EC 421, Set 10

Edward Rubin 28 February 2019

Prologue

Schedule

Last Time

- Autocorrelation, nonstationarity, 'in-class' analysis
- Follow up: EC422 (time series) is only offered in the winter. 🍪
- Follow up: EC410 (computational economics) in the spring! #
- Follow up: R is mainly written in C, R, and Fortran.

Today

- Return to our in-class examples
- Causality

Upcoming

Assignment due Sunday. Another one coming soon.

Problems and strategies

Step 1: Define the problem.

Q: What was the problem/goal/objective for the analysis?

Problems and strategies

Step 1: Define the problem.

Q: What was the problem/goal/objective for the analysis?

A: For y_1 and y_2 each, find the **true** model.

Problems and strategies

Step 1: Define the problem.

Q: What was the problem/goal/objective for the analysis?

A: For y_1 and y_2 each, find the **true** model.

Clarification:

Q: What does the *true model* for y_1 mean?

- (**A**) The variables that best explain/predict y_1 .
- (**B**) The variables that are statistically significant.
- (**C**) The variables that actually generated y_1 .
- (**D**) Something else?

Problems and strategies

Step 1: Define the problem.

Q: What was the problem/goal/objective for the analysis?

A: For y_1 and y_2 each, find the **true** model.

Clarification:

Q: What does the *true model* for y_1 mean?

- (**A**) The variables that best explain/predict y_1 .
- (**B**) The variables that are statistically significant.
- (**C**) The variables that actually generated y_1 .
- (**D**) Something else?

A: (C) We want to know variables and coefficients generated y_1 .

Problems and strategies

Step 1: Define the problem.

Q: What was the problem/goal/objective for the analysis?

A: For y_1 and y_2 each, find the **true** model.

Clarification:

Q: What does the *true model* for y_1 mean?

- (**A**) The variables that best explain/predict y_1 .
- (**B**) The variables that are statistically significant.
- (**C**) The variables that actually generated y_1 .
- (**D**) Something else?

A: (C) We want to know variables and coefficients generated y_1 .

The true data-generating process (DGP).

Problems and strategies

Step 2: Define your strategy

How did you approach this problem?

Problems and strategies

Step 2: Define your strategy

How did you approach this problem?

A few options:

- 1. Find the combination of variables that **maximize R²** or **adjusted R²**.
- 2. First **include all** variables. Keep statistically **significant variables**.
- 3. Iterate with (2.): **Drop non-significant variables** until nothing changes.
- 4. Add variables one by one. Keep statistically significant variables.
- 5. Plot variables' (or residuals') relationships with y.

```
# Load the data
fun_df ← read_csv("fun_data.csv")
# Separate into two datasets
y1_df ← fun_df %>% select(-y2)
y2_df ← fun_df %>% select(-y1)
# Peak at the data
y1_df
```

```
#> # A tibble: 100 x 10
#>
               x1
                    x2 x3
                              x4 x5
                                                     x8
         ٧1
                                         х6
                                                x7
                                                          х9
      #>
#>
      3.08
            -0.777 0.405
                       1.23 0.762 -0.232 1.17 0.111
                                                      1 1.98
   1
#>
      6.04
           0.473 1.59 0.584 1.53
                                0.349 1.52 -0.00994
                                                      2 0.511
  2
#>
      9.57 2.30 3.52 -0.976 3.32 0.581 1.50 0.974
                                                      3 0.936
#>
   4
     11.4
            2.46 5.33 -1.77 4.64 -0.576 1.92
                                            2.53
                                                      4 2.88
#>
     -0.0319
            0.313 2.09 -2.59 1.37
                                 -0.717 3.76
                                            2.14
                                                      5 2.20
#>
      5.21
            1.37 1.23 2.34 2.21
                                 -1.40
                                       3.55
                                            1.17
                                                      6 1.83
#>
     7.97 1.73 3.46 0.584 2.24 -1.31
                                      3.77
                                            1.92
                                                      7 1.75
#>
     -5.17 2.60 4.09 -4.15 4.13 -2.57
                                      4.60 0.886
                                                      8 1.14
#>
      1.57 0.877 3.96 2.08 1.42 -2.89
                                      3.68 1.32
                                                      9 2.23
#> 10
      3.97
            -0.197 \ 0.875 \ -0.760 \ 0.697 \ -1.92
                                      1.90 1.85
                                                     10 1.90
\# # ... with 90 more rows
```

gather ing data

Let's plot y_1 against the nine potential explanatory variables, x_1 to x_9 .

gather ing data

Let's plot y_1 against the nine potential explanatory variables, x_1 to x_9 .

We'll use two new functions to streamline this process.

- gather() (from dplyr): Stacks variables (names and values).
- facet_wrap(): Creates multiple plots grouped by a variable.

gather ing data

Example: gather all variables in our dataset.

```
data.frame(w = 0:1, x = 2:3, y = 4:5, z = 6:7) %>%
  gather(key = "var", value = "value")
```

```
#> var value
#> 1 w 0
#> 2 w 1
#> 3 x 2
#> 4 x 3
#> 5 y 4
#> 6 y 5
#> 7 z 6
#> 8 z 7
```

gather ing data

Example: gather all variables in our dataset except w.

```
data.frame(w = 0:1, x = 2:3, y = 4:5, z = 6:7) %>%
  gather(-w, key = "var", value = "value")
```

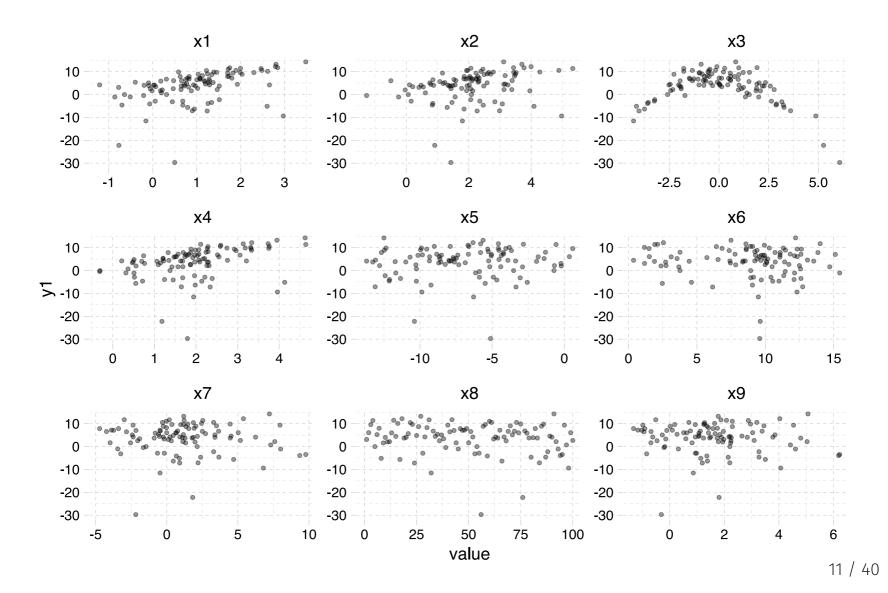
```
#> w var value
#> 1 0 x 2
#> 2 1 x 3
#> 3 0 y 4
#> 4 1 y 5
#> 5 0 z 6
#> 6 1 z 7
```

gather ing data

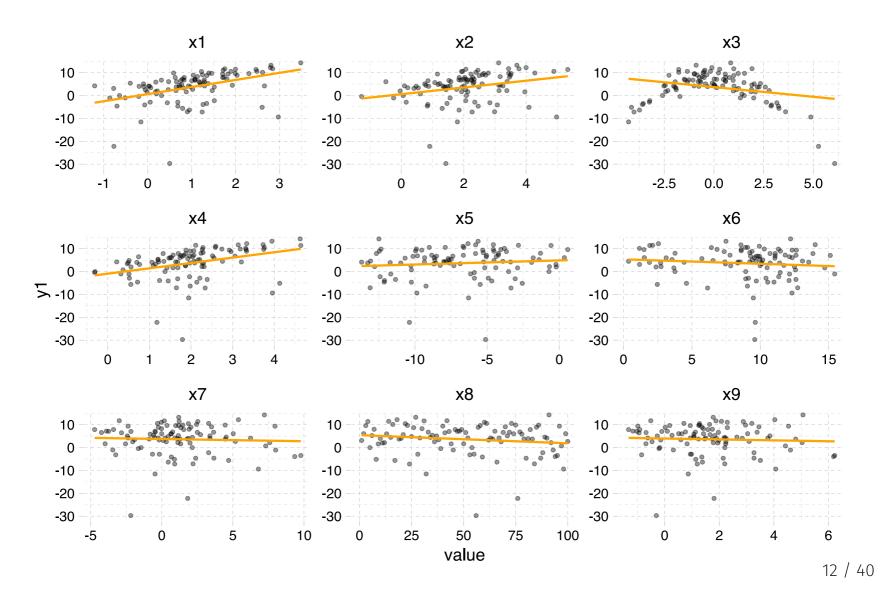
Adding these new functions to our previous ggplot2 work...

```
y1_df %>% gather(-y1, key = "var", value = "value") %>%
  ggplot(aes(x = value, y = y1)) +
  geom_point(alpha = 0.4, size = 1.5) +
  facet_wrap(~ var, scales = "free") +
  theme_pander(base_size = 16)
```

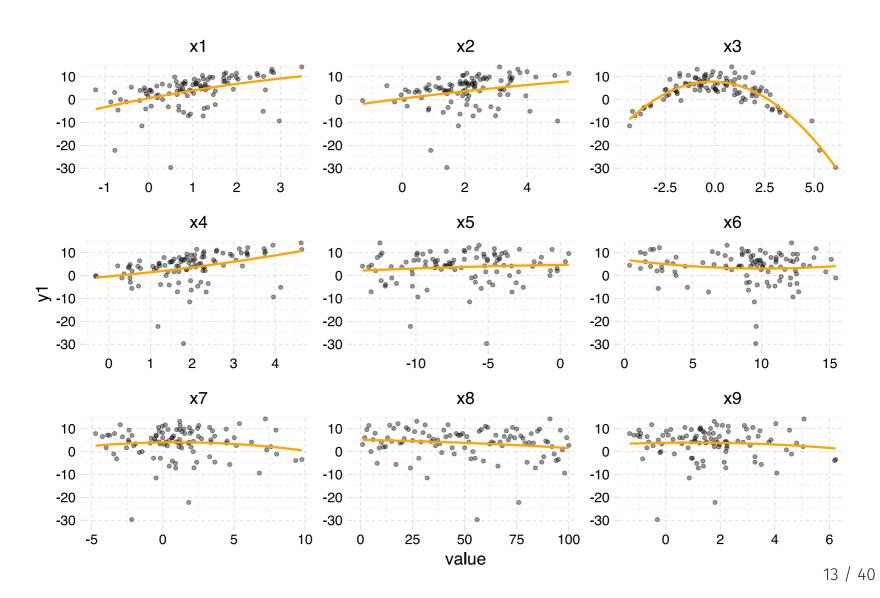
Plot: y_1 against x_1 through x_9



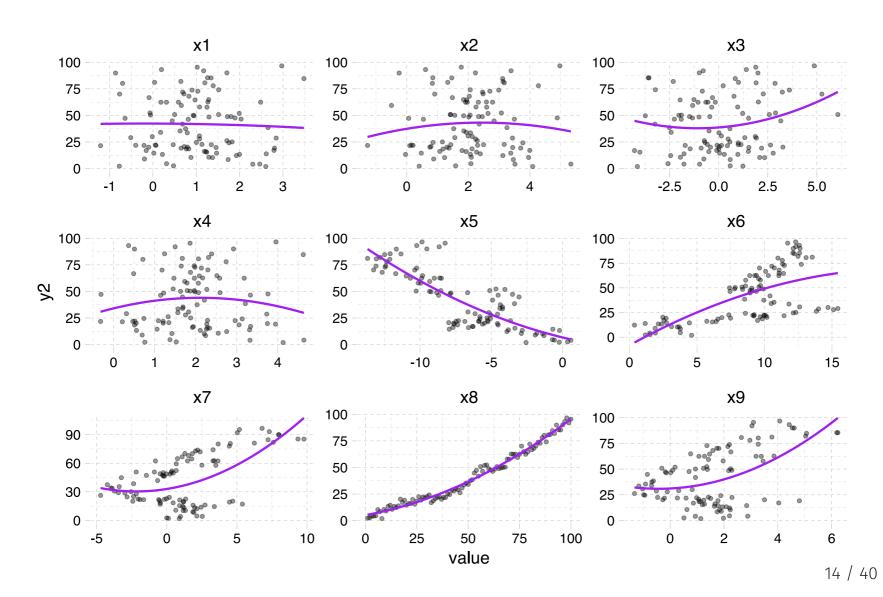
Simple linear regressions: y_1 against x_1 through x_9



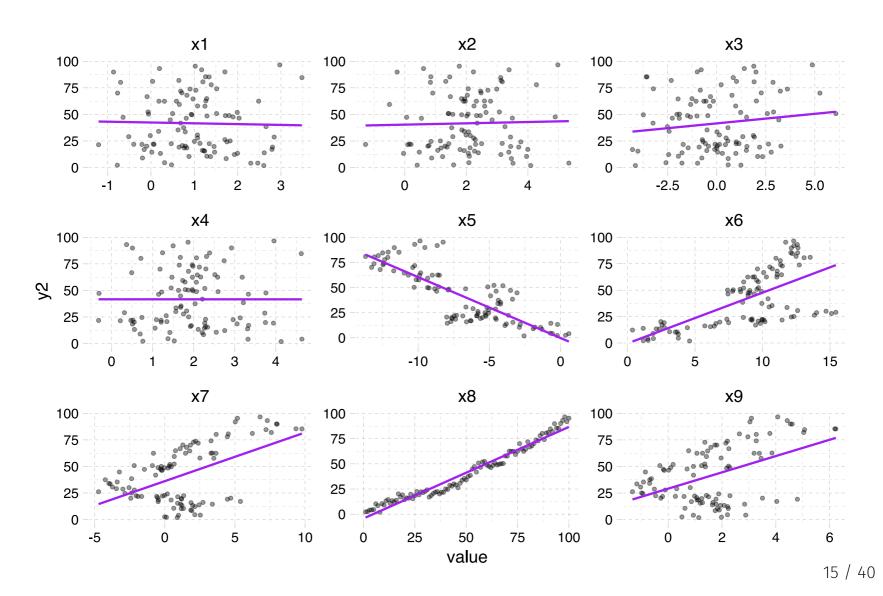
Linear regressions with quadratic RHS: y_1 against x_1 through x_9



Linear regressions with quadratic RHS: y_2 against x_1 through x_9



Simple linear regressions: y₂ against x₁ through x₉



Searching for the unknown model

Results

Your responses: Percentage who said TRUE (29 responses)

	X1	X2	Х3	X4	X5	X6	X7	X8	Х9
y1	78.6	7.1	60.7	39.3	28.6	28.6	17.9	17.9	25.0
y2	46.4	50.0	64.3	10.7	75.0	57.1	75.0	53.6	46.4

Searching for the unknown model

Results

Your responses: Percentage who said TRUE (29 responses)

	X1	X2	Х3	X4	X5	X6	X7	X8	Х9
y1	78.6	7.1	60.7	39.3	28.6	28.6	17.9	17.9	25.0
y2	46.4	50.0	64.3	10.7	75.0	57.1	75.0	53.6	46.4

Truth: The true data-generating processes

$$egin{aligned} y_1 &= 3 + x_1 - x_3^2 + 2x_4 + u \ y_2 &= 1 + x_3 + x_5 + x_7 + v \end{aligned}$$

Searching for the unknown model

Results

Your responses: Percentage who said TRUE (29 responses)

	X1	X2	Х3	X4	X5	X6	X7	X8	Х9
y1	78.6	7.1	60.7	39.3	28.6	28.6	17.9	17.9	25.0
y2	46.4	50.0	64.3	10.7	75.0	57.1	75.0	53.6	46.4

Truth: The true data-generating processes

$$egin{aligned} y_1 &= 3 + x_1 - x_3^2 + 2x_4 + u \ y_2 &= 1 + x_3 + x_5 + x_7 + v \end{aligned}$$

Q: Is it worse include an incorrect variable or exlcude a correct variable?

Intro

Most tasks in econometrics boil down to one of two goals:

$$y=eta_0+eta_1x_1+eta_2x_2+\cdots+eta_kx_k+u$$

Intro

Most tasks in econometrics boil down to one of two goals:

$$y=eta_0+eta_1x_1+eta_2x_2+\cdots+eta_kx_k+u$$

1. **Prediction:** Accurately and dependably predict/forecast y using on some set of explanatory variables—doesn't need to be x_1 through x_k . Focuses on \hat{y} . β_j doesn't really matter.

Intro

Most tasks in econometrics boil down to one of two goals:

$$y=eta_0+eta_1x_1+eta_2x_2+\cdots+eta_kx_k+u$$

- 1. **Prediction:** Accurately and dependably predict/forecast y using on some set of explanatory variables—doesn't need to be x_1 through x_k . Focuses on \hat{y} . β_i doesn't really matter.
- 2. **Causal estimation:**[†] Estimate the actual data-generating process—learning about the true, population model that explains how y changes when we change x_j —focuses on β_j . Accuracy of \hat{y} is not important.

Intro

Most tasks in econometrics boil down to one of two goals:

$$y=eta_0+eta_1x_1+eta_2x_2+\cdots+eta_kx_k+u$$

- 1. **Prediction:** Accurately and dependably predict/forecast y using on some set of explanatory variables—doesn't need to be x_1 through x_k . Focuses on \hat{y} . β_i doesn't really matter.
- 2. **Causal estimation:**[†] Estimate the actual data-generating process—learning about the true, population model that explains how y changes when we change x_j —focuses on β_j . Accuracy of \hat{y} is not important.

For the rest of the term, we will focus on **causally estimating** β_j .

† Often called causal identification.

The challenges

As you saw in the data-analysis exercise, determining and estimating the true model can be pretty difficult—both practically and econometrically.

The challenges

As you saw in the data-analysis exercise, determining and estimating the true model can be pretty difficult—both practically and econometrically.

Practical challenges

- Which variables?
- Which functional form(s)?
- Do data exist? How much?
- Is the sample representative?

The challenges

As you saw in the data-analysis exercise, determining and estimating the true model can be pretty difficult—both practically and econometrically.

Practical challenges

- Which variables?
- Which functional form(s)?
- Do data exist? How much?
- Is the sample representative?

Econometric challenges

- Omitted-variable bias
- Reverse causality
- Measurement error
- How precise can/must we be?

The challenges

As you saw in the data-analysis exercise, determining and estimating the true model can be pretty difficult—both practically and econometrically.

Practical challenges

- Which variables?
- Which functional form(s)?
- Do data exist? How much?
- Is the sample representative?

Econometric challenges

- Omitted-variable bias
- Reverse causality
- Measurement error
- How precise can/must we be?

Many of these challenges relate to **exogeneity**, i.e., $oldsymbol{E}[u_i|X]=0$.

The challenges

As you saw in the data-analysis exercise, determining and estimating the true model can be pretty difficult—both practically and econometrically.

Practical challenges

- Which variables?
- Which functional form(s)?
- Do data exist? How much?
- Is the sample representative?

Econometric challenges

- Omitted-variable bias
- Reverse causality
- Measurement error
- How precise can/must we be?

Many of these challenges relate to **exogeneity**, i.e., $E[u_i|X] = 0$. Causality requires us to **hold all else constant** (ceterus paribus).

It's complicated

Occasionally, causal relationships are simply/easily understood, e.g.,

It's complicated

Occasionally, causal relationships are simply/easily understood, e.g.,

- What caused the forest fire?
- How did this baby get here?

It's complicated

Occasionally, *causal* relationships are simply/easily understood, *e.g.*,

- What caused the forest fire?
- How did this baby get here?

Generally, causal relationships are complex and challenging to answer, e.g.,

It's complicated

Occasionally, causal relationships are simply/easily understood, e.g.,

- What caused the forest fire?
- How did this baby get here?

Generally, causal relationships are complex and challenging to answer, e.g.,

- What causes some countries to grow and others to decline?
- What caused President Trump's 2016 election?
- How does the number of police officers affect crime?
- What is the effect of better air quality on test scores?
- Do longer prison sentences decrease crime?
- How did cannabis legalization affect mental health/opioid addition?

Correlation ≠ Causation

You've likely heard the saying

Correlation is not causation.

The saying is just pointing out that there are violations of exogeneity.

Correlation ≠ Causation

You've likely heard the saying

Correlation is not causation.

The saying is just pointing out that there are violations of exogeneity.

Although correlation is not causation, causation requires correlation.

Correlation ≠ Causation

You've likely heard the saying

Correlation is not causation.

The saying is just pointing out that there are violations of exogeneity.

Although correlation is not causation, causation requires correlation.

New saying:

Correlation plus exogeneity is causation.

Let's work through a few examples.

Example: The causal effect of fertilizer[†]

Suppose we want to know the causal effect of fertilizer on corn yield.

[†] Many of the early statistical and econometric studies involved agricultural field trials.

Example: The causal effect of fertilizer[†]

Suppose we want to know the causal effect of fertilizer on corn yield.

Q: Could we simply regress yield on fertilizer?

[†] Many of the early statistical and econometric studies involved agricultural field trials.

Example: The causal effect of fertilizer[†]

Suppose we want to know the causal effect of fertilizer on corn yield.

Q: Could we simply regress yield on fertilizer?

A: Probably not (if we want the causal effect).

[†] Many of the early statistical and econometric studies involved agricultural field trials.

Example: The causal effect of fertilizer[†]

Suppose we want to know the causal effect of fertilizer on corn yield.

Q: Could we simply regress yield on fertilizer?

A: Probably not (if we want the causal effect).

Q: Why not?

[†] Many of the early statistical and econometric studies involved agricultural field trials.

Example: The causal effect of fertilizer[†]

Suppose we want to know the causal effect of fertilizer on corn yield.

Q: Could we simply regress yield on fertilizer?

A: Probably not (if we want the causal effect).

Q: Why not?

A: Omitted-variable bias: Farmers may apply less fertilizer in areas that are already worse on other dimensions that affect yield (soil, slope, water). Violates *all else equal* (exogeneity). Biased and/or spurious results.

† Many of the early statistical and econometric studies involved agricultural field trials.

Example: The causal effect of fertilizer[†]

Suppose we want to know the causal effect of fertilizer on corn yield.

Q: Could we simply regress yield on fertilizer?

A: Probably not (if we want the causal effect).

Q: Why not?

A: Omitted-variable bias: Farmers may apply less fertilizer in areas that are already worse on other dimensions that affect yield (soil, slope, water). Violates *all else equal* (exogeneity). Biased and/or spurious results.

Q: So what should we do?

[†] Many of the early statistical and econometric studies involved agricultural field trials.

Example: The causal effect of fertilizer[†]

Suppose we want to know the causal effect of fertilizer on corn yield.

Q: Could we simply regress yield on fertilizer?

A: Probably not (if we want the causal effect).

Q: Why not?

A: Omitted-variable bias: Farmers may apply less fertilizer in areas that are already worse on other dimensions that affect yield (soil, slope, water). Violates *all else equal* (exogeneity). Biased and/or spurious results.

Q: So what should we do?

A: Run an experiment!

[†] Many of the early statistical and econometric studies involved agricultural field trials.

Example: The causal effect of fertilizer[†]

Suppose we want to know the causal effect of fertilizer on corn yield.

Q: Could we simply regress yield on fertilizer?

A: Probably not (if we want the causal effect).

Q: Why not?

A: Omitted-variable bias: Farmers may apply less fertilizer in areas that are already worse on other dimensions that affect yield (soil, slope, water). Violates *all else equal* (exogeneity). Biased and/or spurious results.

Q: So what should we do?

A: Run an experiment! 💩

[†] Many of the early statistical and econometric studies involved agricultural field trials.

Example: The causal effect of fertilizer

Randomized experiments help us maintain all else equal (exogeneity).

Example: The causal effect of fertilizer

Randomized experiments help us maintain all else equal (exogeneity).

We often call these experiments *randomized control trials* (RCTs).[†]

[†] Econometrics (and statistics) borrows this language from biostatistics and pharmaceutical trials.

Example: The causal effect of fertilizer

Randomized experiments help us maintain all else equal (exogeneity).

We often call these experiments *randomized control trials* (RCTs).[†]

Imagine an RCT where we have two groups:

- **Treatment:** We apply fertilizer.
- **Control:** We do not apply fertilizer.

[†] Econometrics (and statistics) borrows this language from biostatistics and pharmaceutical trials.

Example: The causal effect of fertilizer

Randomized experiments help us maintain all else equal (exogeneity).

We often call these experiments *randomized control trials* (RCTs).[†]

Imagine an RCT where we have two groups:

- **Treatment:** We apply fertilizer.
- **Control:** We do not apply fertilizer.

By randomizing plots of land into **treatment** or **control**, we will, on average, include all kinds of land (soild, slope, water, *etc.*) in both groups.

[†] Econometrics (and statistics) borrows this language from biostatistics and pharmaceutical trials.

Example: The causal effect of fertilizer

Randomized experiments help us maintain all else equal (exogeneity).

We often call these experiments *randomized control trials* (RCTs).[†]

Imagine an RCT where we have two groups:

- **Treatment:** We apply fertilizer.
- **Control:** We do not apply fertilizer.

By randomizing plots of land into **treatment** or **control**, we will, on average, include all kinds of land (soild, slope, water, *etc.*) in both groups.

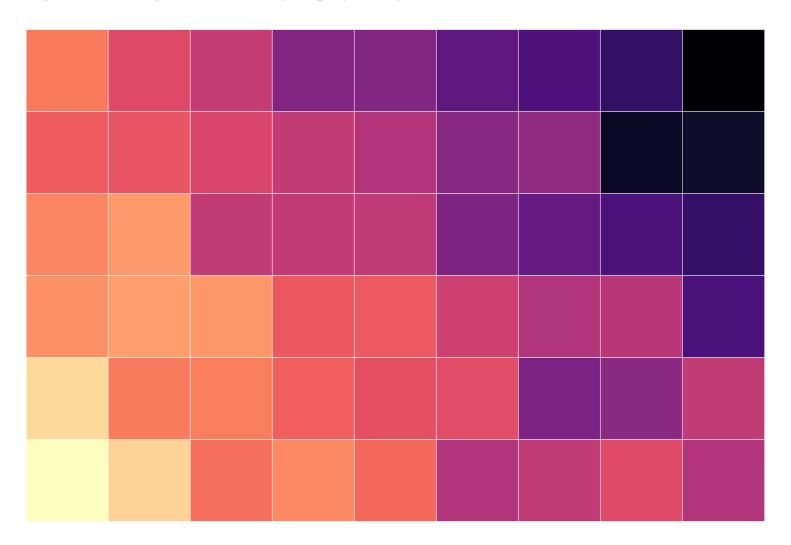
All else equal!

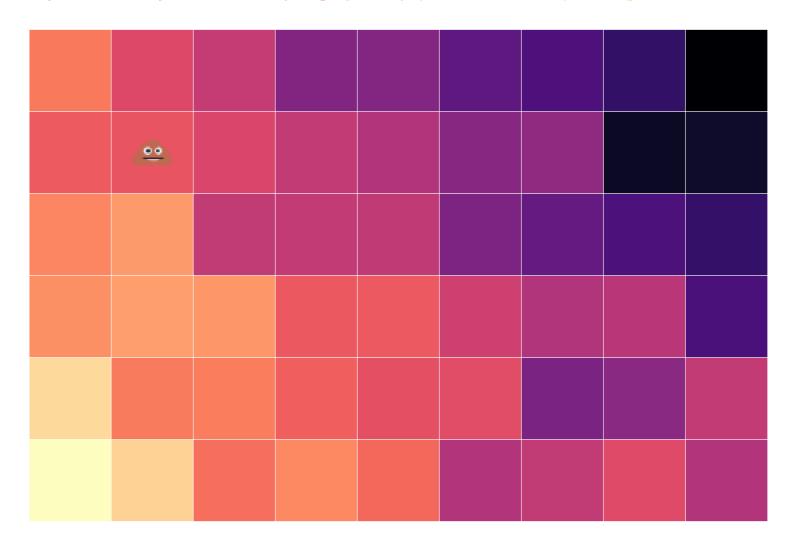
† Econometrics (and statistics) borrows this language from biostatistics and pharmaceutical trials.

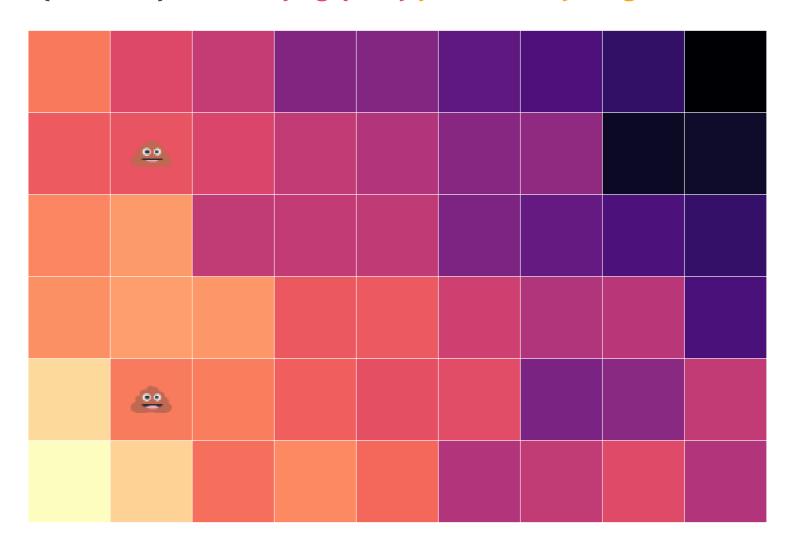
54 equal-sized plots

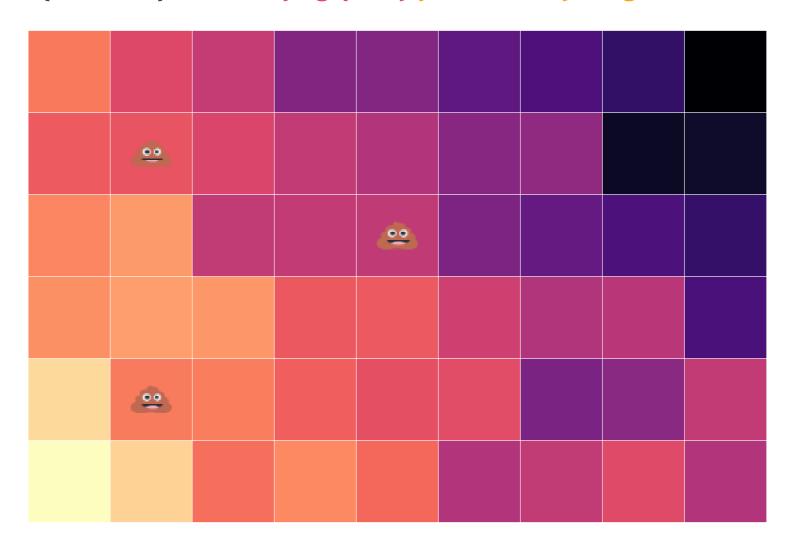
01	02	03	04	05	06	07	08	09
10	11	12	13	14	15	16	17	18
19	20	21	22	23	24	25	26	27
28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45
46	47	48	49	50	51	52	53	54

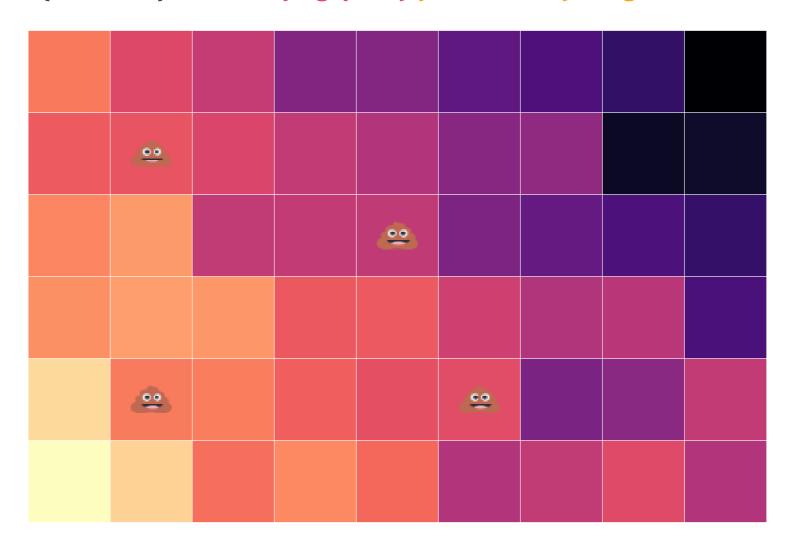
54 equal-sized plots of varying quality



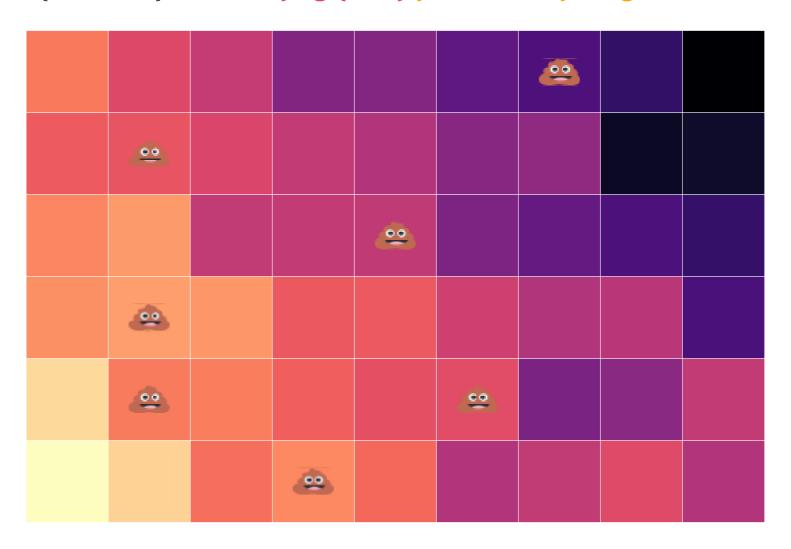


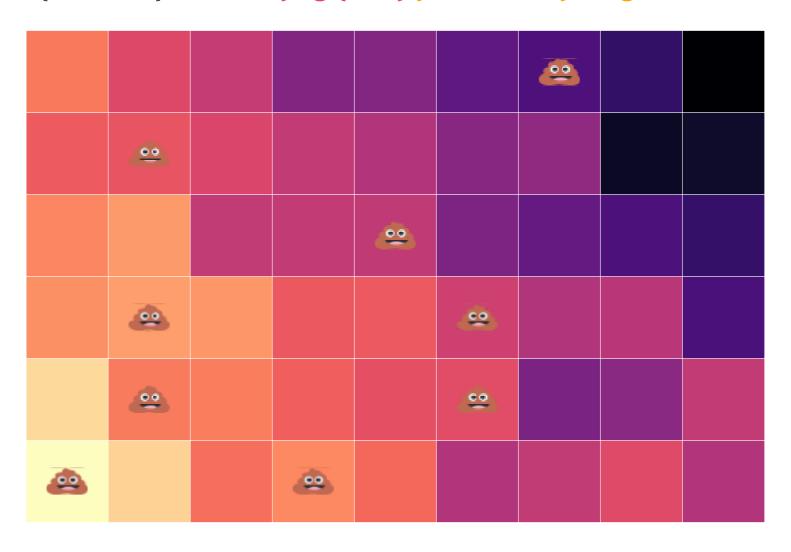


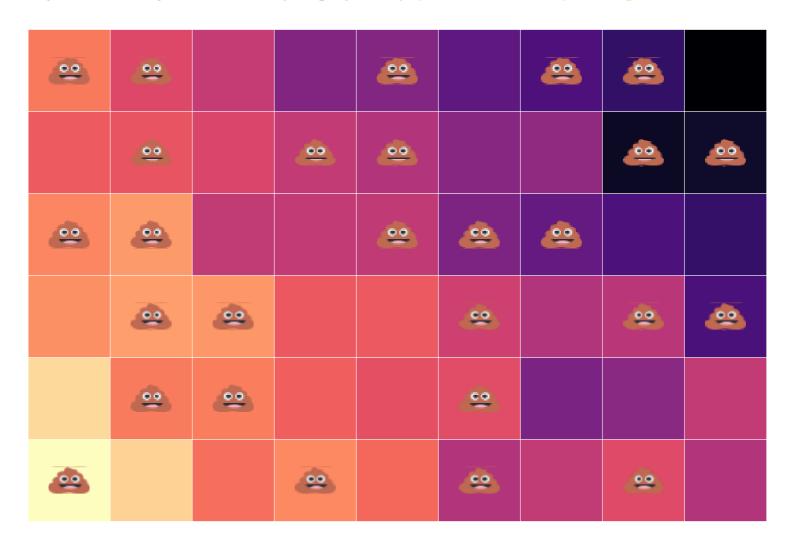


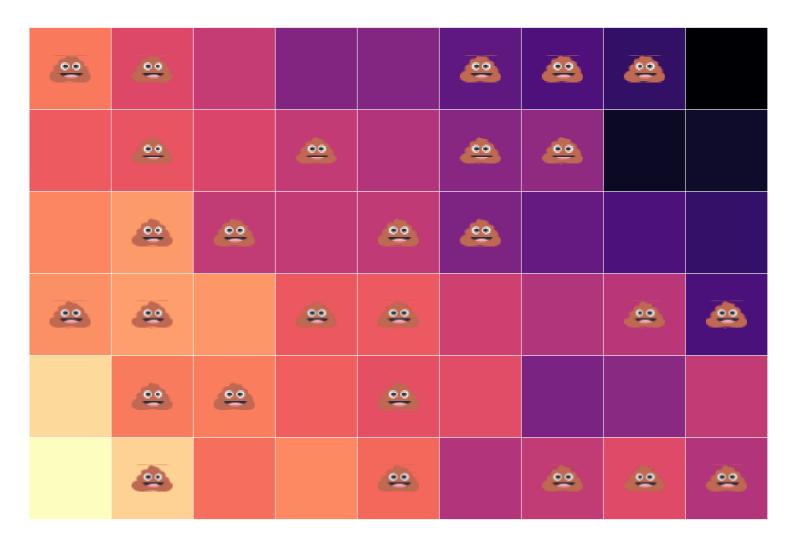


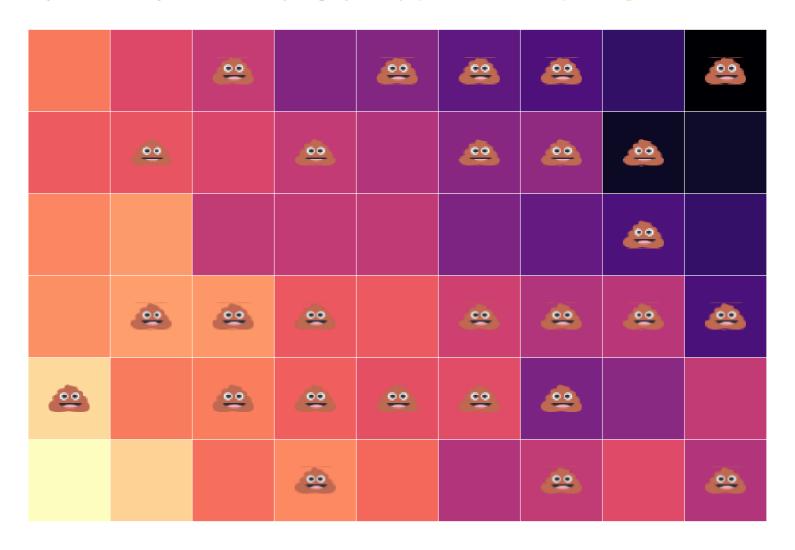












Example: The causal effect of fertilizer

We can estimate the **causal effect** of fertilizer on crop yield by comparing the average yield in the treatment group (**a**) with the control group (no **a**).

$$\overline{\text{Yield}}_{\text{Treatment}} - \overline{\text{Yield}}_{\text{Control}}$$

Example: The causal effect of fertilizer

We can estimate the **causal effect** of fertilizer on crop yield by comparing the average yield in the treatment group (💩) with the control group (no 💩).

$$\overline{\text{Yield}}_{\text{Treatment}} - \overline{\text{Yield}}_{\text{Control}}$$

Alternatively, we can use the regression

Example: The causal effect of fertilizer

We can estimate the **causal effect** of fertilizer on crop yield by comparing the average yield in the treatment group (💩) with the control group (no 💩).

$$\overline{\text{Yield}}_{\text{Treatment}} - \overline{\text{Yield}}_{\text{Control}}$$

Alternatively, we can use the regression

$$Yield_i = \beta_0 + \beta_1 Trt_i + u_i \tag{1}$$

where \mathbf{Trt}_i is a binary variable (=1 if plot i received the fertilizer treatment).

Causation

Example: The causal effect of fertilizer

We can estimate the **causal effect** of fertilizer on crop yield by comparing the average yield in the treatment group (💩) with the control group (no 💩).

$$\overline{\text{Yield}}_{\text{Treatment}} - \overline{\text{Yield}}_{\text{Control}}$$

Alternatively, we can use the regression

$$Yield_i = \beta_0 + \beta_1 Trt_i + u_i \tag{1}$$

where \mathbf{Trt}_i is a binary variable (=1 if plot i received the fertilizer treatment).

Q: Should we expect (1) to satisfy exogeneity? Why?

Causation

Example: The causal effect of fertilizer

We can estimate the **causal effect** of fertilizer on crop yield by comparing the average yield in the treatment group (**a**) with the control group (no **a**).

$$\overline{\text{Yield}}_{\text{Treatment}} - \overline{\text{Yield}}_{\text{Control}}$$

Alternatively, we can use the regression

$$Yield_i = \beta_0 + \beta_1 Trt_i + u_i \tag{1}$$

where \mathbf{Trt}_i is a binary variable (=1 if plot i received the fertilizer treatment).

Q: Should we expect (1) to satisfy exogeneity? Why?

A: On average, **randomly assigning treatment should balance** trt. and control across the other dimensions that affect yield (soil, slope, water).

Example: Returns to education

Labor economists, policy makers, parents, and students are all interested in the (monetary) return to education.

Example: Returns to education

Labor economists, policy makers, parents, and students are all interested in the (monetary) return to education.

Thought experiment:

- Randomly select an individual.
- Give her an additional year of education.
- How much do her earnings increase?

This change in earnings gives the **causal effect** of education on earnings.

Example: Returns to education

Q: Could we simply regress earnings on education?

Example: Returns to education

Q: Could we simply regress earnings on education?

A: Again, probably not if we want the true, causal effect.

Example: Returns to education

Q: Could we simply regress earnings on education?

A: Again, probably not if we want the true, causal effect.

- 1. People choose education based upon many factors, e.g., ability.
- 2. Education likely reduces experience (time out of the workforce).
- 3. Education is **endogenous** (violates exogeneity).

Example: Returns to education

Q: Could we simply regress earnings on education?

A: Again, probably not if we want the true, causal effect.

- 1. People *choose* education based upon many factors, *e.g.*, ability.
- 2. Education likely reduces experience (time out of the workforce).
- 3. Education is **endogenous** (violates exogeneity).

The point (2) above also illustrates the difficulty in learning about educations while *holding all else constant*.

Many important variables have the same challenge—gender, race, income.

Example: Returns to education

Q: So how can we estimate the returns to education?

Example: Returns to education

Q: So how can we estimate the returns to education?

Option 1: Run an experiment.

Example: Returns to education

Q: So how can we estimate the returns to education?

Option 1: Run an **experiment**.

- Randomly assign education (might be difficult).
- Randomly encourage education (might work).
- Randomly assign programs that affect education (e.g., mentoring).

Example: Returns to education

Q: So how can we estimate the returns to education?

Option 1: Run an **experiment**.

- Randomly assign education (might be difficult).
- Randomly encourage education (might work).
- Randomly assign programs that affect education (e.g., mentoring).

Option 2: Look for a *natural experiment*—a policy or accident in society that arbitrarily increased education for one subset of people.

Example: Returns to education

Q: So how can we estimate the returns to education?

Option 1: Run an **experiment**.

- Randomly assign education (might be difficult).
- Randomly encourage education (might work).
- Randomly assign programs that affect education (e.g., mentoring).

Option 2: Look for a *natural experiment*—a policy or accident in society that arbitrarily increased education for one subset of people.

- Admissions cutoffs
- Lottery enrollment and/or capacity constraints

Real-world experiments

Both examples consider **real experiments** that isolate causal effects.

Characteristics

- Feasible—we can actually (potentially) run the experiment.
- Compare individuals randomized into treatment against individuals randomized into control.
- Require "good" randomization to get all else equal (exogeneity).

Real-world experiments

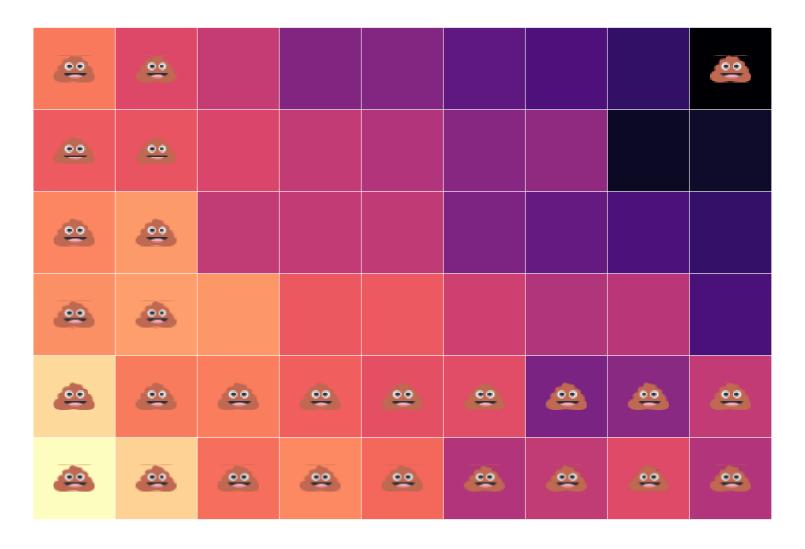
Both examples consider **real experiments** that isolate causal effects.

Characteristics

- Feasible—we can actually (potentially) run the experiment.
- Compare individuals randomized into treatment against individuals randomized into control.
- Require "good" randomization to get all else equal (exogeneity).

Note: Your experiment's results are only as good as your randomization.

Unfortunate randomization



The ideal experiment

The **ideal experiment** would be subtly different.

Rather than comparing units randomized as treatment vs. control, the ideal experiment would compare treatment and control for the same, exact unit.

The ideal experiment

The **ideal experiment** would be subtly different.

Rather than comparing units randomized as treatment vs. control, the ideal experiment would compare treatment and control for the same, exact unit.

 $y_{\mathrm{Treatment},i} - y_{\mathrm{Control},i}$

The ideal experiment

The **ideal experiment** would be subtly different.

Rather than comparing units randomized as treatment vs. control, the ideal experiment would compare treatment and control for the same, exact unit.

$$y_{\mathrm{Treatment},i} - y_{\mathrm{Control},i}$$

which we will write (for simplicity) as

$$y_{1,i}-y_{0,i}$$

The ideal experiment

The **ideal experiment** would be subtly different.

Rather than comparing units randomized as treatment vs. control, the ideal experiment would compare treatment and control for the same, exact unit.

$$y_{\mathrm{Treatment},i} - y_{\mathrm{Control},i}$$

which we will write (for simplicity) as

$$y_{1,i}-y_{0,i}$$

This *ideal experiment* is clearly infeasible[†], but it creates nice notation for causality (the Rubin causal model/Neyman potential outcomes framework).

† Without (1) God-like abilities and multiple universes or (2) a time machine.

The ideal experiment

The ideal data for 10 people

```
#>
      i trt y1i y0i
#> 1
          1 5.01 2.56
      2 1 8.85 2.53
#> 2
#> 3
    3 1 6.31 2.67
#> 4
    4 1 5.97 2.79
#> 5
     5 1 7.61 4.34
#> 6
      6 0 7.63 4.15
        0 4.75 0.56
#> 7
     8 0 5.77 3.52
#> 8
#> 9
        0 7.47 4.49
#> 10 10
        0 7.79 1.40
```

The ideal experiment

The ideal data for 10 people

```
i trt y1i y0i
#>
#> 1
        1 5.01 2.56
#> 2
     2 1 8.85 2.53
4 1 5.97 2.79
#> 4
#> 5
    5 1 7.61 4.34
#> 6
     6 0 7.63 4.15
    7 0 4.75 0.56
#> 7
    8 0 5.77 3.52
#> 8
#> 9
    9 0 7.47 4.49
#> 10 10 0 7.79 1.40
```

Calculate the causal effect of trt.

$$\tau_i = y_{1,i} - y_{0,i}$$

for each individual i.

The ideal experiment

The ideal data for 10 people

#>		i	trt	y1i	y0i	effect_i
#>	1	1	1	5.01	2.56	2.45
#>	2	2	1	8.85	2.53	6.32
#>	3	3	1	6.31	2.67	3.64
#>	4	4	1	5.97	2.79	3.18
#>	5	5	1	7.61	4.34	3.27
#>	6	6	0	7.63	4.15	3.48
#>	7	7	0	4.75	0.56	4.19
#>	8	8	0	5.77	3.52	2.25
#>	9	9	0	7.47	4.49	2.98
#>	10	10	0	7.79	1.40	6.39

Calculate the causal effect of trt.

$$\tau_i = y_{1,i} - y_{0,i}$$

for each individual i.

The ideal experiment

The ideal data for 10 people

#>		i	trt	y1i	y0i	effect_i
#>	1	1	1	5.01	2.56	2.45
#>	2	2	1	8.85	2.53	6.32
#>	3	3	1	6.31	2.67	3.64
#>	4	4	1	5.97	2.79	3.18
#>	5	5	1	7.61	4.34	3.27
#>	6	6	0	7.63	4.15	3.48
#>	7	7	0	4.75	0.56	4.19
#>	8	8	0	5.77	3.52	2.25
#>	9	9	0	7.47	4.49	2.98
#>	10	10	0	7.79	1.40	6.39

Calculate the causal effect of trt.

$$\tau_i = y_{1,i} - y_{0,i}$$

for each individual i.

The mean of τ_i is the average treatment effect (ATE).

Thus,
$$\overline{ au}=3.82$$

The ideal experiment

This model highlights the fundamental problem of causal inference.

$$\tau_i = y_{1,i} - y_{0,i}$$

The ideal experiment

This model highlights the fundamental problem of causal inference.

$$\tau_i = y_{1,i} - y_{0,i}$$

The challenge:

If we observe $y_{1,i}$, then we cannot observe $y_{0,i}$.

If we observe $y_{0,i}$, then we cannot observe $y_{1,i}$.

The ideal experiment

So a dataset that we actually observe for 6 people will look something like

```
#>
      i trt y1i
                  v0i
          1 5.01
#> 1
                   NA
      2 1 8.85
#> 2
                  NA
#> 3
     3 1 6.31
                  NA
#> 4
     4 1 5.97
                  NA
#> 5
      5 1 7.61
                   NA
#> 6
              NA 4.15
#> 7
             NA 0.56
#> 8
             NA 3.52
#> 9
              NA 4.49
#> 10 10
              NA 1.40
```

The ideal experiment

So a dataset that we actually observe for 6 people will look something like

```
#>
     i trt v1i v0i
   1 1 5.01
#> 1
              NA
#> 2 2 1 8.85
             NA
NA
#> 4 4 1 5.97
             NA
#> 5 5 1 7.61 NA
#> 6
   6 0 NA 4.15
#> 7
   7 0 NA 0.56
#> 8 8 0 NA 3.52
#> 9
    9 0 NA 4.49
#> 10 10
      0 NA 1.40
```

We can't observe $y_{1,i}$ and $y_{0,i}$.

But, we do observe

- $y_{1,i}$ for i in 1, 2, 3, 4, 5
- $y_{0,j}$ for j in 6, 7, 8, 9, 10

The ideal experiment

So a dataset that we actually observe for 6 people will look something like

```
#>
     i trt v1i v0i
   1 1 5.01
#> 1
              NA
#> 2 2 1 8.85
             NA
NA
#> 4 4 1 5.97
             NA
#> 5 5 1 7.61 NA
#> 6
   6 0 NA 4.15
#> 7 7 0 NA 0.56
#> 8 8 0 NA 3.52
#> 9
    9 0 NA 4.49
#> 10 10
       0 NA 1.40
```

We can't observe $y_{1,i}$ and $y_{0,i}$.

But, we do observe

- **y**_{1,i} for *i* in 1, 2, 3, 4, 5
- $y_{0,j}$ for j in 6, 7, 8, 9, 10

Q: How do we "fill in" the NA's and estimate $\overline{\tau}$?

Causally estimating the treatment effect

Notation: Let D_i be a binary indicator variable such that

- $D_i = 1$ if individual i is treated.
- $D_i = 0$ if individual i is not treated (control group).

Causally estimating the treatment effect

Notation: Let D_i be a binary indicator variable such that

- $D_i = 1$ if individual i is treated.
- $D_i = 0$ if individual i is not treated (control group).

Then, rephrasing the previous slide,

- We only observe $y_{1,i}$ when $D_i=1$.
- We only observe $y_{0,i}$ when $D_i = 0$.

Causally estimating the treatment effect

Notation: Let D_i be a binary indicator variable such that

- $D_i = 1$ if individual i is treated.
- $D_i = 0$ if individual i is not treated (control group).

Then, rephrasing the previous slide,

- We only observe $y_{1,i}$ when $D_i = 1$.
- We only observe $y_{0,i}$ when $D_i=0$.

Q: How can we estimate $\overline{\tau}$ using only $(y_{1,i}|D_i=1)$ and $(y_{0,i}|D_i=0)$?

Causally estimating the treatment effect

Q: How can we estimate $\bar{\tau}$ using only $(y_{1,i}|D_i=1)$ and $(y_{0,i}|D_i=0)$?

Causally estimating the treatment effect

Q: How can we estimate $\overline{\tau}$ using only $(y_{1,i}|D_i=1)$ and $(y_{0,i}|D_i=0)$?

Idea: What if we compare the groups' means? *I.e.*,

$$Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$$

Causally estimating the treatment effect

Q: How can we estimate $\overline{\tau}$ using only $(y_{1,i}|D_i=1)$ and $(y_{0,i}|D_i=0)$?

Idea: What if we compare the groups' means? *I.e.*,

$$Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$$

Q: When does this simple difference in groups' means provide information on the **causal effect** of the treatment?

Causally estimating the treatment effect

Q: How can we estimate $\bar{\tau}$ using only $(y_{1,i}|D_i=1)$ and $(y_{0,i}|D_i=0)$?

Idea: What if we compare the groups' means? *I.e.*,

$$Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$$

Q: When does this simple difference in groups' means provide information on the **causal effect** of the treatment?

Q_{2.0}: Is $Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$ a good estimator for $\overline{\tau}$?

Causality

Causally estimating the treatment effect

Q: How can we estimate $\overline{\tau}$ using only $(y_{1,i}|D_i=1)$ and $(y_{0,i}|D_i=0)$?

Idea: What if we compare the groups' means? *I.e.*,

$$Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$$

Q: When does this simple difference in groups' means provide information on the **causal effect** of the treatment?

Q_{2.0}: Is $Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$ a good estimator for $\overline{\tau}$?

Time for math! 🎉

Causality

Causally estimating the treatment effect

Assumption: Let $au_i = au$ for all i.

This assumption says that the treatment effect is equal (constant) across all individuals i.

Causality

Causally estimating the treatment effect

Assumption: Let $\tau_i = \tau$ for all i.

This assumption says that the treatment effect is equal (constant) across all individuals i.

Note: We defined

$$\tau_i=\tau=y_{1,i}-y_{0,i}$$

which implies

$$y_{1,i} = y_{0,i} + \tau$$

$$= Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$$

$$= Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$$

$$= Avg(y_{1,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0)$$

$$= Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$$

$$= Avg(y_{1,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0)$$

$$= Avg(au + y_{0,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0)$$

$$egin{aligned} &= Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0) \ &= Avg(y_{1,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0) \end{aligned}$$

$$= Avg(au + y_{0,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0)$$

$$= au + Avg(y_{0,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0)$$

Difference in groups' means

$$= Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0)$$

$$= Avg(y_{1,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0)$$

$$= Avg(\tau + y_{0,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0)$$

$$= au + Avg(y_{0,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0)$$

= Average causal effect + Selection bias

Difference in groups' means

$$egin{aligned} &= Avg(y_i \mid D_i = 1) - Avg(y_i \mid D_i = 0) \ &= Avg(y_{1,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0) \ &= Avg(au + y_{0,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0) \ &= au + Avg(y_{0,i} \mid D_i = 1) - Avg(y_{0,i} \mid D_i = 0) \ &= ext{Average causal effect} + ext{Selection bias} \end{aligned}$$

So our proposed group-difference estimator give us the sum of

- 1. τ , the causal, averate treatment effect that we want
- 2. Selection bias: How much trt. and control groups differ (on average).

Next time: Solving selection bias.

Table of contents

Admin

- 1. Schedule
- 2. R showcase
 - Strategizing
 - o gather -ing
 - Results

Causality

- 1. Introduction
- 2. The challenges
- 3. Examples
 - Fertilizer
 - Returns to education
- 4. Real experiments
- 5. The ideal experiment
- 6. Estimation
- 7. Derivation