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Schedule

Last Time

Autocorrelation

Today

e Finish autocorrelation
e Brief introduction to nonstationarity
e In-class examples

Upcoming

o Assignment this week
o Office hours today.
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R showcase

End of class.

4 [ 25



Nonstationarity
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Nonstationarity

Intro

Let's go back to our assumption of weak dependence/persistence

1. Weakly persistent outcomes—essentially, z;, in the distant
period t 4+ k weakly correlates with z; (when & is "big").
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Intro

Let's go back to our assumption of weak dependence/persistence

1. Weakly persistent outcomes—essentially, z;, in the distant
period t 4+ k weakly correlates with z; (when & is "big").

We're essentially saying we need the time series x to behave.

We'll define this good behavior as stationarity.
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Nonstationarity

Stationarity

Requirements for stationarity (a stationary time-series process):
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Nonstationarity

Stationarity

Requirements for stationarity (a stationary time-series process):
1. The mean of the distribution Is independent of time, I.e,,
El|x;] = Elx; ;| for all k
2. The variance of the distribution is independent of time, i.e.,
Var(z;) = Var(x;_j) forall k
3. The covariance between z; and z;_;, depends only on k—not on ¢, i.e,

Cov(xy, ;1) = Cov(zs, xs_p) forall t and s
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Random walks

Random walks are a famous example of a nonstationary process:
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Nonstationarity

Random walks

Random walks are a famous example of a nonstationary process:
Tt = Tt-1+ €t
Why? Var(z:) = to2, which violates stationary variance.

Var(z;) = Var(z;—1 + €¢)
= Var(z; o + &1 + &)
= Var(z;—3 + €12 + €11 + €¢)

= Var(zg + €1 + -+ + &, + 611 + &)
=02+ ---4+ 02+ 0?2+ o?

= to?
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Q: What's the big deal with this violation?
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One 100-period random walk
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Two 100-period random walks
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Three 100-period random walks
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Four 100-period random walks
%@%/\/m\
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Five 100-period random walks
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Fifty 100-period random walks
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1,000 100-period random walks
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Nonstationarity

Problem

One problem is that nonstationary processes can lead to spurious results.
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Nonstationarity

Problem

One problem is that nonstationary processes can lead to spurious results.
Defintion: Spurious

e not being what it purports to be; false or fake
e apprently but not actually valid

Back in 1974, Granger and Newbold showed that when they generated
random walks and regressed the random walks on each other, 77/100
regressions were statistically significant at the 5% level (should have been

approximately 5/100).
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Granger and Newbold simulation example: t statistic = -10.58
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Granger and Newbold simulation example: ¢ statistic = -8.92
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Granger and Newbold simulation example: ¢ statistic = -7.23

WY
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Nonstationarity

Problem

In our data, 74.6 percent of (independently generated) pairs reject the null
hypothesis at the 5% level.
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Nonstationarity

Problem

In our data, 74.6 percent of (independently generated) pairs reject the null
hypothesis at the 5% level.

The point? If our disturbance is nonstationary, we cannot trust plain OLS.
Random walks are only one example of nonstationary processes...
Random walle vy = w1 + &

Random walk with drift: v, = ag + u;—1 + &

Deterministic trend: u; = ag + Bit + &;
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Nonstationarity

A potential solution

Some processes are difference stationary, which means we can get back to

our stationarity (good behavior) requirement by taking the difference
between u; and u;_1.
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Nonstationarity

A potential solution

Some processes are difference stationary, which means we can get back to
our stationarity (good behavior) requirement by taking the difference
between u; and u;_1.

Nonstationary: u; = u;_1 + & (a random walk)
Stationary: Ut — Up_ 1] = Up_1 T E — U1 = &4

So If we have good reason to believe that our disturbances follow a random
walk, we can use OLS on the differences, i.e,,

Yyt = Po + Brizt + uy
Yi—1 = Po + Pixi—1 + ut—1
Yt — Y1 = P1 (et — Te-1) + (ws — u-1)
Ay = B1Ax: + Auy
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Nonstationarity

Testing

Dickey-Fuller and augmented Dickey-Fuller tests are popular ways to test of
random walks and other forms of nonstationarity.
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Nonstationarity

Testing

Dickey-Fuller and augmented Dickey-Fuller tests are popular ways to test of
random walks and other forms of nonstationarity.

Dickey-Fuller tests compare

Hot yr = Bo + Biye—1 + uy with | 81| < 1 (stationarity)
Hy v = yi_1 + & (random walk)

using a t test that |8, < 1.7

T People often just test 8, < 1.
23/ 25



In-class exercise

1. Download the dataset fun data.csv.

2. Figure out the model for y1. (Which of the x variables caused v17?)

3. Figure out the model for y2. (Which of the x variables caused y2?)

Extra credit:

e Answers on fun answers.csv: Should the variable be included?

o +1pt (-1pt) for each correct (incorrect) answer (T/F for each combination)
 You will get at least 2pts for submitting (fun answers.csv)

e Points will be added on to your total homework score

Don't forget: nonlinearities, omitted variable bias, nonstationarity, etc.
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