middle class
(share_middleclass ). Report your findings—the coefficients, brief interpretations of the coefficients, and
whether the coefficients are statistically significant.

ANSWER

# Estimate the model
reg_2c �� lm(prob_q5_q1 ~ share_middleclass, data = mobility_df)
# Report the results
reg_2c %>% tidy()

�� # A tibble: 2 x 5
��   term              estimate std.error statistic  p.value
��   <chr>                <dbl>     <dbl>     <dbl>    <dbl>
�� 1 (Intercept)        -0.0971    0.0104     -9.35 1.14e-19
�� 2 share_middleclass   0.354     0.0187     18.9  5.55e-65

We estimate that the coefficient on the share of the middle class is approximately 0.354. This coefficient
says that if the share middle class in a commuting zone increased by 1 percentage point (e.g., from 23% to
24%), then we would expect the probability of moving from the bottom fifth to the top fifth of income to
increase by 0.35%. Our estimate is statistically significant (different from zero) at the 5% level.
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2d. Does it make sense to interpret the intercept in this case? Explain.

ANSWER

It does not make sense to interpert the intercept in this setting. The interpretation would be "the average
mobility probability for a commuting zone with no middle-class population." In our data, the share of
middleclass population ranges from 28% to 73%—zero percent is not reasonable (also evidenced by the fact
that the intercept would suggest a negative probability).

2e. Plot the residuals from your regression in (2c) on the y axis and share_middleclass  on the x axis. Do
you see evidence of heteroskedasticity? Explain.

Hint1: You can grab the residuals from a saved lm  object by (1) using the residuals()  function or (2)
adding the suffix $residuals  to the end of the lm  object, e.g., my_reg$residuals  grabs the residuals from
the lm  object my_reg .

Hint2: plot(x = dataset$variable1, y = dataset$variable2)  makes quick and simple plots. You can
also try qplot()  from the package ggplot2 , i.e., qplot(x = variable1, y = variable2, data = dataset) .

ANSWER

Based upon the funnel-like figure below, heteroskedasticity seems likely.

# Add residuals to the dataset
mobility_df %��% mutate(e_2c = residuals(reg_2c))
# Plot with ggplot
ggplot(data = mobility_df, aes(x = share_middleclass, y = e_2c)) +
  geom_point(alpha = 0.5) +
  labs(
    x = "Pct. middle class", y = "OLS residual",
    main = "Visual inspection for heteroskedasticity in 2c."
  ) +
  theme_pander()
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2f. Conduct a Breusch-Pagan test for heteroskedasticity in the regression model in (2c). Describe your
hypotheses, the test statistic, the p-value, and your conclusion.

ANSWER

# B-P regression
reg_2f �� lm(e_2c^2 ~ share_middleclass, data = mobility_df)
# B-P test statistic
lm_2f �� summary(reg_2f)$r.squared * 709
# B-P p�value
pchisq(q = lm_2f, df = 1, lower.tail = F)

�� [1] 0.0005441366

Hypotheses Our Breusch-Pagan test here tests the hypotheses Ho  vs. Ha  for 
 (where we are using  to estimate , which gives us an estimate for .) If we reject

Ho, then we have evidence of heteroskedasticity.

Test statistic We calculate a B-P test statistic of approximately 11.96.

p-value Under the distribution of a , the implied p-value for our LM statistic (the probability of seeing
this test statistic or greater) is approximately 0.00054.

Conclusions Because our p-value is less than our standard significance of 0.05, we reject the null
hypothesis —there is statistically significant evidence at the 5% level that , meaning there is
statistically significant evidence of a relationship between  and  (the commuting zone's share of middle
class residents). Therefore, we have statistically significant evidence of heteroskedasticity.

2g. Conduct a White test for heteroskedasticity in the regression model in (2c). Describe your hypotheses,
the test statistic, the p-value, and your conclusion.

Hint: To square the variable x  in lm() , we write lm(y ~ x + I(x^2), data = dataset) .

ANSWER

Hypotheses Our White test in this question tests the hypotheses Ho  vs. Ha  or ,
where  (where, again, we are using  to estimate , which gives us an estimate
for .) If we reject Ho, then we have evidence of heteroskedasticity.

Test statistic We calculate a White test statistic of approximately 11.96.

p-value Under the distribution of a , the implied p-value for our LM statistic (the probability of seeing
this test statistic or greater) is approximately 0.00000094.

Conclusions Because our p-value is less than our standard significance of 0.05, we reject the null
hypothesis —there is statistically significant evidence at the 5% level that either  or .
Therefore we find statistically significant evidence of a relationship between  and  (the commuting
zone's share of middle class residents). We have statistically significant evidence of heteroskedasticity.
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2h. Let's imagine that we think heteroskedasticity is present. Estimate heteroskedasticity-robust standard
errors. Do your standard errors change? What about the coefficients? Why is this the case?

Hint: To do this, use the felm()  function in the lfe  package. felm()  takes a regression formula just like
lm() . Then use summary(., robust = T)  to show the heteroskedasticity-robust standard errors.

Example:

# The regression
some_reg �� felm(y ~ x, data = fake_data)
# Print the coefficients w/ het�robust standard errors
summary(some_reg, robust = T)

ANSWER

# Load the 'lfe' package
p_load(lfe)
# Same regression as in (2c)—but with 'felm'
reg_2h �� felm(prob_q5_q1 ~ share_middleclass, data = mobility_df)
# Print the coefficients w/ and w/out het�robust standard errors
reg_2h %>% summary(robust = T)
reg_2h %>% summary(robust = F)

�� Coefficients:
��                    Estimate Robust s.e t value Pr(>|t|)    
��  (Intercept)       -0.09714    0.01191  -8.159 1.55e-15 ���
��  share_middleclass  0.35412    0.02226  15.912  < 2e-16 ���

�� Coefficients:
��                    Estimate Std. Error t value Pr(>|t|)    
��  (Intercept)       -0.09714    0.01039  -9.349   <2e-16 ���
��  share_middleclass  0.35412    0.01870  18.934   <2e-16 ���

The estimated coefficients are the same across the two sets of estimates (with and without
heteroskedasticity-robust standard errors), because they both use OLS to estimate the coefficients. The
standard errors change because they use different estimators for the standard errors—a heteroskedasticity-
robust estimator and an estimator that assumes homoskedasticity. The heteroskedasticity-robust standard
errors are slightly larger.
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2i. As we discussed in class, we can introduce heteroskedasticity by mis-specifying our regression model.
Try adding the additional variables from this dataset into the regression (possibly also adding interactions
or squared explanatory variables). Then plot the new residuals against share middleclass
(share_middleclass ). Briefly describe which regressions you ran and whether it affected the appearance of
heteroskedasticity.

Note: You do not need to formally test for heteroskedasticity.

ANSWER

If we stick with the outcome variable as a level, then heteroskedasticity appears likely, even if we include all
of the variables in the dataset, their squares, and the two-way interactions.

# Regression with all variables, quadratics, and interactions
reg_2i �� lm(
  prob_q5_q1 ~
  i_urban +
  share_black + I(share_black^2) +
  share_middleclass + I(share_middleclass^2) +
  share_divorced + I(share_divorced^2) +
  share_married + I(share_married^2) +
  share_black:share_middleclass + share_black:share_divorced + share_black:share_married +
  share_middleclass:share_divorced + share_middleclass:share_married +
  share_divorced:share_married,
  data = mobility_df
)
# Add residuals to dataset
mobility_df$e_2i �� residuals(reg_2i)
# Plot residuals against share_middleclass
# Plot with ggplot
ggplot(data = mobility_df, aes(x = share_middleclass, y = e_2i)) +
  geom_point(alpha = 0.5) +
  labs(
    x = "Pct. middle class", y = "OLS residual, 2i",
    main = "Visual inspection for heteroskedasticity in 2i."
  ) +
  theme_pander()
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However, if we take the log of our previous outcome variable, things start to look much more
homoskedastic.

# Regression with all variables, quadratics, and interactions
reg_2i_log �� lm(
  log(prob_q5_q1) ~
  i_urban +
  share_black + I(share_black^2) +
  share_middleclass + I(share_middleclass^2) +
  share_divorced + I(share_divorced^2) +
  share_married + I(share_married^2) +
  share_black:share_middleclass + share_black:share_divorced + share_black:share_married +
  share_middleclass:share_divorced + share_middleclass:share_married +
  share_divorced:share_married,
  data = mobility_df
)
# Add residuals to dataset
mobility_df$e_2i_log �� residuals(reg_2i_log)
# Plot residuals against share_middleclass
# Plot with ggplot
ggplot(data = mobility_df, aes(x = share_middleclass, y = e_2i_log)) +
  geom_point(alpha = 0.5) +
  labs(
    x = "Pct. middle class", y = "OLS residual, 2i with logs",
    main = "Visual inspection for heteroskedasticity in 2i."
  ) +
  theme_pander()
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2j. Should we take the regression in (2c) be causal? Explain your answer. If we cannot interpret the
regression as causal, can we still learn something interesting here? Explain.

ANSWER

We probably should not apply a causal interpretation to our estimated coefficients in (2c). There are likely
many omitted variables that are (1) correlated with share middleclass and (2) affect the probability an
individual moves from the first fifth to the upper fifth of the income distribution. One example may be
school quality within the commuting zone.

Another potential example is the share of the commuting zone that is married. For example, the correlation
between share married and share middleclass is 0.53. If share married affects our outcome variable (the
probability an individual growing up in the lowest fifth of the income distribution moves into the top fifth),
then our estimate on share middleclass will suffer from omitted-variable bias. Specifically, if we think share
married positively affects our outcome variable, then our coefficient should be an overestimate of the true
effect of share middleclass. Let's try including share married to see what happens.

# The results with only share_middle
reg_2c %>% tidy()

�� # A tibble: 2 x 5
��   term              estimate std.error statistic  p.value
��   <chr>                <dbl>     <dbl>     <dbl>    <dbl>
�� 1 (Intercept)        -0.0971    0.0104     -9.35 1.14e-19
�� 2 share_middleclass   0.354     0.0187     18.9  5.55e-65

# The results from adding in share_married
lm(prob_q5_q1 ~ share_middleclass + share_married, data = mobility_df) %>% tidy()

�� # A tibble: 3 x 5
��   term              estimate std.error statistic  p.value
��   <chr>                <dbl>     <dbl>     <dbl>    <dbl>
�� 1 (Intercept)         -0.208    0.0177    -11.7  3.93e-29
�� 2 share_middleclass    0.270    0.0212     12.7  1.45e-33
�� 3 share_married        0.274    0.0362      7.56 1.27e-13

Just as we predicted: By including share married, the estimated 'effect' of share middleclass decreases
considerably.

We might guess that share black would also (1) correlate with share middleclass and (2) affect our outcome
variable. Because the correlation between share middleclass and share black is negative (correlation of
-0.64), and because share black may have a downward effect on the probability an individual moves from
the lowest to the highest fifth of the income distribution, we would again expect the estimated effect of
share middleclass to overstate the actual effect due to omitted variable bias. Let's see.

�� # A tibble: 4 x 5
��   term              estimate std.error statistic  p.value
��   <chr>                <dbl>     <dbl>     <dbl>    <dbl>
�� 1 (Intercept)        -0.137     0.0219     -6.25 6.95e-10
�� 2 share_middleclass   0.204     0.0242      8.45 1.72e-16
�� 3 share_married       0.225     0.0368      6.11 1.61e� 9
�� 4 share_black        -0.0796    0.0151     -5.28 1.74e� 7

Again, we see that the estimated coefficient on share middleclass drops.
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While we probably do not want to take these regression coefficients as causal, they can certainly still be
interesting. The regression in 2c tells us that the probability an individual moves from the lowest fifth to the
highest fifth of the income distribution changes substantially around the country—specifically correlating
strongly with the share of the commuting zone that is middleclass. Even when we control for other
variables, this correlation remains (though it diminishes). This is interesting/important because we
(hopefully) want to help children who grow up below the poverty line to move into higher income levels
throughout their life.

Consistency
3. Compare/contrast the concepts expected value and probability limit.

ANSWER The expected value describes the mean of a distribution. When we're considering estimators, the
expected value gives us the mean of the estimator's distribution for a fixed sample size. The probability
limit also can describe the behavior of an estimator, but it shows what the estimator converges (collapses)
to as the sample size gets very big (i.e., infinity).

4. What does it mean if the estimator  is consistent for ?

ANSWER If  is consistent for , then the probability limit of  is . In other words, as the sample size
approaches infinity, the distribution of  collapses to a spike at .

5. What is required for an omitted variable to make the OLS estimator  inconsistent for ?

ANSWER If we've omitted a variable that (1) correlates with  and (2) affects our outcome variable , the
our estimate for the effect of  on  (i.e., ) will be inconsistent due to omitted-variable bias.

6. Imagine that we are interested in the following model

but we are unable to measure an individual's happiness.

6a. If we simply omit happiness and estimate the equation

in which direction should we expect our estimate for  to be biased? Explain your answer.

ANSWER If we think that  (meaning, on average, money increases health) and 
 (money and happiness are positively correlated), then our estimate  will

overestimate the effect of money on health.

6b. Instead of omitting happiness, we decide to use a proxy for happiness—an individual's self-reported
feeling of happiness (on a scale 1–10).

Should we expect our estimate  to over- or under-estimate the true value of . Explain.

ANSWER This surveyed happiness measure likely contains measurement error, relative to an individual's
true happiness, which will lead to attenuation bias—meaning  will be biased toward zero.
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Time series
7. Give an example in which a static time-series model might be appropriate. Briefly explain why it is
appropriate.

ANSWER If time periods are academic years, and our model is

In this model, the average grade each year in EC421 likely does not depend upon grades or hours studied in
other time periods—only on the amount of studying for EC421 in the same period.†

8. Give an example in which a static time-series model would not be appropriate. Write down a dynamic
model that would deal with the shortcomings of the failed static model.

ANSWER Similar to our discussion in class... Let the time period  represent a month.

This statitic model does not make very much sense—births today probably only weakly depend (or maybe
do not depend at all) on population today or income today. Instead, population and income in several lags
would be important—as would prior numbers of births—e.g.,

9. Why are dynamic models with lagged dependent variables biased with OLS? Which of our assumptions do
they violate?

ANSWER Dynamic models with lagged dependent variables create a situation where our disturbances in
one time period (e.g., ) are correlated with an explanatory variable in another period (e.g., ), which
violates our exogeneity assumption. To see this point, write out a simple dynamic model for two
consecutive time periods

Now notice that , a disturbance, correlates with  in the top equation, and  is an explanatory variable
in the second equation. Thus, we have a correlation between our disurbance and an explanatory variable—
violating our assumption of exogeneity.
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