
Problem Set 1: OLS Review
EC 421: Introduction to Econometrics
Due before midnight on Sunday, 27 January 2019



DUE Your solutions to this problem set are due before midnight on Sunday, 27 January 2019. Your files must
be uploaded to Canvas—including (1) your responses/answers to the question and (2) the R script you used
to generate your answers. Each student must turn in her/his own answers.

README! The data† in this problem set come from the paper "Are Emily and George More Employable
than Lakisha and Jamal? A Field Experiment on Labor Market Discrimination" by Bertrand and Mullainathan
(published in the American Economic Review (AER) in 2004).†† In their (very influential) paper, Bertrand and
Mullainathan use a clever experiment to study the effects of race in labor-market decisions by sending fake
résumés to job listings. To isolate the effect of race on employment decisions, Bertrand and Mullainathan
randomize whether the résumé lists a typically African-American name or a typically White name.

OBJECTIVE This problem set has three purposes: (1) reinforce the econometrics topics we reviewed in
class; (2) build your R toolset; (3) start building your intuition about causality within econometrics.

Problem 1: Getting started
Start here. We're going to set up R and read in the data

1a. Open up RStudio, start a R new script (File ➡ New file ➡ R Script). You will hand in this script as part of
your assignment.

1b. Load the the pacman  package. Now use its function p_load  to load the tidyverse  package, i.e.,

# Load the 'pacman' package
library(pacman)
# Load the packages 'tidyverse' and 'haven'
p_load(tidyverse)

Note: If pacman  is not already installed on your computer, then you need to install it, i.e.,
install.packages("pacman") . If tidyverse  is not already installed, then p_load(tidyverse)  will
automatically install it for you—which is why we're using pacman .

1c. Download the dataset (also available on Canvas). Save it in a helpful location. Remember this location.

1d. Read the data into R. What are the dimensions of the dataset (numbers of rows and columns)?

Note: Let each row in this dataset represent a different résumé sent to a job posting. The table on the last
page explains each of the variables.

Answer:

Setup

# The datasets's directory
dir_data �� "/Users/edwardarubin/Dropbox/UO/Teaching/EC421W19/Data/"
# Read in the data
ps1_df �� read_csv(file = paste0(dir_data, "dataPS01.csv"))
# Dimensions of the dataset with dim
dim(ps1_df)

�� [1] 4870   12
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1e. What are the names of the first three variables? Hint: names(your_df)

Answer:

Two options

# Using head
names(ps1_df) %>% head(3)

�� [1] "i_callback" "n_jobs"     "n_expr"

# Using indexes
ps1_df[, 1:3] %>% names()

�� [1] "i_callback" "n_jobs"     "n_expr"

1f. What are the first four first names in the dataset (first_name  variable)?

Hint: head(your_df$var_name, 10)  gives the first 10 observations of the variable var_name  in dataset
your_df .

Answer:

Three ways to do it:

# Using head
head(ps1_df$first_name, 4)

�� [1] "Allison" "Kristen" "Lakisha" "Latonya"

# Using indexes
ps1_df[1:4,"first_name"]

�� # A tibble: 4 x 1
��   first_name
��   <chr>     
�� 1 Allison   
�� 2 Kristen   
�� 3 Lakisha   
�� 4 Latonya

# Using head and select
ps1_df %>% head(4) %>% select(first_name)

�� # A tibble: 4 x 1
��   first_name
��   <chr>     
�� 1 Allison   
�� 2 Kristen   
�� 3 Lakisha   
�� 4 Latonya

[†]: The data that we use in the problem set contain a subset of the variables from the original paper.
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Problem 2: Analysis
Reviewing the basic analysis tools of econometrics.

Note: When you use OLS to regress a binary indicator variable (like i_callback ) on a set of explanatory
variables, your coefficients are telling you how the explanatory variables affect the probability that the
indicatory variable equals one. So if we regress i_callback  on n_jobs , the coefficient on n_jobs  tells us
how the probability of a callback changes with each additional job listed on the résumé.

2a. What percentage of the résumés generated a callback (i_callback )?

Hint: The mean of a binary indicator variable (i.e., mean(binary_variable) ) gives the percentage of times
the variable equals one.

Answer:

mean(ps1_df$i_callback)

�� [1] 0.08049281

Thus, approximately 8 percent of résumés received callbacks.

2b. Calculate percentage of callbacks (i.e., the mean of i_callback ) for each racial group (race ). Does it
appear as though employers considered an applicant's race when making callbacks? Explain.

Hint: filter(your_df, race �� "b")  will select all observations (from the dataset your_df ) where the
variable race  takes the value "b" . Similarly filter(your_df, race �� "b")$i_callback  will give you the
values of i_callback  for observations whose value of race  is "b" .

Answer:

One method:

# Percentage for Black
filter(ps1_df, race �� "b")$i_callback %>% mean()

�� [1] 0.06447639

# Percentage for White
filter(ps1_df, race �� "w")$i_callback %>% mean()

�� [1] 0.09650924

Alternative method:

ps1_df %>% group_by(race) %>% summarize(mean(i_callback))

�� # A tibble: 2 x 2
��   race  `mean(i_callback)`
��   <chr>              <dbl>
�� 1 b                 0.0645
�� 2 w                 0.0965
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Approximately 6.4 percent of résumés with implicitly black names received callbacks, while 9.7 percent of
résumés with white-sounding names received callbacks.

This difference is consistent with racial discrimination (employers considering race in hiring), but we do not
know if this difference is statistically significant.

2c. What is the difference in the groups' mean callback rate?

Answer:

# Percentage for Black
mean_b �� filter(ps1_df, race �� "b")$i_callback %>% mean()
# Percentage for White
mean_w �� filter(ps1_df, race �� "w")$i_callback %>% mean()
# Difference:
mean_b - mean_w

�� [1] -0.03203285

White-sounding names had a 3.2-percentage point higher callback rate.

2d. Based upon the difference in percentages that we observe in 2b., can we conclude that employers
consider race in hiring decisions?

Answer: No. We have shown a difference in the groups' percentages, but we do not know if this difference is
statistically meaningful (significant).

2e. Without running a regression, conduct a statistical test for the difference in the two groups' average
callback rates (i.e., test that the proportion of callbacks is equal for the two groups).

Hint: Back to your statistics class—difference in proportions (a  test) or means (a  test).

Answer:

# Percentage for everyone
mean_all �� ps1_df$i_callback %>% mean()
# Number: Black
n_b �� filter(ps1_df, race �� "b") %>% nrow()
# Number: White
n_w �� filter(ps1_df, race �� "w") %>% nrow()
# The Z statistic
z_stat �� (mean_b - mean_w) / sqrt(mean_all * (1 - mean_all) * (1/n_b + 1/n_w))
# The p value
2 * pnorm(abs(z_stat), lower.tail = F)

�� [1] 3.983887e-05

For H0: equal callback rates vs. HA: callback rates were not equal, we reject the null hypothesis at the 5-
percent level with a p-value less than 0.001. We therefore conclude there is statistically significant evidence
that employers responded to black- and white-sounding names at different rates.

Note: I opted for a two-sided  test here, since we are testing unequal proportions. A  test (testing two
means) would be fine, though maybe not technically correct. You could also test a one-side hypothesis if
your null was that discrimination pointed in a specific direction (which it likely was).

Z t

Z t
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2f. Now regress i_callback  (whether the résumé generated a callback) on i_black  (whether the résumé's
name implied a black applicant). Report the coefficient on i_black . Does it match the difference that you
found in 2c?

Answer:

Simple linear regression...

# Regression
reg_2f �� lm(i_callback ~ i_black, data = ps1_df)
# Results
reg_2f %>% tidy()

�� # A tibble: 2 x 5
��   term        estimate std.error statistic  p.value
��   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
�� 1 (Intercept)   0.0965   0.00550     17.5  8.89e-67
�� 2 i_black      -0.0320   0.00778     -4.11 3.94e� 5

The coefficient on i_black  does indeed match the difference in callback rate across black- and white-
sounding names.

2g. Conduct a  test for the coefficient on i_black  in the regression above in 2f. Write our your hypotheses

(both H0 and HA), the test statistic, the result of your test (i.e., reject or fail to reject H0), and your
conclusion.

Answer:

H0:  and HA: , where  is the coefficient for the effect of race on the probability a résumé

received a callback.

The point estimate for this coefficient is -0.032. Its associated  statistic is -4.11, which has a p-value less

than 0.001.

We reject the null hypothesis at the 5-percent level. We conclude that there is statistically significant
evidence that name's races affected callback rates for names with black or white connotations.

t

β1 = 0 β1 ≠ 0 β1

t
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2h. Now regress i_callback  (whether the résumé generated a callback) on i_black , n_expr  (years of
experience), and the interaction between i_black  and n_expr . Interpret the estimates for the coefficients
(both the meaning of the coefficients and whether they are statistically significant).

Hint: In R, lm(y ~ x1 + x2 + x1:x2, data = your_df)  regresses y  on x1 , x2 , and the interaction between
x1  and x2  (all from the dataset your_df ).

Answer:

# Regression with interaction
reg_2h �� lm(i_callback ~ i_black + n_expr + i_black:n_expr, data = ps1_df)
# Results
reg_2h %>% tidy()

�� # A tibble: 4 x 5
��   term            estimate std.error statistic  p.value
��   <chr>              <dbl>     <dbl>     <dbl>    <dbl>
�� 1 (Intercept)     0.0693     0.0101      6.84  8.79e-12
�� 2 i_black        -0.0294     0.0144     -2.04  4.11e� 2
�� 3 n_expr          0.00347    0.00108     3.20  1.36e� 3
�� 4 i_black:n_expr -0.000330   0.00154    -0.214 8.30e� 1

The coefficient on i_black  is quite similar to the coefficient previously found—suggesting the a black-
sounding name reduced the probability of a callback by approximately 3 percentage points. This effect is
still significant at the 5-percent level.

The coefficient on the number of years of experience (n_expr ) implies that for each additional year of
experience on the résumé, the probability of a callback increase by 0.3 percentage points. This effect is
statistically significant at the 5-percent level.

The coefficient on the interaction between the black indicator variable and the experience variable tests
whether the effect of experience on the callback rate differed between black and white résumés. The point
estimate is small and is not statistically significant—meaning we cannot rule out the possibility that the
interaction does not exist.
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Problem 3: Thinking about causality
Now for the big picture.

This project by Bertrand and Mullainathan took a decent amount of time and effort—finding job listings,
generating fake résumés, responding to the listings, etc. It probably would have been much
quicker/cheaper/easier to just go out and get data from job applicants—whether they received callbacks
and their races. So why didn't they take the easier, cheaper, and quicker route?

To answer this question, we are going to consider the model

and think about omitted-variable bias.

3a. If we go out, collect data on job applicants, and estimate the model in  using OLS, i.e.,

we should be concerned about omitted-variable bias. Explain why this is the case and provide at least one

example of an omitted variable that could bias our estimates in .

Answer:

We should be concerned about omitted-variable bias because there likely many variables that affect
whether individuals received callback and are correlated with race. If this is the case, then our estimates for

 will be biased.

Several possibilities: social connections, education, college major

3b. To avoid this potential bias, Bertrand and Mullainathan ran an experiment in which they randomized
applicants' names on the résumés—thus randomly assigning the (implied) race of the job applicants. How
does this randomization help Bertrand and Mullainathan avoid omitted variables bias?

In other words, why are we less concerned about omitted variable bias in the following estimated model

while we were concerned about bias in ?

Answer:

Because Bertrand and Mullainathan randomize the implied race on each (fake) résumé (along with the
other variables), the race variable in their study is uncorrelated with the other variables that affect
callbacks. Thus, even if we omit 'important' variables (for predicting callback), they are uncorrelated with
our variable of interest (race), and thus they will not cause omitted-variable bias.

Callbacki = β0 + β1Racei + ui (3.0)

(3.0)

Callbacki = β̂0 + β̂1Racei + ei
(3.1)

(3.1)

β1

Callbacki = β̂0 + β̂1(Randomized Race)i + wi
(3.2)

(3.1)
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Description of variables and names
 

Variable Description

i_callback Binary variable (0,1) for whether the resume received a callback.

n_jobs Number of previous jobs listed on the application.

n_expr Number of years of experience listed on the application.

i_military Binary variable for whether the application included military status.

i_computer Binary variable for whether the application included computer skills.

first_name The first name listed on the application.

sex The implied sex of the first name on the application ('f' or 'm').

i_female Binary indicator for whether the implied sex was female.

i_male Binary indicator for whether the implied sex was male.

race The implied race of the first name on the application ('b' or 'w').

i_black Binary indicator for whether the implied race was African American.

i_white Binary indicator for whether the implied race was White.

In general, I've tried to stick with a naming convention. Variables that begin with i_ denote binary
indicatory variables (taking on the value of 0 or 1). Variables that begin with n_ are numeric variables.
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