
Problem Set 3 Solutions
Time Series, Autocorrelation, and Consistency

EC 421: Introduction to Econometrics

Due before midnight (11:59pm) on Friday, 29 May 2020



Conceptual Questions
1. Remember that we've discussed three types of time-series models: (1) static models, (2) dynamic models with
lagged explanatory variables, (3) dynamic models with lagged outcome variables.

1a. If the disturbance  is not autocorrelated, for which of the 3 types of models is OLS unbiased? 
If any of the models are biased, explain why.

Answer: If the disturbance is not autocorrelated, then OLS is

unbiased for static models
unbiased for dynamic models with lagged explanatory variables
biased for dynamic models with lagged outcome variables because they violate exogeneity.

1b. If the disturbance  is not autocorrelated, for which of the 3 types of models is OLS consistent? 
If any of the models are inconsistent, explain why.

Answer: If the disturbance is not autocorrelated, then OLS is

consistent for static models
consistent for dynamic models with lagged explanatory variables
consistent for dynamic models with lagged outcome variables

Note: We need contemporaneous exogeneity for consistency.

1c. If the disturbance  is autocorrelated, for which of the 3 types of models is OLS unbiased? 
If any of the models are biased, explain why.

Answer: If the disturbance is not autocorrelated, then OLS is

unbiased for static models
unbiased for dynamic models with lagged explanatory variables
biased for dynamic models with lagged outcome variables because they violate exogeneity.

1d. If the disturbance  is autocorrelated, for which of the 3 types of models is OLS consistent? 
If any of the models are inconsistent, explain why.

Answer: If the disturbance is not autocorrelated, then OLS is

consistent for static models
consistent for dynamic models with lagged explanatory variables
inconsistent for dynamic models with lagged outcome variables because they violate
contemporaneous exogeneity

2. In our time-series lecture, we discussed how static time-series models are a pretty restrictive and simplistic
way to model time-series data.

2a. Explain why static time-series models are generally restrictive and simplistic.

Answer: Static models assume (1) that all explanatory variables only affect our outcome for exactly one period
(the current period) and (2) the outcome variable in the current period is not affected by the outcomes in
previous periods. In other words: We are saying that all variables have immediate effects and then no future
effects.

This approach to modeling is restrictive because many variables likely have effects for many periods and some
outcome variables are affected by previous outcomes.
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2b. Give an example of a reasonable static time-series model. By reasonable we mean that it would be
reasonable to model the relationship as a static relationship. Explain why it is reasonable to model the
relationship as static rather than dynamic—and make sure you tell us what  would represent (e.g., days,
months, years).

Note: The model should look something like 

Answer: You have a lot of options here. One example:

Imagining that  represents years, we might expect that one year's crop yield mainly depends upon the
conditions during its growing season. That said, we still may want to consider dynamics even for this model...

2c. Give an example of a reasonable dynamic time-series model. By reasonable we mean that it would be
reasonable to model the relationship as a dynamic relationship. Explain why this relationship should be
modeled as a dynamic relationship. Make sure you tell us what  would represent (e.g., days, months, years).

Note: The model should look something like 

Answer: Again, you have a lot of options here. Here's one example of a clearly dynamic model:

We definitely want population in year  to depend upon the previous year's population—plus the effects of
births, deaths, and net migration in the current year.

Note: This model is a bit silly, as it is essentially an accounting exercise:  should be zero, and the rest of the
coefficients should be 1. The randomness in the model mainly comes from measurement error.

3. Time-series models frequently include the lag of a variable, e.g., . Explain why we usually do not use lags in
cross-sectional models, e.g., .

Answer: We typically do not include lags in cross-sectional models because that would say that individual 's
outcome  depends upon individual 's explanatory variable . There are situations where one person's
outcome depends on other people's explanatory variables, but we often ignore this possibility.

In addition: The dataset must be organized in a manner so that individual  is affected by 's explanatory
variable. Often  is a meaningless index for "individual".
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Some Real Data
4. Load packages and your dataset 003-data.csv .

Answer:

# Packages
library(pacman)
p_load(broom, tidyverse, patchwork, magrittr, here)
# Load the data
gen_df = read_csv("003-data.csv")

5. Which dates does the dataset cover (what are the start and end dates)? How many months?

Answer: The data cover 174 months—starting with 2005-01-01 and ending with 2019-06-01.

6. How many plants retired during this sample?

Answer: 1,051 plants retired during the sample period. gen_df$cumulative_retirements %>% tail(1)

7. Create (and include) three figures: (1) the time series of total monthly generation (generation_gwh ), (2) the
time series of NOx (Nitrogen Oxide) emissions (emissions_nox ), and (3) the time series for the number of
electricity generators who retired in the given month (n_retirements ).

Hint: A time-series graph has time on the  axis and a variable on the  axis. Your  axis can have either time t
(time relative to the beginning of the sample) or date (month ).

Answer:

# Figure 1
f7.1 = ggplot(data = gen_df, aes(x = month, y = generation_gwh)) +
geom_line(size = 0.3) +
geom_point(size = 2.5) +
scale_x_date("Month") +
scale_y_continuous("Monthly generation (GWH)", labels = scales��comma) +
ggtitle("Electricity generation") +
theme_minimal()
# Figure 2
f7.2 = ggplot(data = gen_df, aes(x = month, y = emissions_nox)) +
geom_line(size = 0.3) +
geom_point(size = 2.5) +
scale_x_date("Month") +
scale_y_continuous("NOx emissions", labels = scales��comma) +
ggtitle("NOx emissions") +
theme_minimal()
# Figure 3
f7.3 = ggplot(data = gen_df, aes(x = month, y = n_retirements)) +
geom_line(size = 0.3) +
geom_point(size = 2.5) +
scale_x_date("Month") +
scale_y_continuous("Number of retired units", labels = scales��comma) +
ggtitle("Monthly retirements") +
theme_minimal()
# Plot together
f7.1 / f7.2 / f7.3

Figures on next page.
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8. For each of the three time-series graphs in 7, explain whether the variable appears to be positively
autocorrelated, negatively autocorrelated, or not autocorrelated. Make sure you explain your reasoning.

Answer: Each of the time series appears to have positive autocorrelation—especially electricity generation and NOx
emissions. It is likely positive because the level in one month is typically close to the level in the previous month.

9. Estimate a static time-series model where monthly NOx emissions (emissions_nox ) are the outcome variable
and our two explanatory variables are the number of retirements in the month (n_retirements ) and the amount
of electricity generation in the month (generation_gwh ).

Report your coefficient estimates and their statistical significance.

Answer:

# Estimate the model
model09 = lm(emissions_nox ~ n_retirements + generation_gwh, data = gen_df)
# The results
model09 %>% tidy()

#> # A tibble: 3 x 5
#>   term            estimate std.error statistic  p.value
#>   <chr>              <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    -73519.   34319.        -2.14 3.36e� 2
#> 2 n_retirements   -1657.     587.        -2.82 5.33e� 3
#> 3 generation_gwh      1.10     0.140      7.81 5.56e-13

Based upon the coefficient on n_retirements , this simple static model suggests that an additional retirement
typically reduced NOx emissions by 1,657 tons, on average, holding all else constant. The second coefficient
suggests that an additional GWh of generation is associated with a 1 ton increase in NO2 emissions, on average,
holding all else constant. Both effects are statistically significant at the 5% level.
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10. Now estimate a dynamic model in which you include the first lag for each of your explanatory variables
(number of retirements and amount of electricity generation). Note: You still want the non-lagged version of the
variables too—i.e., include  and . Interpret the coefficient on the lagged number of retirements.

Answer:

# Estimate the model
model10 = lm(
  emissions_nox ~
  n_retirements + lag(n_retirements) + generation_gwh + lag(generation_gwh),
  data = gen_df
)
# The results
model10 %>% tidy()

#> # A tibble: 5 x 5
#>   term                  estimate std.error statistic     p.value
#>   <chr>                    <dbl>     <dbl>     <dbl>       <dbl>
#> 1 (Intercept)         -78742.    37030.       -2.13  0.0349     
#> 2 n_retirements        -1213.      580.       -2.09  0.0382     
#> 3 lag(n_retirements)   -1601.      567.       -2.83  0.00529    
#> 4 generation_gwh           0.949     0.187     5.08  0.000000980
#> 5 lag(generation_gwh)      0.193     0.195     0.988 0.324

The coefficient on the lagged number of retirements—i.e., lag(n_retirements)—says that an additional retirement
in the previous month is associated with reduced NOx emissions of 1 tons, on average, holding all else constant.

11. Why might it make sense to include lags of the variable number of retirements? In other words: Why might we
want a dynamic model with lagged explanatory variables in this setting?

Answer: We may want a dynamic model with the lagged number of retirements because the effect of a retirement
is likely a long-term, sustained effect: once a plant retires, those emissions may be gone (to some extent) forever.

12. If the disturbance is autocorrelated, what problems does it cause for OLS regression estimates in 10?

Answer: If 10 has an autocorrelated disturbance, then OLS is inefficient and has biased standard-error estimates.

13. Use the residuals from the regression in 10 to test for first-order autocorrelation in your disturbance. Report
the results from the hypothesis test.

Hint: Don't forget about the missing values due to lags (see lecture notes).

Answer:

# Add residuals to dataset
gen_df$e10 = c(NA, residuals(model10))
# Regress residuals on their first lag
model13 = lm(e10 ~ -1 + lag(e10), data = gen_df)
# Results
tidy(model13)

#> # A tibble: 1 x 5
#>   term     estimate std.error statistic  p.value
#>   <chr>       <dbl>     <dbl>     <dbl>    <dbl>
#> 1 lag(e10)    0.870    0.0352      24.7 2.16e-58

Our test finds highly significant evidence of first-order autocorrelation.
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14. Now estimate a dynamic model (still with NOx emissions as the outcome variable) with 0, 1, 2, and 3 lags of
the number of retirements and also the current month's electricity generation (no lags). Interpret the coefficient
on the third lag of the number of retirements.

Answer:

# Estimate the model
model14 = lm(
  emissions_nox ~
  n_retirements + lag(n_retirements) + lag(n_retirements, 2) +
  lag(n_retirements, 3) + generation_gwh,
  data = gen_df
)
# The results
model14 %>% tidy()

#> # A tibble: 6 x 5
#>   term                   estimate std.error statistic  p.value
#>   <chr>                     <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)           -48727.   30888.        -1.58 1.17e� 1
#> 2 n_retirements          -1135.     519.        -2.18 3.03e� 2
#> 3 lag(n_retirements)     -1398.     513.        -2.72 7.15e� 3
#> 4 lag(n_retirements, 2)  -1362.     514.        -2.65 8.88e� 3
#> 5 lag(n_retirements, 3)  -1591.     509.        -3.13 2.09e� 3
#> 6 generation_gwh             1.07     0.123      8.73 2.63e-15

The coefficient on the third lag of the number of retirements tells us that an additional retirement three months
ago, holding all else constant, is associated with a 1,591 ton reduction in NOx emissions. This effect is statistically
significant at the 5% level.

15. Based upon your estimates in 14, what is the total effect of a retirement on NOx emissions?

Answer: Based upon the model in 15, the total effect of a retirement on NOx emissions, holding all else constant,
is a reduction of 5,487 tons of NOx emissions (the sum of the coefficients).

Note: This estimate essentially assumes that the effect is gone after four months, which is not likely.

16. Now estimate an ADL(1,1) model with NOx emissions as the outcome and with number of retirements and
electricity generation as the explanatory variables. Report/interpret the coefficient on the lag of NOx emissions.

Hint: Your regression should have an intercept plus five more terms.

Answer:

# Estimate the model
model16 = lm(
  emissions_nox ~ lag(emissions_nox) +
  n_retirements + lag(n_retirements) + generation_gwh + lag(generation_gwh),
  data = gen_df
)
# The results
model16 %>% tidy()

Output on next page
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#> # A tibble: 6 x 5
#>   term                  estimate  std.error statistic  p.value
#>   <chr>                    <dbl>      <dbl>     <dbl>    <dbl>
#> 1 (Intercept)         -19355.    11249.       -1.72   8.72e� 2
#> 2 lag(emissions_nox)       0.925     0.0226   41.0    3.78e-89
#> 3 n_retirements          -13.6     177.       -0.0767 9.39e� 1
#> 4 lag(n_retirements)     -87.9     175.       -0.504  6.15e� 1
#> 5 generation_gwh           0.645     0.0567   11.4    1.47e-22
#> 6 lag(generation_gwh)     -0.512     0.0612   -8.37   2.28e-14

The coefficient on the lag of NOx emissions tells us that a one-ton increase in NOx emissions in the previous
month is associated with a 0.925-ton increase in NOx emissions in the current month. This relationship is very
statistically significant. The relationship says that our outcome is strongly correlated with itself in time.

17. Does it make sense to regress current NOx emissions on the previous month's emissions? Explain your answer.

Answer: Probably not... though it's difficult. One reason not to do it is that last month's emissions are unlikely to
actually affect this month's emissions. The emissions are coming from generating electricity—not from last month's
emissions.

18. If the disturbance is autocorrelated, then OLS is not consistent for the coefficients in 16. Explain how you
could test for an autocorrelated disturbance using the model from 16.

Note: You do not actually need to run this test.

Answer: To test for an autocorrelated disturbance in 16, we want to run a Breusch-Godfrey test, which regresses
the residuals from 16 on their lags and on the explanatory variables (RHS variables) from 16.. It then tests the
significance of the coefficients on the lagged residuals.

19. Try to find the "best" model for explaining the relationship between monthly NOx emissions (your outcome
variable) and retirements. Include lags, other variables, interactions, logs—whatever you want. Report your final
model and explain why you chose it.

Answer: Lots of options here. We're looking for explanation and effort.

20. Return to your figures in 7: Do any of the three figures suggest a violation of mean stationarity? Explain.

Answer: NOx emissions appear to violate mean stationarity: The mean is decreasing over time.
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Description of Variables
b

Variable Description

t Time, relative to the first month of the sample (1, 2, ...)

month Month of the sample (e.g., 2015-12-01)

generation_gwh Total monthly electricity generation (Gigawatt hours, GWh)

emissions_so2 Total monthly emissions of SO2 (in tons)

emissions_nox Total monthly emissions of NOx (in tons)

n_plants Number of unique electricity-generating units (EGUs) operating in the month

n_retirements Number of retired electricity generating units in the month

cumulative_retirements Cumulative number of retirements (through the given month)

i_cair Binary indicator for months during the Clean Air Interstate Rule (CAIR)

i_csapr Binary indicator for months during the Cross-State Air Pollution Rule (CSAPR)
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