Heteroskedasticity, Part II EC 421, Set 05

Edward Rubin Spring 2020

Prologue

Schedule

Last Time

Heteroskedasticity: Issues and tests

Today

- First assignment due 19 April 2020
- Living with heteroskedasticity

Upcoming

- Second assignment shortly after this lecture
- Midterm <3 weeks

EC 421

Goals

- Develop **intuition** for econometrics.
- Learn how to *apply* econometrics—strengths, weaknessed, *etc.*
- Learn **R**.

EC 421

Goals

- Develop **intuition** for econometrics.
- Learn how to *apply* econometrics—strengths, weaknessed, *etc.*
- Learn **R**.

R does the calculations and has already memorized the formulas.

I want you to know what the formulas mean, when/why we use them, and when they fail/work.

EC 421

Goals

- Develop **intuition** for econometrics.
- Learn how to *apply* econometrics—strengths, weaknessed, *etc.*
- Learn **R**.

R does the calculations and has already memorized the formulas.

I want you to know what the formulas mean, when/why we use them, and when they fail/work.

This course has the potential to be one of the most useful/valuable/applicable/marketable classes that you take at UO.

Heteroskedasticity *Review*

Review

Three review questions

Question 1: What is the difference between u_i and e_i ?

Question 2: We spend a lot of time discussing u_i^2 . Why?

Question 3: We also spend *a lot* of time discussing e_i^2 . Why?

Review

Question 1: What is the difference between u_i and e_i ?

Answer 1:

Review

Question 1: What is the difference between u_i and e_i ?

Answer 1:

 u_i gives the **population disturbance** for the i^{th} observation.

Review

Question 1: What is the difference between u_i and e_i ?

Answer 1:

 u_i gives the **population disturbance** for the i^{th} observation. u_i measures how far the i^{th} observation is from the **population** line, *i.e.*,

$$u_i = y_i - \underbrace{(eta_0 + eta_1 x_i)}_{ ext{Declarity}}$$

Population line

Review

Question 1: What is the difference between u_i and e_i ?

Answer 1:

 u_i gives the **population disturbance** for the i^{th} observation. u_i measures how far the i^{th} observation is from the **population** line, *i.e.*,

$$u_i = y_i - \underbrace{(eta_0 + eta_1 x_i)}_{ ext{Population line}}$$

 e_i gives the **regression residual (error)** for the i^{th} observation.

Review

Question 1: What is the difference between u_i and e_i ?

Answer 1:

 u_i gives the **population disturbance** for the i^{th} observation. u_i measures how far the i^{th} observation is from the **population** line, *i.e.*,

$$u_i = y_i - \underbrace{(eta_0 + eta_1 x_i)}_{ ext{Population line}}$$

 e_i gives the **regression residual (error)** for the i^{th} observation. e_i measures how far the i^{th} observation is from the **sample regression** line, *i.e.*,

$$e_i = y_i - \underbrace{\left({{\hat eta}_0 + {\hat eta}_1 x_i }
ight)}_{ ext{Sample reg. line} = {\hat y}} = y_i - {\hat y}_i$$

Review

Question 2: We spend a lot of time discussing u_i^2 . Why?

Answer 2:

One of major assumptions is that our disturbances (the u_i 's) are homoskedastic (they have constant variance), *i.e.*, $Var(u_i|x_i) = \sigma^2$.

We also assume that the mean of these disturbances is zero, $E[u_i|x_i] = 0$.

By definition,
$$\operatorname{Var}(u_i|x_i) = oldsymbol{E}\left[u_i^2 - \underbrace{oldsymbol{E}[u_i|x_i]^2}_{=0} \middle| x_i
ight] = oldsymbol{E}\left[u_i^2 \middle| x_i
ight]$$

Thus, if we want to learn about the variance of u_i , we can focus on u_i^2 .

Review

Question 3: We also spend *a lot* of time discussing e_i^2 . Why?

Answer 3:

We cannot observe u_i (or u_i^2).

But u_i^2 tells us about the variance of u_i .

We use e_i^2 to learn about u_i^2 and, consequently, σ_i^2 .

Review: Current assumptions

1. Our sample (the x_k 's and y_i) was **randomly drawn** from the population.

- 1. Our sample (the x_k 's and y_i) was **randomly drawn** from the population.
- 2. *y* is a **linear function** of the β_k 's and u_i .

- 1. Our sample (the x_k 's and y_i) was **randomly drawn** from the population.
- 2. y is a **linear function** of the β_k 's and u_i .
- 3. There is no perfect **multicollinearity** in our sample.

- 1. Our sample (the x_k 's and y_i) was **randomly drawn** from the population.
- 2. y is a **linear function** of the β_k 's and u_i .
- 3. There is no perfect **multicollinearity** in our sample.
- 4. The explanatory variables are **exogenous**: $E[u|X] = 0 \ (\implies E[u] = 0)$.

- 1. Our sample (the x_k 's and y_i) was **randomly drawn** from the population.
- 2. y is a **linear function** of the β_k 's and u_i .
- 3. There is no perfect **multicollinearity** in our sample.
- 4. The explanatory variables are **exogenous**: $E[u|X] = 0 \ (\implies E[u] = 0)$.
- 5. The disurbances have **constant variance** σ^2 and **zero covariance**, *i.e.*,

$$egin{array}{l} \circ \; oldsymbol{E}ig[u_i^2ig|X_iig] = \mathrm{Var}(u_i|X_i) = \sigma^2 \implies \mathrm{Var}(u_i) = \sigma^2 \ \circ \; \mathrm{Cov}ig(u_i,\,u_jig|X_i,\,X_jig) = oldsymbol{E}ig[u_iu_jig|X_i,\,X_jig] = 0 \; ext{for}\; i
eq j \end{array}$$

Review: Current assumptions

- 1. Our sample (the x_k 's and y_i) was **randomly drawn** from the population.
- 2. y is a **linear function** of the β_k 's and u_i .
- 3. There is no perfect **multicollinearity** in our sample.
- 4. The explanatory variables are **exogenous**: $E[u|X] = 0 \ (\implies E[u] = 0)$.
- 5. The disurbances have **constant variance** σ^2 and **zero covariance**, *i.e.*,

$$egin{array}{ll} \circ ~~ oldsymbol{E}ig[u_i^2ig|X_iig] = \mathrm{Var}(u_i|X_i) = \sigma^2 \implies \mathrm{Var}(u_i) = \sigma^2 \ \circ ~~ \mathrm{Cov}ig(u_i,\,u_jig|X_i,\,X_jig) = oldsymbol{E}ig[u_iu_jig|X_i,\,X_jig] = 0 ext{ for } i
eq j \end{array}$$

6. The disturbances come from a **Normal** distribution, *i.e.*, $u_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.

Review

Today we're focusing on assumption #5:

5. The disurbances have **constant variance** σ^2 and **zero covariance**, *i.e.*,

- $oldsymbol{E}ig[u_i^2ig|X_iig] = \mathrm{Var}(u_i|X) = \sigma^2 \implies \mathrm{Var}(u_i) = \sigma^2$
- $\mathrm{Cov}ig(u_i,\,u_j|X_i,\,X_jig)=oldsymbol{E}ig[u_iu_j|X_i,\,X_jig]=0$ for i
 eq j

Review

Today we're focusing on assumption #5:

5. The disurbances have **constant variance** σ^2 and **zero covariance**, *i.e.*,

- $oldsymbol{E}ig[u_i^2ig|X_iig] = \mathrm{Var}(u_i|X) = \sigma^2 \implies \mathrm{Var}(u_i) = \sigma^2$
- $\mathrm{Cov}ig(u_i,\,u_j|X_i,\,X_jig)=oldsymbol{E}ig[u_iu_j|X_i,\,X_jig]=0$ for i
 eq j

Specifically, we will focus on the assumption of **constant variance** (also known as *homoskedasticity*).

Review

Today we're focusing on assumption #5:

5. The disurbances have **constant variance** σ^2 and **zero covariance**, *i.e.*,

- $oldsymbol{E}ig[u_i^2ig|X_iig] = \mathrm{Var}(u_i|X) = \sigma^2 \implies \mathrm{Var}(u_i) = \sigma^2$
- $\mathrm{Cov}ig(u_i,\,u_j|X_i,\,X_jig)=oldsymbol{E}ig[u_iu_j|X_i,\,X_jig]=0$ for i
 eq j

Specifically, we will focus on the assumption of **constant variance** (also known as *homoskedasticity*).

Violation of this assumption: Our disturbances have different variances.

Review

Today we're focusing on assumption #5:

5. The disurbances have **constant variance** σ^2 and **zero covariance**, *i.e.*,

$$ullet ~~ oldsymbol{E}ig[u_i^2ig|X_iig] = \mathrm{Var}(u_i|X) = \sigma^2 \implies \mathrm{Var}(u_i) = \sigma^2$$

•
$$\mathrm{Cov}ig(u_i,\,u_j|X_i,\,X_jig)=oldsymbol{E}ig[u_iu_j|X_i,\,X_jig]=0$$
 for $i
eq j$

Specifically, we will focus on the assumption of **constant variance** (also known as *homoskedasticity*).

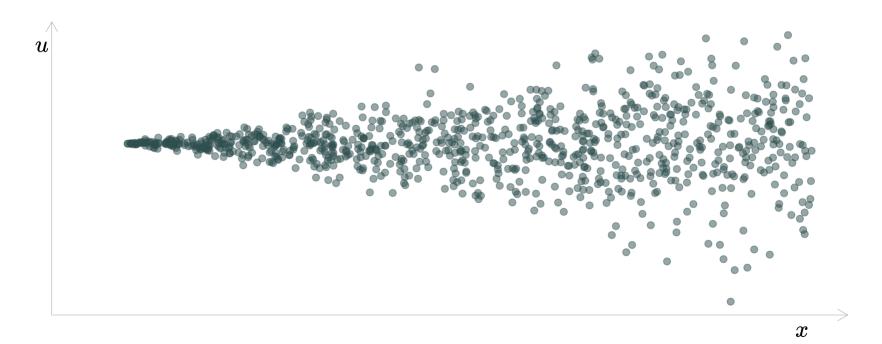
Violation of this assumption: Our disturbances have different variances.

Heteroskedasticity:
$$\operatorname{Var}(u_i) = \sigma_i^2$$
 and $\sigma_i^2
eq \sigma_j^2$ for some $i
eq j$.

Review

Classic example of heteroskedasticity: The funnel

Variance of u increases with x



Review

Another example of heteroskedasticity: (double funnel?)

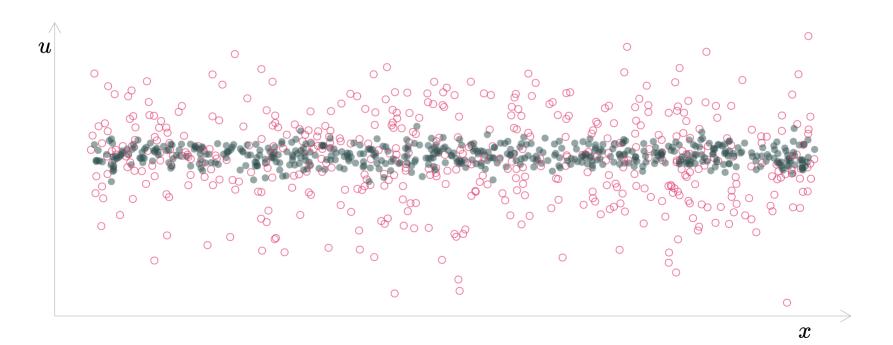
Variance of u increasing at the extremes of x

x

Review

Another example of heteroskedasticity:

Differing variances of u by group



Review

Heteroskedasticity is present when the variance of u changes with any combination of our explanatory variables x_1 through x_k .

Testing for heteroskedasticity

We have some tests that may help us detect heteroskedasticity.

- Goldfeld-Quandt
- Breusch-Pagan
- White

Testing for heteroskedasticity

We have some tests that may help us detect heteroskedasticity.

- Goldfeld-Quandt
- Breusch-Pagan
- White

What do we do if we detect it?

In the presence of heteroskedasticity, OLS is

- still **unbiased**
- **no longer the most efficient** unbiased linear estimator

On average, we get the right answer but with more noise (less precision). *Also:* Our standard errors are biased.

In the presence of heteroskedasticity, OLS is

- still **unbiased**
- **no longer the most efficient** unbiased linear estimator

On average, we get the right answer but with more noise (less precision). *Also:* Our standard errors are biased.

Options:

- 1. Check regression **specification**.
- 2. Find a new, more efficient **unbiased estimator** for β_j 's.
- 3. Live with OLS's inefficiency; find a **new variance estimator**.
 - Standard errors
 - Confidence intervals
 - Hypothesis tests

Misspecification

As we've discussed, the specification[†] of your regression model matters a lot for the unbiasedness and efficiency of your estimator.

Response #1: Ensure your specification doesn't cause heteroskedasticity.

Misspecification

Example: Let the population relationship be

$$y_i=eta_0+eta_1x_i+eta_2x_i^2+u_i$$

with $oldsymbol{E}[u_i|x_i]=0$ and $\mathrm{Var}(u_i|x_i)=\sigma^2.$

However, we omit x^2 and estimate

$$y_i = \gamma_0 + \gamma_1 x_i + w_i$$

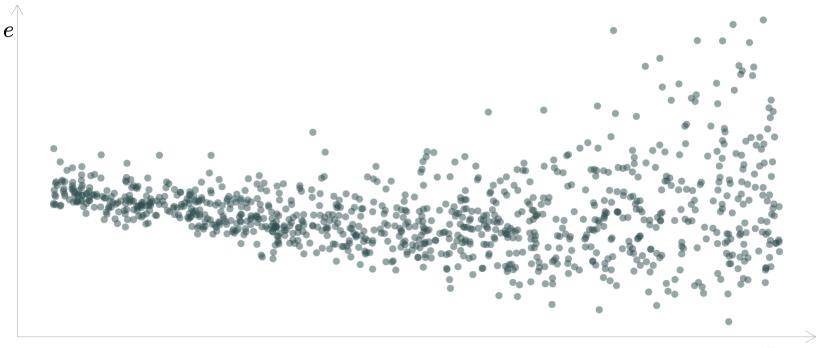
Then

$$w_i = u_i + eta_2 x_i^2 \implies \operatorname{Var}(w_i) = f(x_i)$$

I.e., the variance of w_i changes systematically with x_i (heteroskedasticity).

Misspecification

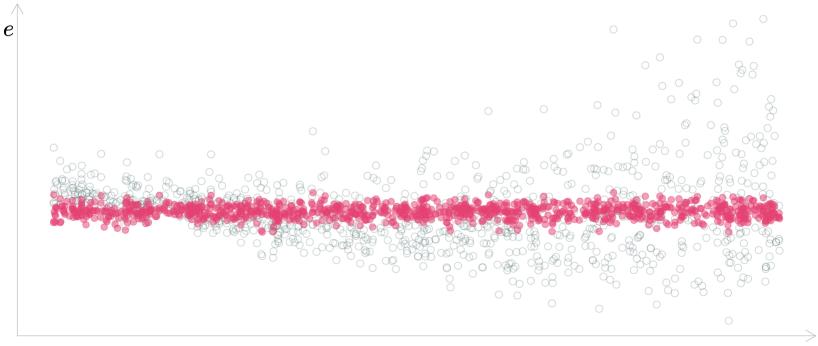
Truth: $\log(y_i) = \beta_0 + \beta_1 x_i + u_i$ Misspecification: $y_i = \beta_0 + \beta_1 x_i + v_i$



x

Misspecification

Truth: $\log(y_i) = \beta_0 + \beta_1 x_i + u_i$ Misspecification: $y_i = \beta_0 + \beta_1 x_i + v_i$



x

Misspecification

More generally:

Misspecification problem: Incorrect specification of the regression model can cause heteroskedasticity (among other problems).

Misspecification

More generally:

Misspecification problem: Incorrect specification of the regression model can cause heteroskedasticity (among other problems).

Solution: \bigcirc Get it right (*e.g.*, don't omit x^2).

Misspecification

More generally:

Misspecification problem: Incorrect specification of the regression model can cause heteroskedasticity (among other problems).

Solution: \bigcirc Get it right (*e.g.*, don't omit x^2).

New problems:

- We often don't know the *right* specification.
- We'd like a more formal process for addressing heteroskedasticity.

Misspecification

More generally:

Misspecification problem: Incorrect specification of the regression model can cause heteroskedasticity (among other problems).

Solution: \bigcirc Get it right (*e.g.*, don't omit x^2).

New problems:

- We often don't know the *right* specification.
- We'd like a more formal process for addressing heteroskedasticity.

Conclusion: Specification often will not "solve" heteroskedasticity. However, correctly specifying your model is still really important.

Weighted least squares

Weighted least squares (WLS) presents another approach.

Response #2: Increase efficiency by weighting our observations.

Weighted least squares

Weighted least squares (WLS) presents another approach.

Response #2: Increase efficiency by weighting our observations.

Let the true population relationship be

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{1}$$

with $u_i \sim Nig(0,\,\sigma_i^2ig).$

Weighted least squares

Weighted least squares (WLS) presents another approach.

Response #2: Increase efficiency by weighting our observations.

Let the true population relationship be

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{1}$$

with $u_i \sim Nig(0,\,\sigma_i^2ig).$

Now transform (1) by dividing each observation's data by σ_i , *i.e.*,

$$\frac{y_i}{\sigma_i} = \beta_0 \frac{1}{\sigma_i} + \beta_1 \frac{x_i}{\sigma_i} + \frac{u_i}{\sigma_i}$$
(2)

Weighted least squares

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{1}$$

$$\frac{y_i}{\sigma_i} = \beta_0 \frac{1}{\sigma_i} + \beta_1 \frac{x_i}{\sigma_i} + \frac{u_i}{\sigma_i}$$
(2)

Whereas (1) is heteroskedastic,

Weighted least squares

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{1}$$

$$\frac{y_i}{\sigma_i} = \beta_0 \frac{1}{\sigma_i} + \beta_1 \frac{x_i}{\sigma_i} + \frac{u_i}{\sigma_i}$$
(2)

Whereas (1) is heteroskedastic, (2) is homoskedastic.

 \therefore OLS is efficient and unbiased for estimating the β_k in (2)!

Weighted least squares

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{1}$$

$$\frac{y_i}{\sigma_i} = \beta_0 \frac{1}{\sigma_i} + \beta_1 \frac{x_i}{\sigma_i} + \frac{u_i}{\sigma_i}$$
(2)

Whereas (1) is heteroskedastic, (2) is homoskedastic.

 \therefore OLS is efficient and unbiased for estimating the eta_k in (2)!

Weighted least squares

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{1}$$

$$\frac{y_i}{\sigma_i} = \beta_0 \frac{1}{\sigma_i} + \beta_1 \frac{x_i}{\sigma_i} + \frac{u_i}{\sigma_i}$$
(2)

Whereas (1) is heteroskedastic, (2) is homoskedastic.

 \therefore OLS is efficient and unbiased for estimating the eta_k in (2)!

$$\mathrm{Var}igg(rac{u_i}{\sigma_i}\Big|x_iigg) =$$

Weighted least squares

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{1}$$

$$\frac{y_i}{\sigma_i} = \beta_0 \frac{1}{\sigma_i} + \beta_1 \frac{x_i}{\sigma_i} + \frac{u_i}{\sigma_i}$$
(2)

Whereas (1) is heteroskedastic, (2) is homoskedastic.

 \therefore OLS is efficient and unbiased for estimating the eta_k in (2)!

$$\mathrm{Var}igg(rac{u_i}{\sigma_i}\Big|x_iigg) = rac{1}{\sigma_i^2}\,\mathrm{Var}(u_i|x_i) =$$

Weighted least squares

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{1}$$

$$\frac{y_i}{\sigma_i} = \beta_0 \frac{1}{\sigma_i} + \beta_1 \frac{x_i}{\sigma_i} + \frac{u_i}{\sigma_i}$$
(2)

Whereas (1) is heteroskedastic, (2) is homoskedastic.

 \therefore OLS is efficient and unbiased for estimating the eta_k in (2)!

$$\mathrm{Var}igg(rac{u_i}{\sigma_i}\Big|x_iigg) = rac{1}{\sigma_i^2}\,\mathrm{Var}(u_i|x_i) = rac{1}{\sigma_i^2}\sigma_i^2 =$$

Weighted least squares

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{1}$$

$$\frac{y_i}{\sigma_i} = \beta_0 \frac{1}{\sigma_i} + \beta_1 \frac{x_i}{\sigma_i} + \frac{u_i}{\sigma_i}$$
(2)

Whereas (1) is heteroskedastic, (2) is homoskedastic.

 \therefore OLS is efficient and unbiased for estimating the eta_k in (2)!

$$\mathrm{Var}igg(rac{u_i}{\sigma_i}\Big|x_iigg) = rac{1}{\sigma_i^2}\,\mathrm{Var}(u_i|x_i) = rac{1}{\sigma_i^2}\sigma_i^2 = 1$$

Weighted least squares

WLS is great, but we need to know σ_i^2 , which is generally unlikely.

We can *slightly* relax this requirement—instead requiring

1.
$$\operatorname{Var}(u_i|x_i) = \sigma_i^2 = \sigma^2 h(x_i)$$

2. We know h(x).

Weighted least squares

WLS is great, but we need to know σ_i^2 , which is generally unlikely.

We can *slightly* relax this requirement—instead requiring

- 1. $\operatorname{Var}(u_i|x_i) = \sigma_i^2 = \sigma^2 h(x_i)$
- 2. We know h(x).

As before, we transform our heteroskedastic model into a homoskedastic model. This time we divide each observation's data[†] by $\sqrt{h(x_i)}$.

 \dagger Divide all of the data by $\sqrt{h(x_i)}$, including the intercept.

Weighted least squares

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{1}$$

$$\frac{y_i}{\sqrt{h(x_i)}} = \beta_0 \frac{1}{\sqrt{h(x_i)}} + \beta_1 \frac{x_i}{\sqrt{h(x_i)}} + \frac{u_i}{\sqrt{h(x_i)}}$$
(2)

with $\operatorname{Var}(u_i|x_i) = \sigma^2 h(x_i).$

Weighted least squares

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{1}$$

$$\frac{y_i}{\sqrt{h(x_i)}} = \beta_0 \frac{1}{\sqrt{h(x_i)}} + \beta_1 \frac{x_i}{\sqrt{h(x_i)}} + \frac{u_i}{\sqrt{h(x_i)}}$$
(2)

with $\operatorname{Var}(u_i|x_i) = \sigma^2 h(x_i).$

Now let's check that (2) is indeed homoskedastic.

$$\mathrm{Var}igg(rac{u_i}{\sqrt{h(x_i)}}igg|x_iigg) = 0$$

Weighted least squares

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{1}$$

$$\frac{y_i}{\sqrt{h(x_i)}} = \beta_0 \frac{1}{\sqrt{h(x_i)}} + \beta_1 \frac{x_i}{\sqrt{h(x_i)}} + \frac{u_i}{\sqrt{h(x_i)}}$$
(2)

with $\operatorname{Var}(u_i|x_i) = \sigma^2 h(x_i).$

Now let's check that (2) is indeed homoskedastic.

$$\mathrm{Var}igg(rac{u_i}{\sqrt{h(x_i)}}igg|x_iigg) = rac{1}{h(x_i)}\,\mathrm{Var}(u_i|x_i) = 0$$

Weighted least squares

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{1}$$

$$\frac{y_i}{\sqrt{h(x_i)}} = \beta_0 \frac{1}{\sqrt{h(x_i)}} + \beta_1 \frac{x_i}{\sqrt{h(x_i)}} + \frac{u_i}{\sqrt{h(x_i)}}$$
(2)

with $\operatorname{Var}(u_i|x_i) = \sigma^2 h(x_i).$

Now let's check that (2) is indeed homoskedastic.

$$\mathrm{Var}igg(rac{u_i}{\sqrt{h(x_i)}}igg|x_iigg) = rac{1}{h(x_i)}\,\mathrm{Var}(u_i|x_i) = rac{1}{h(x_i)}\sigma^2 h(x_i) =$$

Weighted least squares

$$y_i = \beta_0 + \beta_1 x_i + u_i \tag{1}$$

$$\frac{y_i}{\sqrt{h(x_i)}} = \beta_0 \frac{1}{\sqrt{h(x_i)}} + \beta_1 \frac{x_i}{\sqrt{h(x_i)}} + \frac{u_i}{\sqrt{h(x_i)}}$$
(2)

with $\operatorname{Var}(u_i|x_i) = \sigma^2 h(x_i).$

Now let's check that (2) is indeed homoskedastic.

$$\mathrm{Var}\!\left(rac{u_i}{\sqrt{h(x_i)}}ig|x_i
ight) = rac{1}{h(x_i)}\,\mathrm{Var}(u_i|x_i) = rac{1}{h(x_i)}\sigma^2 h(x_i) = \sigma^2$$

Homoskedasticity!

Weighted least squares

Weighted least squares (WLS) estimators are a special class of **generalized least squares** (GLS) estimators focused on heteroskedasticity.

Weighted least squares

Weighted least squares (WLS) estimators are a special class of **generalized least squares** (GLS) estimators focused on heteroskedasticity.

$$y_i = eta_0 + eta_1 x_{1i} + u_i \quad ext{ vs. } \quad rac{y_i}{\sigma_i} = eta_0 rac{1}{\sigma_i} + eta_1 rac{x_{1i}}{\sigma_i} + rac{u_i}{\sigma_i}$$

Notes:

- 1. WLS **transforms** a heteroskedastic model into a homoskedastic model.
- 2. Weighting: WLS downweights observations with higher variance u_i 's.
- 3. Big requirement: WLS requires that we know σ_i^2 for each observation.
- 4. WLS is generally **infeasible**. *Feasible* GLS (FGLS) offers a solution.
- 5. Under its assumptions: WLS is the **best linear unbiased estimator**.

Heteroskedasticity-robust standard errors

Response #3:

- Ignore OLS's inefficiency (in the presence of heteroskedasticity).
- Focus on unbiased estimates for our standard errors.
- In the process: Correct inference.

Heteroskedasticity-robust standard errors

Response #3:

- Ignore OLS's inefficiency (in the presence of heteroskedasticity).
- Focus on unbiased estimates for our standard errors.
- In the process: Correct inference.

Q: What is a standard error?

Heteroskedasticity-robust standard errors

Response #3:

- Ignore OLS's inefficiency (in the presence of heteroskedasticity).
- Focus on unbiased estimates for our standard errors.
- In the process: Correct inference.

Q: What is a standard error?

A: The standard deviation of an estimator's distribution.

Heteroskedasticity-robust standard errors

Response #3:

- Ignore OLS's inefficiency (in the presence of heteroskedasticity).
- Focus on unbiased estimates for our standard errors.
- In the process: Correct inference.
- **Q:** What is a standard error?
- A: The standard deviation of an estimator's distribution.

Estimators (like $\hat{\beta}_1$) are random variables, so they have distributions.

Standard errors give us a sense of how much variability is in our estimator.

Heteroskedasticity-robust standard errors

Recall: We can write the OLS estimator for β_1 as

$$\hat{\beta}_{1} = \beta_{1} + \frac{\sum_{i} \left(x_{i} - \overline{x}\right) u_{i}}{\sum_{i} \left(x_{i} - \overline{x}\right)^{2}} = \beta_{1} + \frac{\sum_{i} \left(x_{i} - \overline{x}\right) u_{i}}{\mathrm{SST}_{x}}$$
(3)

Heteroskedasticity-robust standard errors

Recall: We can write the OLS estimator for β_1 as

$$\hat{\beta}_{1} = \beta_{1} + \frac{\sum_{i} \left(x_{i} - \overline{x}\right) u_{i}}{\sum_{i} \left(x_{i} - \overline{x}\right)^{2}} = \beta_{1} + \frac{\sum_{i} \left(x_{i} - \overline{x}\right) u_{i}}{\mathrm{SST}_{x}}$$
(3)

Let $\operatorname{Var}(u_i|x_i) = \sigma_i^2$.

Heteroskedasticity-robust standard errors

Recall: We can write the OLS estimator for β_1 as

$$\hat{\beta}_{1} = \beta_{1} + \frac{\sum_{i} \left(x_{i} - \overline{x}\right) u_{i}}{\sum_{i} \left(x_{i} - \overline{x}\right)^{2}} = \beta_{1} + \frac{\sum_{i} \left(x_{i} - \overline{x}\right) u_{i}}{\text{SST}_{x}}$$
(3)

Let $\operatorname{Var}(u_i|x_i) = \sigma_i^2$.

We can use (3) to write the variance of $\hat{\beta}_1$, *i.e.*,

$$\operatorname{Var}\left(\hat{\beta}_{1} \middle| x_{i}\right) = \frac{\sum_{i} \left(x_{i} - \overline{x}\right)^{2} \sigma_{i}^{2}}{\operatorname{SST}_{x}^{2}}$$
(4)

Heteroskedasticity-robust standard errors

If we want unbiased estimates for our standard errors, we need an unbiased estimate for

$$rac{\sum_{i}\left(x_{i}-\overline{x}
ight)^{2}\sigma_{i}^{2}}{\mathrm{SST}_{x}^{2}}$$

Our old friend Hal White provided such an estimator:[†]

$$\widehat{\mathrm{Var}}\left({\hat{eta}}_1
ight) = rac{{\sum_i \left(x_i - \overline{x}
ight)^2 e_i^2}}{\mathrm{SST}_x^2}$$

where the e_i comes from the OLS regression of interest.

+ This specific equation is for simple linear regression.

Heteroskedasticity-robust standard errors

Our heteroskedasticity-robust estimators for the standard error of β_j .

Case 1 Simple linear regression, $y_i = eta_0 + eta_1 x_i + u_i$

$$\widehat{\mathrm{Var}}\left({\hat{eta}}_1
ight) = rac{{\sum_i \left(x_i - \overline{x}
ight)}^2 e_i^2}{\mathrm{SST}_x^2}$$

Case 2 Multiple (linear) regression, $y_i = eta_0 + eta_1 x_{1i} + \dots + eta_k x_{ki} + u_i$

$$\widehat{\mathrm{Var}}\left({\hat{eta}}_j
ight) = rac{{\sum_i {\hat{r}}_{ij}^2 e_i^2 }}{\mathrm{SST}_{x_j^2}}$$

where \hat{r}_{ij} denotes the ith residual from regressing x_j on all other explanatory variables.

Heteroskedasticity-robust standard errors

With these standard errors, we can return to correct statistical inferencel

E.g., we can update our previous *t* statistic formula with our new heteroskedasticity-robust standard erros.

 $t = \frac{\text{Estimate} - \text{Hypothesized value}}{\text{Standard error}}$

Heteroskedasticity-robust standard errors

Notes

- We are still using **OLS estimates for** β_j
- Our het.-robust standard errors use a different estimator.
- Homoskedasticity
 - Plain OLS variance estimator is more efficient.
 - Het.-robust is still unbiased.
- Heteroskedasticity
 - Plain OLS variance estimator is biased.
 - Het.-robust variance estimator is unbiased.

Heteroskedasticity-robust standard errors

These standard errors go by many names

- Heteroskedasticity-robust standard errors
- Het.-robust standard errors
- White standard errors
- Eicker-White standard errors
- Huber standard errors
- Eicker-Huber-White standards errors
- (some other combination of Eicker, Huber, and White)

Do not say: "Robust standard errors". The problem: "robust" to what?

Living with heteroskedasticity Examples

Examples

Back to our test-scores dataset...

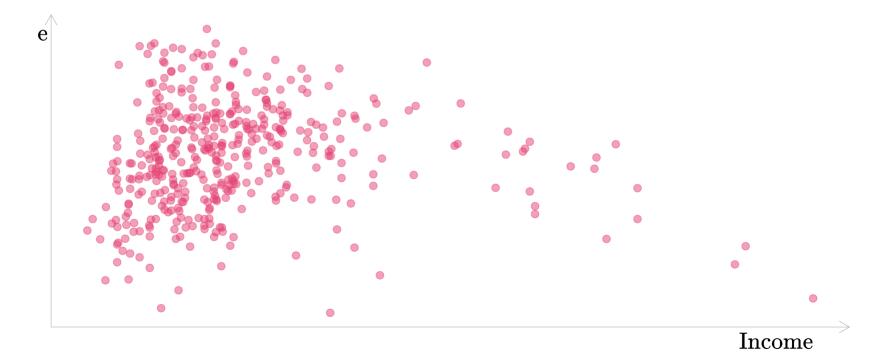
Example: Model specification

We found significant evidence of heteroskedasticity.

Let's check if it was due to misspecifying our model.

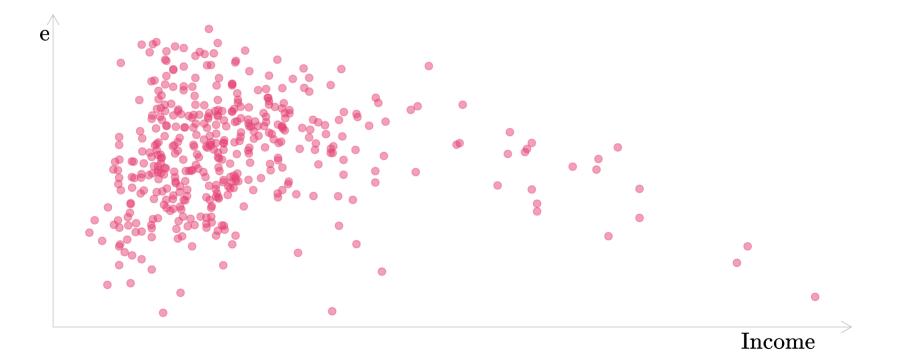
Example: Model specification

 $\begin{aligned} & \mathsf{Model}_1: \mathbf{Score}_i = \beta_0 + \beta_1 \mathbf{Ratio}_i + \beta_2 \mathbf{Income}_i + u_i \\ & \mathsf{lm}(\texttt{test_score} \ \sim \ \texttt{ratio} \ + \ \texttt{income}, \ \mathsf{data} \ = \ \texttt{test_df}) \end{aligned}$



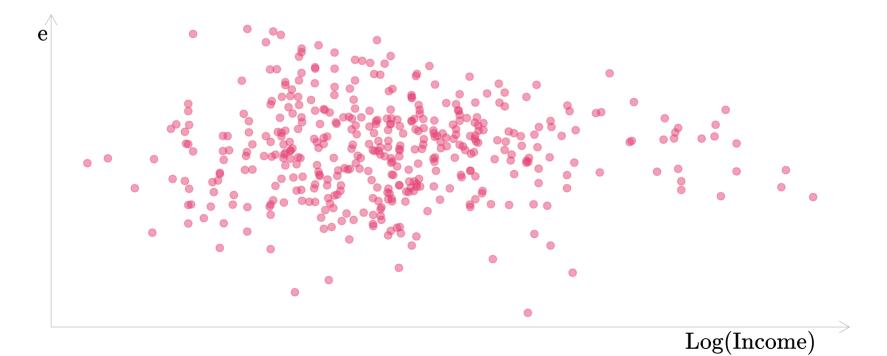
Example: Model specification

$$\begin{split} \mathsf{Model}_2: \log(\mathsf{Score}_i) &= \beta_0 + \beta_1 \mathrm{Ratio}_i + \beta_2 \mathrm{Income}_i + u_i \\ \mathsf{lm}(\mathsf{log}(\mathsf{test_score}) \sim \mathsf{ratio} + \mathsf{income}, \; \mathsf{data} = \mathsf{test_df}) \end{split}$$



Example: Model specification

 $\begin{aligned} \mathsf{Model}_3: \log(\mathsf{Score}_i) &= \beta_0 + \beta_1 \operatorname{Ratio}_i + \beta_2 \log(\operatorname{Income}_i) + u_i \\ \mathsf{lm}(\log(\mathsf{test_score}) &\sim \mathsf{ratio} + \log(\mathsf{income}), \; \mathsf{data} = \mathsf{test_df}) \end{aligned}$



41 / 66

Example: Model specification

Let's test this new specification with the White test for heteroskedasticity.

 $Model_3: log(Score_i) = \beta_0 + \beta_1 Ratio_i + \beta_2 log(Income_i) + u_i$

Example: Model specification

Let's test this new specification with the White test for heteroskedasticity.

 $\mathsf{Model}_3: \log(\mathsf{Score}_i) = \beta_0 + \beta_1 \operatorname{Ratio}_i + \beta_2 \log(\operatorname{Income}_i) + u_i$

The regression for the White test

Example: Model specification

Let's test this new specification with the White test for heteroskedasticity.

 $Model_3: log(Score_i) = \beta_0 + \beta_1 Ratio_i + \beta_2 log(Income_i) + u_i$

The regression for the White test

$$egin{aligned} e_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 \log(ext{Income}_i) + lpha_3 ext{Ratio}_i^2 + lpha_4 (\log(ext{Income}_i))^2 \ &+ lpha_5 \left(ext{Ratio}_i imes \log(ext{Income}_i)
ight) + v_i \end{aligned}$$

Example: Model specification

Let's test this new specification with the White test for heteroskedasticity.

 $Model_3: log(Score_i) = \beta_0 + \beta_1 Ratio_i + \beta_2 log(Income_i) + u_i$

The regression for the White test

 $egin{aligned} e_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 \log(ext{Income}_i) + lpha_3 ext{Ratio}_i^2 + lpha_4 (\log(ext{Income}_i))^2 \ &+ lpha_5 \left(ext{Ratio}_i imes \log(ext{Income}_i)
ight) + v_i \end{aligned}$

yields $R_e^2pprox 0.029$

Example: Model specification

Let's test this new specification with the White test for heteroskedasticity.

 $Model_3: log(Score_i) = \beta_0 + \beta_1 Ratio_i + \beta_2 log(Income_i) + u_i$

The regression for the White test

$$egin{aligned} e_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 \log(ext{Income}_i) + lpha_3 ext{Ratio}_i^2 + lpha_4 (\log(ext{Income}_i))^2 \ &+ lpha_5 \left(ext{Ratio}_i imes \log(ext{Income}_i)
ight) + v_i \end{aligned}$$

yields $R_e^2 pprox 0.029$ and test statistic of

Example: Model specification

Let's test this new specification with the White test for heteroskedasticity.

 $Model_3: log(Score_i) = \beta_0 + \beta_1 Ratio_i + \beta_2 log(Income_i) + u_i$

The regression for the White test

 $egin{aligned} e_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 \log(ext{Income}_i) + lpha_3 ext{Ratio}_i^2 + lpha_4 (\log(ext{Income}_i))^2 \ &+ lpha_5 \left(ext{Ratio}_i imes \log(ext{Income}_i)
ight) + v_i \end{aligned}$

yields $R_e^2 pprox 0.029$ and test statistic of $\widehat{ ext{LM}} = n imes R_e^2 pprox 12.2.$

Example: Model specification

Let's test this new specification with the White test for heteroskedasticity.

 $Model_3: log(Score_i) = \beta_0 + \beta_1 Ratio_i + \beta_2 log(Income_i) + u_i$

The regression for the White test

 $egin{aligned} e_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 \log(ext{Income}_i) + lpha_3 ext{Ratio}_i^2 + lpha_4 (\log(ext{Income}_i))^2 \ &+ lpha_5 \left(ext{Ratio}_i imes \log(ext{Income}_i)
ight) + v_i \end{aligned}$

yields $R_e^2 pprox 0.029$ and test statistic of $\widehat{ ext{LM}} = n imes R_e^2 pprox 12.2.$

Under H_0 , LM is distributed as

Example: Model specification

Let's test this new specification with the White test for heteroskedasticity.

 $Model_3: log(Score_i) = \beta_0 + \beta_1 Ratio_i + \beta_2 log(Income_i) + u_i$

The regression for the White test

 $egin{aligned} e_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 \log(ext{Income}_i) + lpha_3 ext{Ratio}_i^2 + lpha_4 (\log(ext{Income}_i))^2 \ &+ lpha_5 \left(ext{Ratio}_i imes \log(ext{Income}_i)
ight) + v_i \end{aligned}$

yields $R_e^2 pprox 0.029$ and test statistic of $\widehat{ ext{LM}} = n imes R_e^2 pprox 12.2.$

Under H $_{
m 0}$, ${
m LM}$ is distributed as χ^2_5

Example: Model specification

Let's test this new specification with the White test for heteroskedasticity.

 $Model_3: log(Score_i) = \beta_0 + \beta_1 Ratio_i + \beta_2 log(Income_i) + u_i$

The regression for the White test

 $egin{aligned} e_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 \log(ext{Income}_i) + lpha_3 ext{Ratio}_i^2 + lpha_4 (\log(ext{Income}_i))^2 \ &+ lpha_5 \left(ext{Ratio}_i imes \log(ext{Income}_i)
ight) + v_i \end{aligned}$

yields $R_e^2 pprox 0.029$ and test statistic of $\widehat{ ext{LM}} = n imes R_e^2 pprox 12.2.$

Under H₀, LM is distributed as $\chi^2_5 \implies p$ -value \approx 0.033.

Example: Model specification

Let's test this new specification with the White test for heteroskedasticity.

 $Model_3: log(Score_i) = \beta_0 + \beta_1 Ratio_i + \beta_2 log(Income_i) + u_i$

The regression for the White test

•••••

 $egin{aligned} e_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 \log(ext{Income}_i) + lpha_3 ext{Ratio}_i^2 + lpha_4 (\log(ext{Income}_i))^2 \ &+ lpha_5 \left(ext{Ratio}_i imes \log(ext{Income}_i)
ight) + v_i \end{aligned}$

yields $R_e^2 pprox 0.029$ and test statistic of $\widehat{ ext{LM}} = n imes R_e^2 pprox 12.2.$

Under H₀, LM is distributed as $\chi^2_5 \implies p$ -value \approx 0.033.

Example: Model specification

Let's test this new specification with the White test for heteroskedasticity.

 $Model_3: log(Score_i) = \beta_0 + \beta_1 Ratio_i + \beta_2 log(Income_i) + u_i$

The regression for the White test

 $egin{aligned} e_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 \log(ext{Income}_i) + lpha_3 ext{Ratio}_i^2 + lpha_4 (\log(ext{Income}_i))^2 \ &+ lpha_5 \left(ext{Ratio}_i imes \log(ext{Income}_i)
ight) + v_i \end{aligned}$

yields $R_e^2 pprox 0.029$ and test statistic of $\widehat{ ext{LM}} = n imes R_e^2 pprox 12.2.$

Under H₀, LM is distributed as $\chi^2_5 \implies p$ -value \approx 0.033.

Reject H₀.

Example: Model specification

Let's test this new specification with the White test for heteroskedasticity.

 $Model_3: log(Score_i) = \beta_0 + \beta_1 Ratio_i + \beta_2 log(Income_i) + u_i$

The regression for the White test

 $egin{aligned} e_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 \log(ext{Income}_i) + lpha_3 ext{Ratio}_i^2 + lpha_4 (\log(ext{Income}_i))^2 \ &+ lpha_5 \left(ext{Ratio}_i imes \log(ext{Income}_i)
ight) + v_i \end{aligned}$

yields $R_e^2 pprox 0.029$ and test statistic of $\widehat{ ext{LM}} = n imes R_e^2 pprox 12.2.$

Under H₀, LM is distributed as $\chi^2_5 \implies p$ -value \approx 0.033.

Reject H₀. Conclusion:

Example: Model specification

Let's test this new specification with the White test for heteroskedasticity.

 $\mathsf{Model}_3: \log(\mathsf{Score}_i) = \beta_0 + \beta_1 \operatorname{Ratio}_i + \beta_2 \log(\operatorname{Income}_i) + u_i$

The regression for the White test

 $egin{aligned} e_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 \log(ext{Income}_i) + lpha_3 ext{Ratio}_i^2 + lpha_4 (\log(ext{Income}_i))^2 \ &+ lpha_5 \left(ext{Ratio}_i imes \log(ext{Income}_i)
ight) + v_i \end{aligned}$

yields $R_e^2 pprox 0.029$ and test statistic of $\widehat{ ext{LM}} = n imes R_e^2 pprox 12.2.$

Under H₀, LM is distributed as $\chi^2_5 \implies p$ -value \approx 0.033.

 \therefore **Reject H₀. Conclusion:** There is statistically significant evidence of heteroskedasticity at the five-percent level.

Example: Model specification

Okay, we tried adjusting our specification, but there is still evidence of heteroskedasticity.

Next: In general, you will turn to heteroskedasticity-robust standard errors.

- OLS is still unbiased for the **coefficients** (the β_j 's)
- Heteroskedasticity-robust standard errors are unbiased for the **standard errors** of the $\hat{\beta}_j$'s, *i.e.*, $\sqrt{\operatorname{Var}(\hat{\beta}_j)}$.

Example: Het.-robust standard errors

Let's return to our model

 $\text{Score}_i = \beta_0 + \beta_1 \text{Ratio}_i + \beta_2 \text{Income}_i + u_i$

We can use the lfe package in R to calculate standard errors.

Example: Het.-robust standard errors

 $\mathrm{Score}_i = eta_0 + eta_1 \mathrm{Ratio}_i + eta_2 \mathrm{Income}_i + u_i$

1. Run the regression with felm() (instead of lm())

Load 'lfe' package
p_load(lfe)
Regress log score on ratio and log income
test_reg ← felm(test_score ~ ratio + income, data = test_df)

Example: Het.-robust standard errors

 $\mathrm{Score}_i = eta_0 + eta_1 \mathrm{Ratio}_i + eta_2 \mathrm{Income}_i + u_i$

1. Run the regression with felm() (instead of lm())

```
# Load 'lfe' package
p_load(lfe)
# Regress log score on ratio and log income
test_reg ← felm(test_score ~ ratio + income, data = test_df)
```

Notice that felm() uses the same syntax as lm() for this regression.

Example: Het.-robust standard errors

 $ext{Score}_i = eta_0 + eta_1 ext{Ratio}_i + eta_2 ext{Income}_i + u_i$

2. Estimate het.-robust standard errors with robust = T option in summary()

```
# Het-robust standard errors with 'robust = T'
summary(test_reg, robust = T)
```

#>	I	Estimate Rob	ust s.e t	value Pr	(> t)	
#>	(Intercept)	638.7292	7.3012	87.482	<2e-16	***
#>	ratio	-0.6487	0.3533	-1.836	0.0671	•
#>	income	1.8391	0.1147	16.029	<2e-16	***

Example: Het.-robust standard errors

Ceofficients and **heteroskedasticity-robust standard errors**:

```
#> Estimate Robust s.e t value Pr(>|t|)
#> (Intercept) 638.7292 7.3012 87.482 <2e-16 ***
#> ratio    -0.6487 0.3533 -1.836 0.0671 .
#> income    1.8391 0.1147 16.029 <2e-16 ***</pre>
```

Ceofficients and **plain OLS standard errors** (assumes homoskedasticity):

```
summary(test_reg, robust = F)
```

summary(test reg, robust = T)

#>		Estimate Std	value Pr	alue Pr(> t)		
#>	(Intercept)	638.72915	7.44908	85.746	<2e-16	***
#>	ratio	-0.64874	0.35440	-1.831	0.0679	•
#>	income	1.83911	0.09279	19.821	<2e-16	***

Example: WLS

We mentioned that WLS is often not possible—we need to know the functional form of the heteroskedasticity—either

A. σ_i^2

or

B. $h(x_i)$, where $\sigma_i^2 = \sigma^2 h(x_i)$

Example: WLS

We mentioned that WLS is often not possible—we need to know the functional form of the heteroskedasticity—either

A. σ_i^2

or

B.
$$h(x_i)$$
, where $\sigma_i^2 = \sigma^2 h(x_i)$

There are occasions in which we can know $h(x_i)$.

Example: WLS

Imagine individuals in a population have homoskedastic disturbances.

However, instead of observing individuals' data, we observe (in data) groups' averages (*e.g.*, cities, counties, school districts).

If these groups have different sizes, then our dataset will be heteroskedastic—in a predictable fashion.

Recall: The variance of the sample mean depends upon the sample size,

$$\mathrm{Var}ig(\overline{x}ig) = rac{\sigma_x^2}{n}$$

Example: WLS

Imagine individuals in a population have homoskedastic disturbances.

However, instead of observing individuals' data, we observe (in data) groups' averages (*e.g.*, cities, counties, school districts).

If these groups have different sizes, then our dataset will be heteroskedastic—in a predictable fashion.

Recall: The variance of the sample mean depends upon the sample size,

$$\mathrm{Var}ig(\overline{x}ig) = rac{\sigma_x^2}{n}$$

Example: Our school testing data is averaged at the school level.

Example: WLS

Example: Our school testing data is averaged at the school level.

Even if individual students have homoskedastic disturbances, the schools would have heteroskedastic disturbances, *i.e.*,

Individual-level model: $Score_i = \beta_0 + \beta_1 Ratio_i + \beta_2 Income_i + u_i$

School-level model: $\overline{\text{Score}}_s = \beta_0 + \beta_1 \overline{\text{Ratio}}_s + \beta_2 \overline{\text{Income}}_s + \overline{u}_s$

where the s subscript denotes an individual school (just as i indexes an individual person).

$$\mathrm{Var}ig(\overline{u}_sig) = rac{\sigma^2}{n_s}$$

Example: WLS

For WLS, we're looking for a function $h(x_s)$ such that $\operatorname{Var}(\overline{u}_s|x_s) = \sigma^2 h(x_s)$.

Example: WLS

For WLS, we're looking for a function $h(x_s)$ such that $\operatorname{Var}(\overline{u}_s|x_s) = \sigma^2 h(x_s)$.

We just showed † that $\mathrm{Var}ig(\overline{u}_s|x_sig)=rac{\sigma^2}{n_s}.$

+ Assuming the individuals' disturbances are homoskedastic.

Example: WLS

For WLS, we're looking for a function $h(x_s)$ such that $\operatorname{Var}ig(\overline{u}_s|x_sig)=\sigma^2 h(x_s).$

We just showed[†] that $\operatorname{Var} \left(\overline{u}_s | x_s \right) = \frac{\sigma^2}{n_s}.$

Thus, $h(x_s) = 1/n_s$, where n_s is the number of students in school s.

+ Assuming the individuals' disturbances are homoskedastic.

Example: WLS

For WLS, we're looking for a function $h(x_s)$ such that $\operatorname{Var}(\overline{u}_s|x_s) = \sigma^2 h(x_s)$.

We just showed[†] that $\operatorname{Var} \left(\overline{u}_s | x_s \right) = \frac{\sigma^2}{n_s}.$

Thus, $h(x_s) = 1/n_s$, where n_s is the number of students in school s.

To implement WLS, we divide each observation's data by $1/\sqrt{h(x_s)}$, meaning we need to multiply each school's data by $\sqrt{n_s}$.

+ Assuming the individuals' disturbances are homoskedastic.

Example: WLS

For WLS, we're looking for a function $h(x_s)$ such that $\operatorname{Var}ig(\overline{u}_s|x_sig)=\sigma^2 h(x_s).$

We just showed[†] that $\operatorname{Var} \left(\overline{u}_s | x_s \right) = \frac{\sigma^2}{n_s}.$

Thus, $h(x_s) = 1/n_s$, where n_s is the number of students in school s.

To implement WLS, we divide each observation's data by $1/\sqrt{h(x_s)}$, meaning we need to multiply each school's data by $\sqrt{n_s}$.

The variable enrollment in the test_df dataset is our n_s .

+ Assuming the individuals' disturbances are homoskedastic.

Example: WLS

Using WLS to estimate $\text{Score}_i = \beta_0 + \beta_1 \text{Ratio}_i + \beta_2 \text{Income}_i + u_i$

Step 1: Multiply each variable by $1/\sqrt{h(x_i)} = \sqrt{\mathrm{Enrollment}_i}$

```
# Create WLS transformed variables, multiplying by sqrt of 'pop'
test_df ← mutate(test_df,
   test_score_wls = test_score * sqrt(enrollment),
   ratio_wls = ratio * sqrt(enrollment),
   income_wls = income * sqrt(enrollment),
   intercept_wls = 1 * sqrt(enrollment)
)
```

Notice that we are creating a transformed intercept.

Example: WLS

Using WLS to estimate $Score_i = \beta_0 + \beta_1 Ratio_i + \beta_2 Income_i + u_i$

Step 2: Run our WLS (transformed) regression

```
# WLS regression
wls_reg ← lm(
   test_score_wls ~ -1 + intercept_wls + ratio_wls + income_wls,
   data = test_df
)
```

Example: WLS

Using WLS to estimate $\text{Score}_i = \beta_0 + \beta_1 \text{Ratio}_i + \beta_2 \text{Income}_i + u_i$

Step 2: Run our WLS (transformed) regression

```
# WLS regression
wls_reg ← lm(
   test_score_wls ~ -1 + intercept_wls + ratio_wls + income_wls,
   data = test_df
)
```

Note: The -1 in our regression tells R not to add an intercept, since we are adding a transformed intercept (intercept_wls).

Example: WLS

The WLS estimates and standard errors:

#>		Estimate Std	. Error t	value Pr	(> t)	
#>	intercept_wls	618.78331	8.26929	74.829	<2e-16	***
#>	ratio_wls	-0.21314	0.37676	-0.566	0.572	
#>	income_wls	2.26493	0.09065	24.985	<2e-16	***

Example: WLS

The WLS estimates and standard errors:

#>		Estimate Std	. Error t	value Pr	(> t)	
#>	intercept_wls	618.78331	8.26929	74.829	<2e-16	***
#>	ratio_wls	-0.21314	0.37676	-0.566	0.572	
#>	income_wls	2.26493	0.09065	24.985	<2e-16	***

The OLS estimates and het.-robust standard errors:

#>		Estimate Robu	ust s.e t	value Pr	(> t)	
#>	(Intercept)	638.7292	7.3012	87.482	<2e-16	***
#>	ratio	-0.6487	0.3533	-1.836	0.0671	•
#>	income	1.8391	0.1147	16.029	<2e-16	***

Example: WLS

Alternative to doing your own weighting: feed lm() some weights.

lm(test_score ~ ratio + income, data = test_df, weights = enrollment)

In this example

- **Heteroskedasticity-robust standard errors** did not change our standard errors very much (relative to plain OLS standard errors).
- WLS changed our answers a bit—coefficients and standard errors.

In this example

- **Heteroskedasticity-robust standard errors** did not change our standard errors very much (relative to plain OLS standard errors).
- WLS changed our answers a bit—coefficients and standard errors.

These examples highlighted a few things:

- 1. Using the correct estimator for your standard errors really matters.[†]
- 2. Econometrics doesn't always offer an obviously *correct* route.

+ Sit in on an economics seminar, and you will see what I mean.

In this example

- **Heteroskedasticity-robust standard errors** did not change our standard errors very much (relative to plain OLS standard errors).
- WLS changed our answers a bit—coefficients and standard errors.

These examples highlighted a few things:

- 1. Using the correct estimator for your standard errors really matters.[†]
- 2. Econometrics doesn't always offer an obviously *correct* route.

To see #1, let's run a simulation.

+ Sit in on an economics seminar, and you will see what I mean.

Simulation

Let's examine a simple linear regression model with heteroskedasticity.

$$y_i = egin{array}{c} eta_0 \ dots \ \ do$$

where $\operatorname{Var}(u_i|x_i)=\sigma_i^2=\sigma^2 x_i^2.$

Simulation

Let's examine a simple linear regression model with heteroskedasticity.

$$y_i = arphi_0 + arphi_1 arphi_1 x_i + u_i arphi_1 arphi_1 = 10$$

where $\operatorname{Var}(u_i|x_i) = \sigma_i^2 = \sigma^2 x_i^2$.



57 / 66

Simulation

Let's examine a simple linear regression model with heteroskedasticity.

$$y_i = egin{array}{c} eta_0 \ dots \ \ do$$

where $\operatorname{Var}(u_i|x_i)=\sigma_i^2=\sigma^2 x_i^2.$

Simulation

Note regarding WLS:

Since $\operatorname{Var}(u_i|x_i) = \sigma^2 x_i^2$,

$$\mathrm{Var}(u_i|x_i) = \sigma^2 h(x_i) \implies h(x_i) = x_i^2$$

WLS multiplies each variable by $1/\sqrt{h(x_i)} = 1/x_i$.

Simulation

In this simulation, we want to compare

1. The **efficiency** of

- OLS
- \circ WLS with correct weights: $h(x_i) = x_i$
- $\circ\,$ WLS with incorrect weights: $h(x_i)=\sqrt{x_i}$
- 2. How well our **standard errors** perform (via confidence intervals) with
 - Plain OLS standard errors
 - Heteroskedasticity-robust standard errors
 - WLS standard errors

Simulation

The simulation plan:

Do 10,000 times:

- 1. Generate a sample of size 30 from the population
- 2. Calculate/save OLS and WLS (×2) estimates for β_1
- 3. Calculate/save standard errors for β_1 using
 - Plain OLS standard errors
 - Heteroskedasticity-robust standard errors
 - WLS (correct)
 - WLS (incorrect)

Simulation

For one iteration of the simulation:

Code to generate the data...

```
# Parameters
b0 \leftarrow 1
b1 \leftarrow 10
s2 \leftarrow 1
# Sample size
n \leftarrow 30
# Generate data
sample_df \leftarrow tibble(
    x = runif(n, 0.5, 1.5),
    y = b0 + b1 * x + rnorm(n, 0, sd = s2 * x^2)
)
```

Simulation

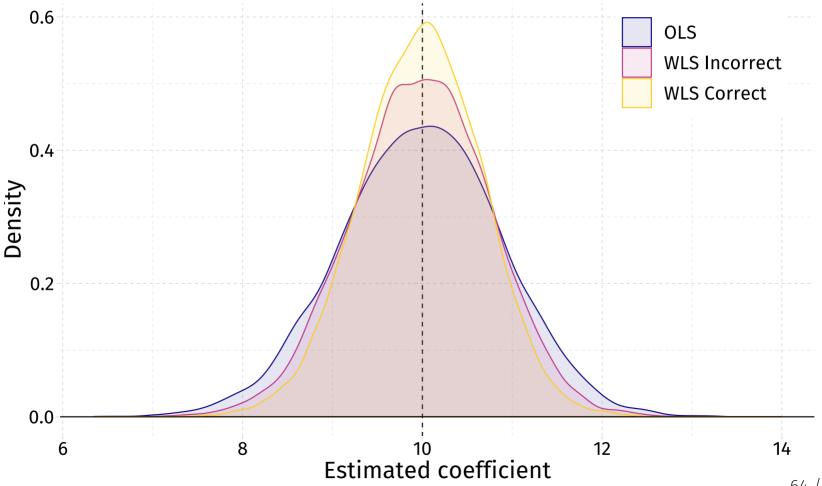
For one iteration of the simulation:

Code to estimate our coefficients and standard errors...

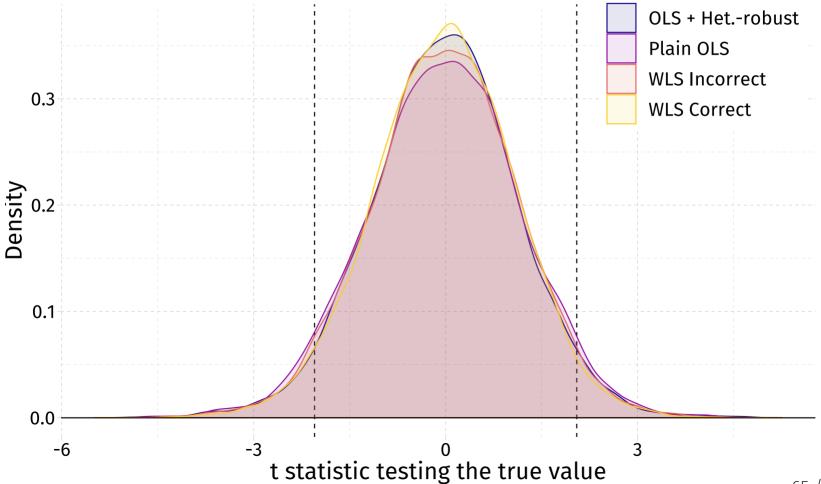
```
# OLS
ols ← felm(y ~ x, data = sample_df)
# WLS: Correct weights
wls_t ← lm(y ~ x, data = sample_df, weights = 1/x^2)
# WLS: Correct weights
wls_f ← lm(y ~ x, data = sample_df, weights = 1/x)
# Coefficients and standard errors
summary(ols, robust = F)
summary(ols, robust = T)
summary(wls_t)
summary(wls_f)
```

Then save the results.

Simulation: Coefficients



Simulation: Inference



Simulation: Results

Summarizing our simulation results (10,000 iterations)

Estimation: Summary of $\hat{\beta}_1$'s

Estimator	Mean	S.D.
OLS	9.984	0.896
WLS Correct	9.988	0.675
WLS Incorrect	9.986	0.767

Simulation: Results

Summarizing our simulation results (10,000 iterations)

Estimation: Summary of $\hat{\beta}_1$'s

Estimator	Mean	S.D.
OLS	9.984	0.896
WLS Correct	9.988	0.675
WLS Incorrect	9.986	0.767

Inference: % of times we reject β_1

Estimators	% Reject
OLS + Hetrobust	7.2
OLS + Homosk.	8.4
WLS Correct	6.3
WLS Incorrect	7.1