EC 421, Set 04

Edward Rubin Spring 2020

Prologue

R showcase

R Markdown

- Simple mark-up language for for combining/creating documents, equations, figures, R, and more
- Basics of Markdown
- *E.g.*, **I'm bold**, *I'm italic*, I ← "code"

Econometrics with R

- (Currently) free, online textbook
- Written and published using R (and probably R Markdown)
- *Warning:* I haven't read this book yet.

Related: Tyler Ransom has a great cheatsheet for econometrics.

Schedule

Last Time

We wrapped up our review.

Today

Heteroskedasticity

Schedule

This week

First assignment! Due Sunday-don't wait.

Turn in **2 files**[†]

- 1. Your write up (*e.g.*, Word file).
- 2. The R script that generated your answers.

Important

- We should be able to easily find your answers for each question.
- **Do not copy.** (You will receive a zero.)

t: Unless you're using RMarkdown—then we need a PDF or HTML file.

Schedule

The future

- Next assignment: Next week
- Midterm: In two weeks

Let's write down our **current assumptions**

1. Our sample (the x_k 's and y_i) was **randomly drawn** from the population.

- 1. Our sample (the x_k 's and y_i) was **randomly drawn** from the population.
- 2. y is a **linear function** of the β_k 's and u_i .

- 1. Our sample (the x_k 's and y_i) was **randomly drawn** from the population.
- 2. y is a **linear function** of the β_k 's and u_i .
- 3. There is no perfect **multicollinearity** in our sample.

- 1. Our sample (the x_k 's and y_i) was **randomly drawn** from the population.
- 2. y is a **linear function** of the β_k 's and u_i .
- 3. There is no perfect **multicollinearity** in our sample.
- 4. The explanatory variables are **exogenous**: $E[u|X] = 0 \ (\implies E[u] = 0)$.

- 1. Our sample (the x_k 's and y_i) was **randomly drawn** from the population.
- 2. y is a **linear function** of the β_k 's and u_i .
- 3. There is no perfect **multicollinearity** in our sample.
- 4. The explanatory variables are **exogenous**: $E[u|X] = 0 \ (\implies E[u] = 0)$.
- 5. The disurbances have **constant variance** σ^2 and **zero covariance**, *i.e.*,

$$egin{array}{ll} &\circ ~ oldsymbol{E}ig[u_i^2|Xig] = \mathrm{Var}(u_i|X) = \sigma^2 \implies \mathrm{Var}(u_i) = \sigma^2 \ &\circ ~ \mathrm{Cov}ig(u_i,\,u_j|Xig) = oldsymbol{E}ig[u_iu_j|Xig] = 0 ext{ for } i
eq j \end{array}$$

Let's write down our current assumptions

- 1. Our sample (the x_k 's and y_i) was **randomly drawn** from the population.
- 2. y is a **linear function** of the β_k 's and u_i .
- 3. There is no perfect **multicollinearity** in our sample.
- 4. The explanatory variables are **exogenous**: $oldsymbol{E}[u|X]=0$ ($\impliesoldsymbol{E}[u]=0$).
- 5. The disurbances have **constant variance** σ^2 and **zero covariance**, *i.e.*,

$$egin{array}{ll} \circ ~~ oldsymbol{E}ig[u_i^2ig|Xig] = \mathrm{Var}(u_i|X) = \sigma^2 \implies \mathrm{Var}(u_i) = \sigma^2 \ \circ ~~ \mathrm{Cov}ig(u_i,\,u_j|Xig) = oldsymbol{E}ig[u_iu_j|Xig] = 0 ext{ for } i
eq j \end{array}$$

6. The disturbances come from a **Normal** distribution, *i.e.*, $u_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.

Today we're focusing on assumption #5:

5. The disurbances have **constant variance** σ^2 and **zero covariance**, *i.e.*,

• $oldsymbol{E}ig[u_i^2ig|Xig] = \mathrm{Var}(u_i|X) = \sigma^2 \implies \mathrm{Var}(u_i) = \sigma^2$

•
$$\mathrm{Cov}ig(u_i,\,u_j|Xig)=oldsymbol{E}ig[u_iu_j|Xig]=0$$
 for $i
eq j$

Today we're focusing on assumption #5:

5. The disurbances have **constant variance** σ^2 and **zero covariance**, *i.e.*,

• $oldsymbol{E}ig[u_i^2ig|Xig] = \mathrm{Var}(u_i|X) = \sigma^2 \implies \mathrm{Var}(u_i) = \sigma^2$

•
$$\mathrm{Cov}ig(u_i,\,u_j|Xig)=oldsymbol{E}ig[u_iu_j|Xig]=0$$
 for $i
eq j$

Specifically, we will focus on the assumption of **constant variance** (also known as *homoskedasticity*).

Today we're focusing on assumption #5:

5. The disurbances have **constant variance** σ^2 and **zero covariance**, *i.e.*,

• $oldsymbol{E}ig[u_i^2ig|Xig] = \mathrm{Var}(u_i|X) = \sigma^2 \implies \mathrm{Var}(u_i) = \sigma^2$

•
$$\mathrm{Cov}ig(u_i,\,u_j|Xig)=oldsymbol{E}ig[u_iu_j|Xig]=0$$
 for $i
eq j$

Specifically, we will focus on the assumption of **constant variance** (also known as *homoskedasticity*).

Violation of this assumption:

Heteroskedasticity:
$$\mathrm{Var}(u_i)=\sigma_i^2$$
 and $\sigma_i^2
eq\sigma_j^2$ for some $i
eq j_i$

Today we're focusing on assumption #5:

5. The disurbances have **constant variance** σ^2 and **zero covariance**, *i.e.*,

• $oldsymbol{E}ig[u_i^2ig|Xig] = \mathrm{Var}(u_i|X) = \sigma^2 \implies \mathrm{Var}(u_i) = \sigma^2$

•
$$\mathrm{Cov}ig(u_i,\,u_j|Xig)=oldsymbol{E}ig[u_iu_j|Xig]=0$$
 for $i
eq j$

Specifically, we will focus on the assumption of **constant variance** (also known as *homoskedasticity*).

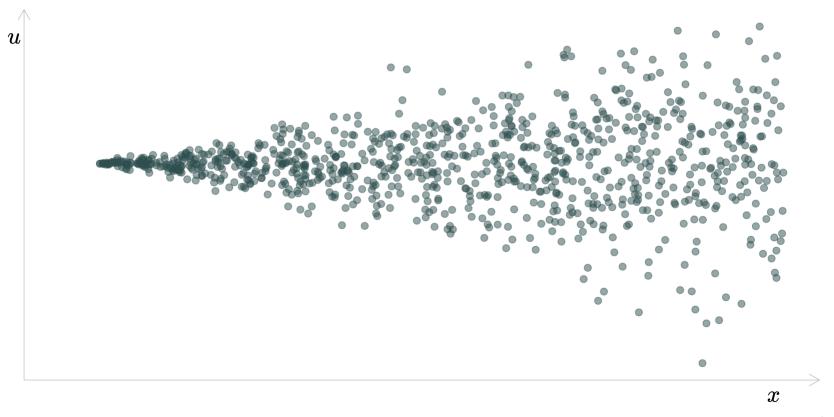
Violation of this assumption:

Heteroskedasticity:
$$\mathrm{Var}(u_i)=\sigma_i^2$$
 and $\sigma_i^2
eq\sigma_j^2$ for some $i
eq j.$

In other words: Our disturbances have different variances.

Classic example of heteroskedasticity: The funnel

Variance of u increases with x



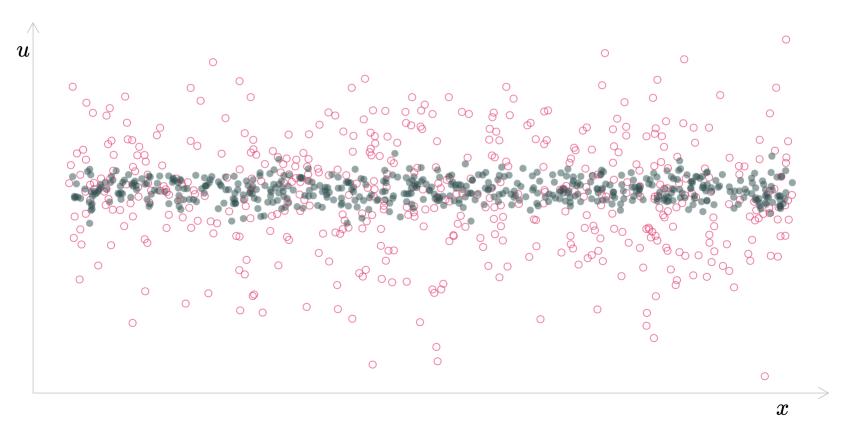
Another example of heteroskedasticity: (double funnel?)

Variance of u increasing at the extremes of x

x

Another example of heteroskedasticity:

Differing variances of u by group



Heteroskedasticity is present when the variance of u changes with any combination of our explanatory variables x_1 , through x_k (henceforth: X).

Heteroskedasticity is present when the variance of u changes with any combination of our explanatory variables x_1 , through x_k (henceforth: X).

(Very common in practice)

Heteroskedasticity is present when the variance of u changes with any combination of our explanatory variables x_1 , through x_k (henceforth: X).

(Very common in practice)

Why we care: Heteroskedasticity shows us how small violations of our assumptions can affect OLS's performance.

Consequences

So what are the consquences of heteroskedasticity? Bias? Inefficiency?

First, let's check if it has consquences for the the unbiasedness of OLS.

Consequences

So what are the consquences of heteroskedasticity? Bias? Inefficiency?

First, let's check if it has consquences for the the unbiasedness of OLS.

Recall₁: OLS being unbiased means $\boldsymbol{E}[\hat{\boldsymbol{\beta}}_k | X] = \boldsymbol{\beta}_k$ for all k.

Consequences

So what are the consquences of heteroskedasticity? Bias? Inefficiency?

First, let's check if it has consquences for the the unbiasedness of OLS.

Recall₁: OLS being unbiased means $\boldsymbol{E}\left[\hat{\boldsymbol{\beta}}_{k}\middle|X
ight]=\beta_{k}$ for all k.

Recall₂: We previously showed
$$\hat{eta}_1 = rac{\sum_i \left(y_i - \overline{y}
ight) \left(x_i - \overline{x}
ight)}{\sum_i \left(x_i - \overline{x}
ight)^2}$$

Consequences

So what are the consquences of heteroskedasticity? Bias? Inefficiency?

First, let's check if it has consquences for the the unbiasedness of OLS.

Recall₁: OLS being unbiased means $\boldsymbol{E}\left[\hat{\boldsymbol{\beta}}_{k}\middle|X
ight]=\beta_{k}$ for all k.

Recall₂: We previously showed
$$\hat{eta}_1 = rac{\sum_i \left(y_i - \overline{y}
ight) \left(x_i - \overline{x}
ight)}{\sum_i \left(x_i - \overline{x}
ight)^2}$$

It will actually help us to rewrite this estimator as

$${\hat eta}_1 = eta_1 + rac{{\sum _i \left({{x_i} - \overline x}
ight){u_i}}}{{\sum _i \left({{x_i} - \overline x}
ight)^2 }}$$

Proof: Assuming $y_i = eta_0 + eta_1 x_i + u_i$

$$egin{aligned} \hat{eta}_1 &= rac{\sum_i \left(y_i - ar{y}
ight) \left(x_i - ar{x}
ight)^2}{\sum_i \left(x_i - ar{x}
ight)^2} \ &= rac{\sum_i \left(\left[eta_0 + eta_1 x_i + u_i
ight] - \left[eta_0 + eta_1 ar{x} + ar{u}
ight]
ight) \left(x_i - ar{x}
ight)}{\sum_i \left(x_i - ar{x}
ight)^2} \ &= rac{\sum_i \left(eta_1 \left[x_i - ar{x}
ight] + \left[u_i - ar{u}
ight]
ight) \left(x_i - ar{x}
ight)}{\sum_i \left(x_i - ar{x}
ight)^2} \ &= rac{\sum_i \left(eta_1 \left[x_i - ar{x}
ight]^2 + \left[x_i - ar{x}
ight] \left[u_i - ar{u}
ight]
ight)}{\sum_i \left(x_i - ar{x}
ight)^2} \ &= eta_1 + rac{\sum_i \left(x_i - ar{x}
ight) \left(u_i - ar{u}
ight)}{\sum_i \left(x_i - ar{x}
ight)^2} \end{aligned}$$

$$\begin{split} \hat{\beta}_{1} &= \dots = \beta_{1} + \frac{\sum_{i} \left(x_{i} - \overline{x}\right) \left(u_{i} - \overline{u}\right)}{\sum_{i} \left(x_{i} - \overline{x}\right)^{2}} \\ &= \beta_{1} + \frac{\sum_{i} \left(x_{i} - \overline{x}\right) u_{i} - \overline{u} \sum_{i} \left(x_{i} - \overline{x}\right)}{\sum_{i} \left(x_{i} - \overline{x}\right)^{2}} \\ &= \beta_{1} + \frac{\sum_{i} \left(x_{i} - \overline{x}\right) u_{i} - \overline{u} \left(\sum_{i} x_{i} - \sum_{i} \overline{x}\right)}{\sum_{i} \left(x_{i} - \overline{x}\right)^{2}} \\ &= \beta_{1} + \frac{\sum_{i} \left(x_{i} - \overline{x}\right) u_{i} - \overline{u} \left(\sum_{i} x_{i} - n\overline{x}\right)}{\sum_{i} \left(x_{i} - \overline{x}\right)^{2}} \\ &= \beta_{1} + \frac{\sum_{i} \left(x_{i} - \overline{x}\right) u_{i} - \overline{u} \left(\sum_{i} x_{i} - \sum_{i} x_{i}\right)}{\sum_{i} \left(x_{i} - \overline{x}\right)^{2}} \\ &= \beta_{1} + \frac{\sum_{i} \left(x_{i} - \overline{x}\right) u_{i}}{\sum_{i} \left(x_{i} - \overline{x}\right)^{2}} \end{split}$$

Consequences: Bias

We now want to see if heteroskedasticity biases the OLS estimator for β_1 .

Consequences: Bias

We now want to see if heteroskedasticity biases the OLS estimator for β_1 .

Consequences: Bias

We now want to see if heteroskedasticity biases the OLS estimator for β_1 .

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_1 &= eta_1 + egin{aligned} eta_1 + rac{\sum_i ig(x_i - \overline{x}ig) u_i}{\sum_i ig(x_i - \overline{x}ig)^2} ig|X \end{bmatrix} \ &= eta_1 + egin{aligned} egin{aligned} \sum_i ig(x_i - \overline{x}ig) u_i \ \sum_i ig(x_i - \overline{x}ig)^2 \end{array} ig|X \end{bmatrix} \ &= eta_1 + rac{\sum_i ig(x_i - \overline{x}ig)^2}{\sum_i ig(x_i - \overline{x}ig)^2} egin{aligned} eta_1 &= eta_1 \ &= eta_1 \end{aligned}$$

Phew. **OLS is still unbiased** for the β_k .

Consequences: Efficiency

OLS's efficiency and inference do not survive heteroskedasticity.

• In the presence of heteroskedasticity, OLS is **no longer the most efficient** (best) linear unbiased estimator.

Consequences: Efficiency

OLS's efficiency and inference do not survive heteroskedasticity.

- In the presence of heteroskedasticity, OLS is **no longer the most efficient** (best) linear unbiased estimator.
- It would be more informative (efficient) to weight observations inversely to their u_i 's variance.
 - Downweight high-variance u_i 's (too noisy to learn much).
 - Upweight observations with low-variance u_i 's (more 'trustworthy').
 - Now you have the idea of weighted least squares (WLS)

Consequences: Inference

OLS **standard errors are biased** in the presence of heteroskedasticity.

- Wrong confidence intervals
- Problems for hypothesis testing (both t and F tests)

Heteroskedasticity

Consequences: Inference

OLS **standard errors are biased** in the presence of heteroskedasticity.

- Wrong confidence intervals
- Problems for hypothesis testing (both t and F tests)
- It's hard to learn much without sound inference.

Heteroskedasticity

Solutions

- 1. **Tests** to determine whether heteroskedasticity is present.
- 2. **Remedies** for (1) efficiency and (2) inference

While we *might* have solutions for heteroskedasticity, the efficiency of our estimators depends upon whether or not heteroskedasticity is present.

- 1. The Goldfeld-Quandt test
- 2. The Breusch-Pagan test
- 3. The White test

While we *might* have solutions for heteroskedasticity, the efficiency of our estimators depends upon whether or not heteroskedasticity is present.

- 1. The Goldfeld-Quandt test
- 2. The Breusch-Pagan test
- 3. The White test

Each of these tests centers on the fact that we can **use the OLS residual** e_i to estimate the population disturbance u_i .

The Goldfeld-Quandt test

Focuses on a specific type of heteroskedasticity: whether the variance of u_i differs **between two groups**.[†]

Remember how we used our residuals to estimate the σ^2 ?

$$s^2 = rac{ ext{SSE}}{n-1} = rac{\sum_i e_i^2}{n-1}$$

We will use this same idea to determine whether there is evidence that our two groups differ in the variances of their disturbances, effectively comparing s_1^2 and s_2^2 from our two groups.

[+]: The G-Q test was one of the early tests of heteroskedasticity (1965).

The Goldfeld-Quandt test

Operationally,

- 1. Order your the observations by \boldsymbol{x}
- 2. Split the data into two groups of size \texttt{n}^{\star}
 - \circ G_1: The first third
 - \circ G_2: The last third
- 3. Run separate regressions of y on x for G_1 and G_2
- 4. Record $\ensuremath{\mathsf{SSE}}_1$ and $\ensuremath{\mathsf{SSE}}_2$
- 5. Calculate the G-Q test statistic

The Goldfeld-Quandt test

The G-Q test statistic

$$F_{(n^{\star}-k,\,n^{\star}-k)} = rac{\mathrm{SSE}_2/(n^{\star}-k)}{\mathrm{SSE}_1/(n^{\star}-k)} = rac{\mathrm{SSE}_2}{\mathrm{SSE}_1}$$

follows an F distribution (under the null hypothesis) with $n^{\star} - k$ and $n^{\star} - k$ degrees of freedom.[†]

The Goldfeld-Quandt test

The G-Q test statistic

$$F_{(n^{\star}-k,\,n^{\star}-k)}=rac{\mathrm{SSE}_2/(n^{\star}-k)}{\mathrm{SSE}_1/(n^{\star}-k)}=rac{\mathrm{SSE}_2}{\mathrm{SSE}_1}$$

follows an F distribution (under the null hypothesis) with $n^{\star} - k$ and $n^{\star} - k$ degrees of freedom.[†]

Notes

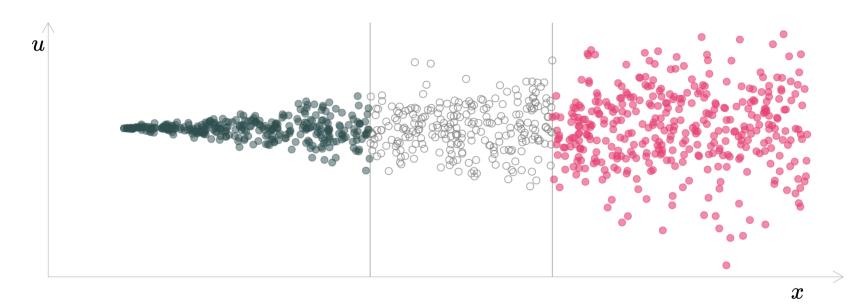
- The G-Q test requires the disturbances follow normal distributions.
- The G-Q assumes a very specific type/form of heteroskedasticity.
- Performs very well if we know the form of potentially heteroskedasticity.

[+]: Goldfeld and Quandt suggested n^* of (3/8)n. k gives number of estimated parameters (*i.e.*, $\hat{\beta}_i$'s).

The Goldfeld-Quandt test



The Goldfeld-Quandt test



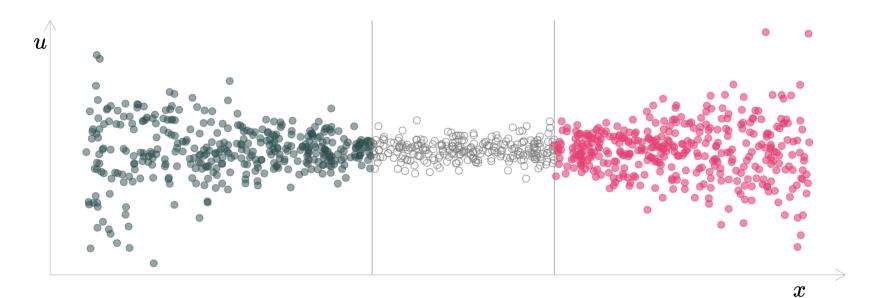
$$F_{375,\,375} = rac{{
m SSE}_2 = 18,\,203.4}{{
m SSE}_1 = 1,\,039.5} pprox 17.5 \implies p ext{-value} < 0.001$$

: We reject H_0 : $\sigma_1^2 = \sigma_2^2$ and conclude there is statistically significant evidence of heteroskedasticity.

The Goldfeld-Quandt test

The problem...

The Goldfeld-Quandt test



$$F_{375,\,375} = rac{\mathrm{SSE}_2 = 14,516.8}{\mathrm{SSE}_1 = 14,937.1} pprox 1 \implies p$$
-value $pprox 0.609$

 \therefore We fail to reject H₀: $\sigma_1^2 = \sigma_2^2$ while heteroskedasticity is present.

The Breusch-Pagan test

Breusch and Pagan (1981) attempted to solve this issue of being too specific with the functional form of the heteroskedasticity.

- Allows the data to show if/how the variance of u_i correlates with X.
- If σ_i^2 correlates with X, then we have heteroskedasticity.
- Regresses e_i^2 on $X = [1, x_1, x_2, \ldots, x_k]$ and tests for joint significance.

The Breusch-Pagan test

How to implement:

1. Regress y on an intercept,
$$x_1$$
, x_2 , ..., x_k .

- 2. Record residuals e.
- 3. Regress e^2 on an intercept, x_1 , x_2 , ..., x_k .

$$e_i^2=lpha_0+lpha_1x_{1i}+lpha_2x_{2i}+\dots+lpha_kx_{ki}+v_i$$

4. Record R^2 .

5. Test hypothesis H $_0$: $lpha_1=lpha_2=\dots=lpha_k=0$

The Breusch-Pagan test

The B-P test statistic[†] is

$${
m LM}=n imes R_e^2$$

where R_e^2 is the R^2 from the regression

$$e_i^2=lpha_0+lpha_1x_{1i}+lpha_2x_{2i}+\dots+lpha_kx_{ki}+v_i$$

Under the null, LM is asymptotically distributed as χ^2_k .

The Breusch-Pagan test

The B-P test statistic[†] is

$${
m LM}=n imes R_e^2$$

where R_e^2 is the R^2 from the regression

$$e_i^2=lpha_0+lpha_1x_{1i}+lpha_2x_{2i}+\dots+lpha_kx_{ki}+v_i$$

Under the null, LM is asymptotically distributed as χ^2_k .

This test statistic tests $\mathsf{H}_0: \alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$.

Rejecting the null hypothesis implies evidence of heteroskedasticity.

[+]: This specific form of the test statistic actually comes form Koenker (1981).

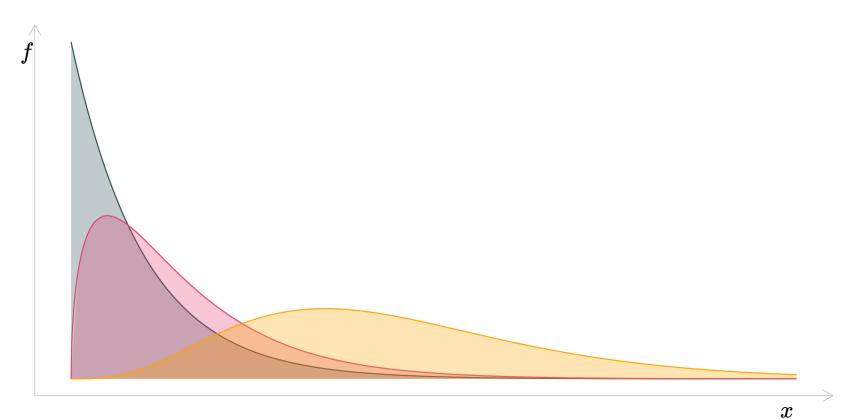
The χ^2 distribution

We just mentioned that under the null, the B-P test statistic is distributed as a χ^2 random variable with k degrees of freedom.

The χ^2 distribution is just another example of a common (named) distribution (like the Normal distribution, the *t* distribution, and the *F*).

The χ^2 distribution

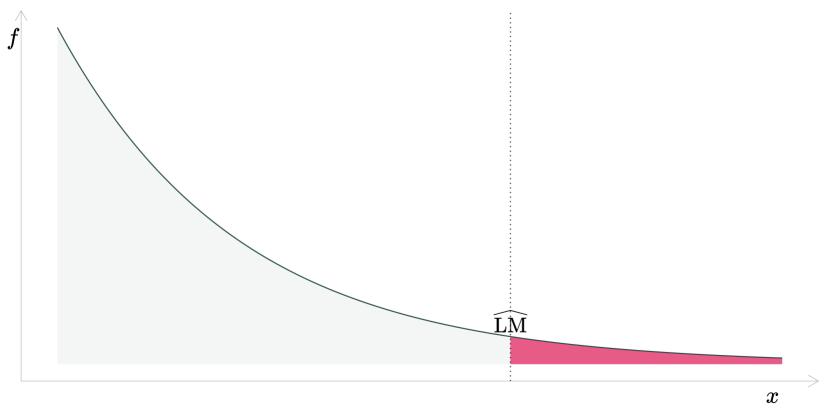
Three examples of χ^2_k : k=1, k=2, and k=9



34 / 66

The χ^2 distribution

Probability of observing a more extreme test statistic $\widehat{\mathbf{LM}}$ under H_0



The Breusch-Pagan test

Problem: We're still assuming a fairly restrictive **functional form** between our explanatory variables X and the variances of our disturbances σ_i^2 .

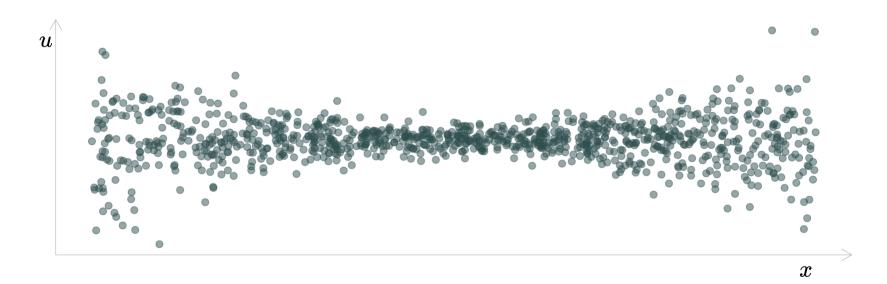
The Breusch-Pagan test

Problem: We're still assuming a fairly restrictive **functional form** between our explanatory variables X and the variances of our disturbances σ_i^2 .

Result: B-P *may* still miss fairly simple forms of heteroskedasticity.

The Breusch-Pagan test

Breusch-Pagan tests are still **sensitive to functional form**.



$$egin{aligned} e_i^2 &= \hat{lpha}_0 + \hat{lpha}_1 x_{1i} & \widehat{ ext{LM}} &= 1.26 & p ext{-value} &pprox 0.261 \ e_i^2 &= \hat{lpha}_0 + \hat{lpha}_1 x_{1i} + \hat{lpha}_2 x_{1i}^2 & \widehat{ ext{LM}} &= 185.8 & p ext{-value} &< 0.001 \end{aligned}$$

The White test

So far we've been testing for specific relationships between our explanatory variables and the variances of the disturbances, *e.g.*,

- $\mathsf{H}_0: \sigma_1^2 = \sigma_2^2$ for two groups based upon x_j (**G-Q**)
- $\mathsf{H}_0: \alpha_1 = \cdots = \alpha_k = 0$ from $e_i^2 = \alpha_0 + \alpha_1 x_{1i} + \cdots + \alpha_k x_{ki} + v_i$ (**B-P**)

The White test

So far we've been testing for specific relationships between our explanatory variables and the variances of the disturbances, *e.g.*,

- $\mathsf{H}_0: \sigma_1^2 = \sigma_2^2$ for two groups based upon x_j (**G-Q**)
- $\mathsf{H}_0: \alpha_1 = \cdots = \alpha_k = 0$ from $e_i^2 = \alpha_0 + \alpha_1 x_{1i} + \cdots + \alpha_k x_{ki} + v_i$ (**B-P**)

However, we actually want to know if

$$\sigma_1^2=\sigma_2^2=\dots=\sigma_n^2$$

Q: Can't we just test this hypothesis?

The White test

So far we've been testing for specific relationships between our explanatory variables and the variances of the disturbances, *e.g.*,

- $\mathsf{H}_0: \sigma_1^2 = \sigma_2^2$ for two groups based upon x_j (**G-Q**)
- $\mathsf{H}_0: \alpha_1 = \cdots = \alpha_k = 0$ from $e_i^2 = \alpha_0 + \alpha_1 x_{1i} + \cdots + \alpha_k x_{ki} + v_i$ (**B-P**)

However, we actually want to know if

$$\sigma_1^2=\sigma_2^2=\dots=\sigma_n^2$$

Q: Can't we just test this hypothesis? **A:** Sort of.

The White test

Toward this goal, Hal White took advantage of the fact that we can **replace the homoskedasticity requirement with a weaker assumption**:

- Old: $\operatorname{Var}(u_i|X) = \sigma^2$
- New: u^2 is uncorrelated with the explanatory variables (*i.e.*, x_j for all j), their squares (*i.e.*, x_j^2), and the first-degree interactions (*i.e.*, x_jx_h).

The White test

Toward this goal, Hal White took advantage of the fact that we can **replace the homoskedasticity requirement with a weaker assumption**:

- Old: $\operatorname{Var}(u_i|X) = \sigma^2$
- New: u^2 is uncorrelated with the explanatory variables (*i.e.*, x_j for all j), their squares (*i.e.*, x_j^2), and the first-degree interactions (*i.e.*, x_jx_h).

This new assumption is easier to explicitly test (*hint*: regression).

The White test

An outline of White's test for heteroskedasticity:

1. Regress y on x_1 , x_2 , ..., x_k . Save residuals e.

2. Regress squared residuals on all explanatory variables, their squares, and interactions.

$$e^2 = lpha_0 + \sum_{h=1}^k lpha_h x_h + \sum_{j=1}^k lpha_{k+j} x_j^2 + \sum_{\ell=1}^{k-1} \sum_{m=\ell+1}^k lpha_{\ell,m} x_\ell x_m + v_i$$

3. Record R_e^2 .

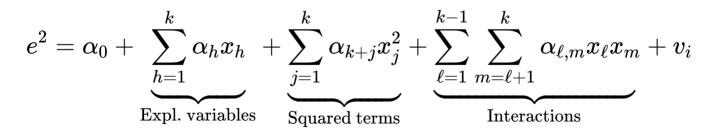
4. Calculate test statistic to test $extsf{H}_0: \; lpha_p = 0$ for all p
eq 0 .

The White test

Just as with the Breusch-Pagan test, White's test statistic is

$$\mathrm{LM} = n imes R_e^2 \qquad \mathrm{Under} \ \mathrm{H}_0, \ \mathrm{LM} \stackrel{\mathrm{d}}{\sim} \chi_k^2$$

but now the R_e^2 comes from the regression of e^2 on the explanatory variables, their squares, and their interactions.



Note: The k (for our χ_k^2) equals the number of estimated parameters in the regression above (the α_j), excluding the intercept (α_0).

The White test

Practical note: If a variable is equal to its square (*e.g.*, binary variables), then you don't (can't) include it. The same rule applies for interactions.

The White test

Example: Consider the model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$

Step 1: Estimate the model; obtain residuals (e).

Step 2: Regress e^2 on explanatory variables, squares, and interactions.

$$e^2 = lpha_0 + lpha_1 x_1 + lpha_2 x_2 + lpha_3 x_3 + lpha_4 x_1^2 + lpha_5 x_2^2 + lpha_6 x_3^2 \ + lpha_7 x_1 x_2 + lpha_8 x_1 x_3 + lpha_9 x_2 x_3 + v$$

Record the R^2 from this equation (call it R_e^2).

Step 3: Test H_0 : $lpha_1 = lpha_2 = \dots = lpha_9 = 0$ using $\mathrm{LM} = n R_e^2 \stackrel{\mathrm{d}}{\sim} \chi_9^2$.

[†]: To simplify notation here, I'm dropping the *i* subscripts.

The White test



We've already done the White test for this simple linear regression.

$$e_i^2 = \hatlpha_0 + \hatlpha_1 x_{1i} + \hatlpha_2 x_{1i}^2 \qquad \widehat{ ext{LM}} = 185.8 \qquad p ext{-value} < 0.001$$

Testing for Heteroskedasticity Examples

Examples

Goal: Estimate the relationship between standardized test scores (outcome variable) and (1) student-teacher ratio and (2) income, *i.e.*,

$$(\text{Test score})_i = \beta_0 + \beta_1 \text{Ratio}_i + \beta_2 \text{Income}_i + u_i$$
 (1)

Potential issue: Heteroskedasticity... and we do not observe u_i .

Solution:

- 1. Estimate the relationship in (1) using OLS
- 2. Use the residuals (e_i) to test for heteroskedasticity
 - Goldfeld-Quandt
 - Breusch-Pagan
 - White

Examples

We will use testing data from the dataset Caschool in the Ecdat R package.

Examples

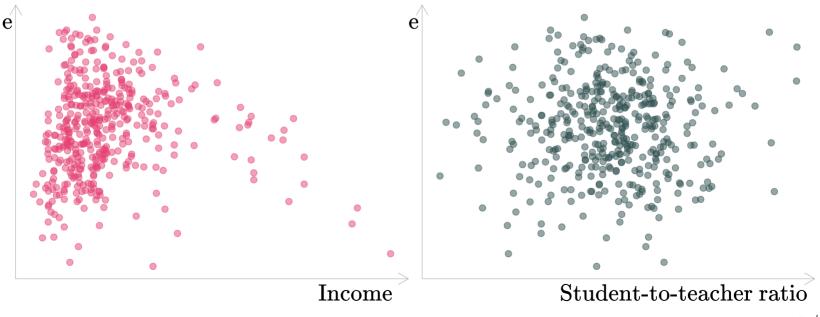
Let's begin by estimating our model

```
(	ext{Test score})_i = eta_0 + eta_1	ext{Ratio}_i + eta_2	ext{Income}_i + u_i
```

#>	#	A tibble: 3	x 5			
#>		term	estimate	std.error	statistic	p.value
#>		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
#>	1	(Intercept)	639.	7.45	85.7	5.70e-267
#>	2	ratio	-0.649	0.354	-1.83	6.79e- 2
#>	3	income	1.84	0.0928	19.8	4.38e- 62

Examples

Now, let's see what the residuals suggest about heteroskedasticity



Example: Goldfeld-Quandt

Income looks potentially heteroskedastic; let's test via Goldfeld-Quandt.

Arrange the data by income
test_df ← arrange(test_df, income)

Example: Goldfeld-Quandt

Income looks potentially heteroskedastic; let's test via Goldfeld-Quandt.

Arrange the data by income
test_df ← arrange(test_df, income)
Re-estimate the model for the last and first 158 observations
est_model1 ← lm(test_score ~ ratio + income, data = tail(test_df, 158))
est_model2 ← lm(test_score ~ ratio + income, data = head(test_df, 158))

Example: Goldfeld-Quandt

Income looks potentially heteroskedastic; let's test via Goldfeld-Quandt.

Arrange the data by income
test_df ← arrange(test_df, income)
Re-estimate the model for the last and first 158 observations
est_model1 ← lm(test_score ~ ratio + income, data = tail(test_df, 158))
est_model2 ← lm(test_score ~ ratio + income, data = head(test_df, 158))
Grab the residuals from each regression
e_model1 ← residuals(est_model1)
e_model2 ← residuals(est_model2)

Example: Goldfeld-Quandt

Income looks potentially heteroskedastic; let's test via Goldfeld-Quandt.

```
# Arrange the data by income
test_df ← arrange(test_df, income)
# Re-estimate the model for the last and first 158 observations
est_model1 ← lm(test_score ~ ratio + income, data = tail(test_df, 158))
est_model2 ← lm(test_score ~ ratio + income, data = head(test_df, 158))
# Grab the residuals from each regression
e_model1 ← residuals(est_model1)
e_model2 ← residuals(est_model2)
# Calculate SSE for each regression
(sse model1 ← sum(e model1^2))
```

#> [1] 19305.01

```
(sse_model2 ← sum(e_model2<sup>2</sup>))
```

Example: Goldfeld-Quandt

Remember the Goldfeld-Quandt test statistic?

$$F_{n^{\star}-k,\,n^{\star}-k}=rac{\mathrm{SSE}_2}{\mathrm{SSE}_1}$$

Example: Goldfeld-Quandt

Remember the Goldfeld-Quandt test statistic?

 $F_{n^{\star}-k,\ n^{\star}-k} = rac{\mathrm{SSE}_2}{\mathrm{SSE}_1} pprox rac{29,537.83}{19,305.01}$

Example: Goldfeld-Quandt

Remember the Goldfeld-Quandt test statistic?

 $F_{n^{\star}-k,\ n^{\star}-k} = rac{\mathrm{SSE}_2}{\mathrm{SSE}_1} pprox rac{29,537.83}{19,305.01} pprox 1.53$

Example: Goldfeld-Quandt

Remember the Goldfeld-Quandt test statistic?

 $F_{n^{\star}-k,\,n^{\star}-k} = rac{\mathrm{SSE}_2}{\mathrm{SSE}_1} pprox rac{29,\,537.83}{19,\,305.01} pprox 1.53$ Test via $F_{158-3,\,158-3}$

Example: Goldfeld-Quandt

Remember the Goldfeld-Quandt test statistic?

 $F_{n^{\star}-k,\,n^{\star}-k} = rac{\mathrm{SSE}_2}{\mathrm{SSE}_1} pprox rac{29,537.83}{19,305.01} pprox 1.53$ Test via $F_{158-3,\,158-3}$

G-Q test statistic
(f_gq ← sse_model2/sse_model1)

#> [1] 1.530061

Example: Goldfeld-Quandt

Remember the Goldfeld-Quandt test statistic?

 $F_{n^{\star}-k,\,n^{\star}-k} = rac{\mathrm{SSE}_2}{\mathrm{SSE}_1} pprox rac{29,\,537.83}{19,\,305.01} pprox 1.53$ Test via $F_{158-3,\,158-3}$

G-Q test statistic
(f_gq ← sse_model2/sse_model1)

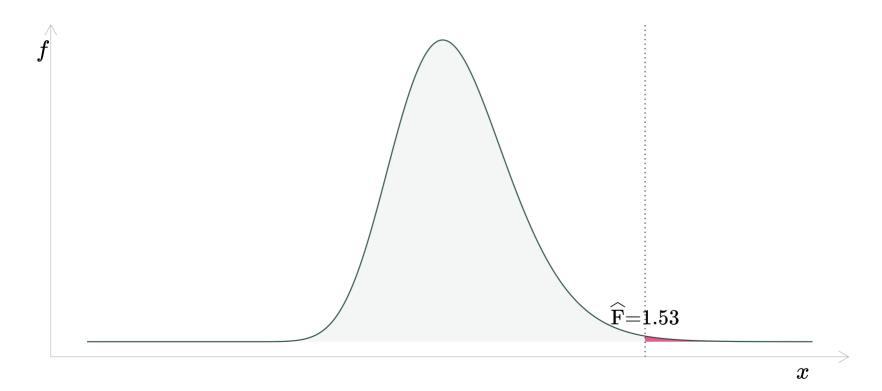
#> [1] 1.530061

p-value
pf(q = f_gq, df1 = 158-3, df2 = 158-3, lower.tail = F)

#> [1] 0.004226666

Example: Goldfeld-Quandt

The Goldfeld-Quandt test statistic and its null distribution



Example: Goldfeld-Quandt

Putting it all together:

 $extsf{H}_{0}\!\!:\sigma_{1}^{2}=\sigma_{2}^{2}$ vs. $extsf{H}_{ extsf{A}}\!\!:\sigma_{1}^{2}
eq\sigma_{2}^{2}$

Goldfeld-Quandt test statistic: Fpprox 1.53

 $p ext{-value} pprox 0.00423$

 \therefore Reject H₀ (*p*-value is less than 0.05).

Conclusion: There is statistically significant evidence that $\sigma_1^2 \neq \sigma_2^2$. Therefore, we find statistically significant evidence of heteroskedasticity (at the 5-percent level).

Example: Goldfeld-Quandt

What if we had chosen to focus on student-to-teacher ratio?

Example: Goldfeld-Quandt

What if we had chosen to focus on student-to-teacher ratio?

```
# Arrange the data by ratio
test_df ← arrange(test_df, ratio)
# Re-estimate the model for the last and first 158 observations
est_model3 ← lm(test_score ~ ratio + income, data = tail(test_df, 158))
est_model4 ← lm(test_score ~ ratio + income, data = head(test_df, 158))
# Grab the residuals from each regression
e_model3 ← residuals(est_model3)
e_model4 ← residuals(est_model4)
# Calculate SSE for each regression
(sse model3 ← sum(e model3^2))
```

#> [1] 26243.52

```
(sse_model4 ← sum(e_model4<sup>2</sup>))
```

Example: Goldfeld-Quandt

 $F_{n^{\star}-k,\,n^{\star}-k} = rac{\mathrm{SSE}_4}{\mathrm{SSE}_3} pprox rac{29,101.52}{26,243.52} pprox 1.11$

which has a *p*-value of approximately 0.2603.

Example: Goldfeld-Quandt

 $F_{n^{\star}-k,\,n^{\star}-k} = rac{\mathrm{SSE}_4}{\mathrm{SSE}_3} pprox rac{29,\,101.52}{26,\,243.52} pprox 1.11$

which has a *p*-value of approximately 0.2603.

 \therefore We would have failed to reject H₀, concluding that we failed to find statistically significant evidence of heteroskedasticity.

Example: Goldfeld-Quandt

 $F_{n^{\star}-k,\,n^{\star}-k} = rac{\mathrm{SSE}_4}{\mathrm{SSE}_3} pprox rac{29,101.52}{26,243.52} pprox 1.11$

which has a *p*-value of approximately 0.2603.

 \therefore We would have failed to reject H₀, concluding that we failed to find statistically significant evidence of heteroskedasticity.

Lesson: Understand the limitations of estimators, tests, *etc.*

Example: Breusch-Pagan

Let's test the same model with the Breusch Pagan.

Recall: We saved our residuals as e in our dataset, i.e.,

test_df\$e ← residuals(est_model)

Example: Breusch-Pagan

In B-P, we first regress e_i^2 on the explanatory variables,

Example: Breusch-Pagan

and use the resulting R^2 to calculate a test statistic.

```
# Regress squared residuals on explanatory variables
bp_model ← lm(I(e^2) ~ ratio + income, data = test_df)
# Grab the R-squared
(bp_r2 ← summary(bp_model)$r.squared)
```

#> [1] 3.23205e-05

Example: Breusch-Pagan

The Breusch-Pagan test statistic is

 ${
m LM}=n imes R_e^2$

Example: Breusch-Pagan

- The Breusch-Pagan test statistic is
- ${
 m LM}=n imes R_e^2pprox 420 imes 0.0000323$

Example: Breusch-Pagan

```
The Breusch-Pagan test statistic is
```

 ${
m LM}=n imes R_e^2pprox 420 imes 0.0000323pprox 0.0136$

which we test against a χ^2_k distribution (here: k=2).[†]

Example: Breusch-Pagan

```
The Breusch-Pagan test statistic is
```

 ${
m LM}=n imes R_e^2pprox 420 imes 0.0000323pprox 0.0136$

which we test against a χ^2_k distribution (here: k=2).⁺

#> [1] 0.9932357

[+]: k is the number of explanatory variables (excluding the intercept).

Example: Breusch-Pagan

 $\mathsf{H}_{0}\!\!:lpha_{1}=lpha_{2}=0$ vs. $\mathsf{H}_{\mathsf{A}}\!\!:lpha_{1}
eq 0$ and/or $lpha_{2}
eq 0$

for the model $u_i^2 = lpha_0 + lpha_1 \mathrm{Ratio}_i + lpha_2 \mathrm{Income}_i + w_i$

Example: Breusch-Pagan

 $\mathsf{H}_{0}\!\!:lpha_{1}=lpha_{2}=0$ vs. $\mathsf{H}_{\mathsf{A}}\!\!:lpha_{1}
eq 0$ and/or $lpha_{2}
eq 0$

for the model $u_i^2 = lpha_0 + lpha_1 \mathrm{Ratio}_i + lpha_2 \mathrm{Income}_i + w_i$

Breusch-Pagan test statistic: $\widehat{LM}\approx 0.014$

Example: Breusch-Pagan

 $\mathsf{H}_{0}\!\!:lpha_{1}=lpha_{2}=0$ vs. $\mathsf{H}_{\mathsf{A}}\!\!:lpha_{1}
eq 0$ and/or $lpha_{2}
eq 0$

for the model $u_i^2 = lpha_0 + lpha_1 \mathrm{Ratio}_i + lpha_2 \mathrm{Income}_i + w_i$

Breusch-Pagan test statistic: $\widehat{LM}\approx 0.014$

 $p ext{-value} pprox 0.993$

Example: Breusch-Pagan

 $\mathsf{H}_{0}\!\!:lpha_{1}=lpha_{2}=0$ vs. $\mathsf{H}_{\mathsf{A}}\!\!:lpha_{1}
eq 0$ and/or $lpha_{2}
eq 0$

for the model $u_i^2 = lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 ext{Income}_i + w_i$

Breusch-Pagan test statistic: $\widehat{LM}\approx 0.014$

p-value pprox 0.993

 \therefore Fail to reject H₀ (the *p*-value is greater than 0.05)

Example: Breusch-Pagan

 $\mathsf{H}_{0}\!\!:lpha_{1}=lpha_{2}=0$ vs. $\mathsf{H}_{\mathsf{A}}\!\!:lpha_{1}
eq 0$ and/or $lpha_{2}
eq 0$

for the model $u_i^2 = lpha_0 + lpha_1 \mathrm{Ratio}_i + lpha_2 \mathrm{Income}_i + w_i$

Breusch-Pagan test statistic: $\widehat{LM}\approx 0.014$

p-value pprox 0.993

 \therefore Fail to reject H₀ (the *p*-value is greater than 0.05)

Conclusion: We do not find statistically significant evidence of heteroskedasticity at the 5-percent level.

Example: Breusch-Pagan

 $\mathsf{H}_{0}\!\!:lpha_{1}=lpha_{2}=0$ vs. $\mathsf{H}_{\mathsf{A}}\!\!:lpha_{1}
eq 0$ and/or $lpha_{2}
eq 0$

for the model $u_i^2 = lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 ext{Income}_i + w_i$

Breusch-Pagan test statistic: $\widehat{LM}\approx 0.014$

 $p ext{-value} pprox 0.993$

 \therefore Fail to reject H₀ (the *p*-value is greater than 0.05)

Conclusion: We do not find statistically significant evidence of heteroskedasticity at the 5-percent level. (We find no evidence of a *linear* relationship between u_i^2 and the explanatory variables.)

Example: Breusch-Pagan

The Breusch-Pagan test statistic and its null distribution

Heteroskedasticity

Example: White

The White test adds squared terms and interactions to the B-P test.

$$egin{aligned} &u_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 ext{Income}_i \ &+ lpha_3 ext{Ratio}_i^2 + lpha_4 ext{Income}_i^2 + lpha_5 ext{Ratio}_i imes ext{Income}_i \ &+ w_i \end{aligned}$$

which moves the null hypothesis from H₀: $\alpha_1 = \alpha_2 = 0$ to H₀: $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0$

Heteroskedasticity

Example: White

The White test adds squared terms and interactions to the B-P test.

$$egin{aligned} &u_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 ext{Income}_i \ &+ lpha_3 ext{Ratio}_i^2 + lpha_4 ext{Income}_i^2 + lpha_5 ext{Ratio}_i imes ext{Income}_i \ &+ w_i \end{aligned}$$

which moves the null hypothesis from H₀: $\alpha_1 = \alpha_2 = 0$ to H₀: $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0$

So we just need to update our R code, and we're set.

Heteroskedasticity

Example: White

Aside: R has funky notation for squared terms and interactions in lm():

- **Squared terms** use I(), *e.g.*, $lm(y ~ I(x^2))$
- Interactions use : between the variables, *e.g.*, lm(y ~ x1:x2)

Example: Regress y on quadratic of x1 and x2:

```
# Pretend quadratic regression w/ interactions
lm(y ~ x1 + x2 + I(x1<sup>2</sup>) + I(x2<sup>2</sup>) + x1:x2, data = pretend_df)
```

Example: White

Step 1: Regress e_i^2 on 1st degree, 2nd degree, and interactions

```
# Regress squared residuals on quadratic of explanatory variables
white_model ← lm(
    I(e^2) ~ ratio + income + I(ratio^2) + I(income^2) + ratio:income,
    data = test_df
)
# Grab the R-squared
(white_r2 ← summary(white_model)$r.squared)
```

Example: White

Step 2: Collect R_e^2 from the regression.

```
# Regress squared residuals on quadratic of explanatory variables
white_model ← lm(
    I(e^2) ~ ratio + income + I(ratio^2) + I(income^2) + ratio:income,
    data = test_df
)
# Grab the R-squared
(white_r2 ← summary(white_model)$r.squared)
```

#> [1] 0.07332222

Example: White

Step 3: Calculate White test statistic $\mathrm{LM} = n imes R_e^2 pprox 420 imes 0.073$

```
# Regress squared residuals on quadratic of explanatory variables
white_model ← lm(
    I(e^2) ~ ratio + income + I(ratio^2) + I(income^2) + ratio:income,
    data = test_df
)
# Grab the R-squared
white_r2 ← summary(white_model)$r.squared
# Calculate the White test statistic
(white stat ← 420 * white r2)
```

#> [1] 30.79533

Example: White

Step 4: Calculate the associated *p*-value (where $\operatorname{LM} \stackrel{d}{\sim} \chi^2_k$); here, k=5

```
# Regress squared residuals on quadratic of explanatory variables
white_model ← lm(
    I(e^2) ~ ratio + income + I(ratio^2) + I(income^2) + ratio:income,
    data = test_df
)
# Grab the R-squared
white_r2 ← summary(white_model)$r.squared
# Calculate the White test statistic
white_stat ← 420 * white_r2
# Calculate the p-value
pchisq(q = white_stat, df = 5, lower.tail = F)
```

#> [1] 1.028039e-05

Example: White

Putting everything together...

Example: White

Putting everything together...

 $oxdota_0: lpha_1=lpha_2=lpha_3=lpha_4=lpha_5=0$

Example: White

Putting everything together...

 $extsf{H}_0: lpha_1=lpha_2=lpha_3=lpha_4=lpha_5=0$ vs. $extsf{H}_{ extsf{A}}: lpha_i
eq 0$ for some $i\in\{1,\,2,\,\ldots,\,5\}$

Example: White

Putting everything together...

 $extsf{H}_0: lpha_1=lpha_2=lpha_3=lpha_4=lpha_5=0$ vs. $extsf{H}_{ extsf{A}}: lpha_i
eq 0$ for some $i\in\{1,\,2,\,\ldots,\,5\}$

$$egin{aligned} u_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 ext{Income}_i \ &+ lpha_3 ext{Ratio}_i^2 + lpha_4 ext{Income}_i^2 \ &+ lpha_5 ext{Ratio}_i imes ext{Income}_i + w_i \end{aligned}$$

Example: White

Putting everything together...

 $extsf{H}_0: lpha_1=lpha_2=lpha_3=lpha_4=lpha_5=0$ vs. $extsf{H}_{ extsf{A}}: lpha_i
eq 0$ for some $i\in\{1,\,2,\,\ldots,\,5\}$

$$egin{aligned} u_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 ext{Income}_i \ &+ lpha_3 ext{Ratio}_i^2 + lpha_4 ext{Income}_i^2 \ &+ lpha_5 ext{Ratio}_i imes ext{Income}_i + w_i \end{aligned}$$

Our White test statistic: ${
m LM}=n imes R_e^2pprox 420 imes 0.073pprox 30.8$

Example: White

Putting everything together...

 $extsf{H}_0: lpha_1=lpha_2=lpha_3=lpha_4=lpha_5=0$ vs. $extsf{H}_{ extsf{A}}: lpha_i
eq 0$ for some $i\in\{1,\,2,\,\ldots,\,5\}$

$$egin{aligned} u_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 ext{Income}_i \ &+ lpha_3 ext{Ratio}_i^2 + lpha_4 ext{Income}_i^2 \ &+ lpha_5 ext{Ratio}_i imes ext{Income}_i + w_i \end{aligned}$$

Our White test statistic: ${
m LM}=n imes R_e^2pprox 420 imes 0.073pprox 30.8$

Under the χ^2_5 distribution, this $\widehat{\mathrm{LM}}$ has a *p*-value less than 0.001.

Example: White

Putting everything together...

 $extsf{H}_0: lpha_1=lpha_2=lpha_3=lpha_4=lpha_5=0$ vs. $extsf{H}_{ extsf{A}}: lpha_i
eq 0$ for some $i\in\{1,\,2,\,\ldots,\,5\}$

$$egin{aligned} u_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 ext{Income}_i \ &+ lpha_3 ext{Ratio}_i^2 + lpha_4 ext{Income}_i^2 \ &+ lpha_5 ext{Ratio}_i imes ext{Income}_i + w_i \end{aligned}$$

Our White test statistic: ${
m LM}=n imes R_e^2pprox 420 imes 0.073pprox 30.8$

Under the χ^2_5 distribution, this $\widehat{\mathrm{LM}}$ has a *p*-value less than 0.001.

: We reject H₀

Example: White

Putting everything together...

 $extsf{H}_0: lpha_1=lpha_2=lpha_3=lpha_4=lpha_5=0$ vs. $extsf{H}_{ extsf{A}}: lpha_i
eq 0$ for some $i\in\{1,\,2,\,\ldots,\,5\}$

$$egin{aligned} u_i^2 =& lpha_0 + lpha_1 ext{Ratio}_i + lpha_2 ext{Income}_i \ &+ lpha_3 ext{Ratio}_i^2 + lpha_4 ext{Income}_i^2 \ &+ lpha_5 ext{Ratio}_i imes ext{Income}_i + w_i \end{aligned}$$

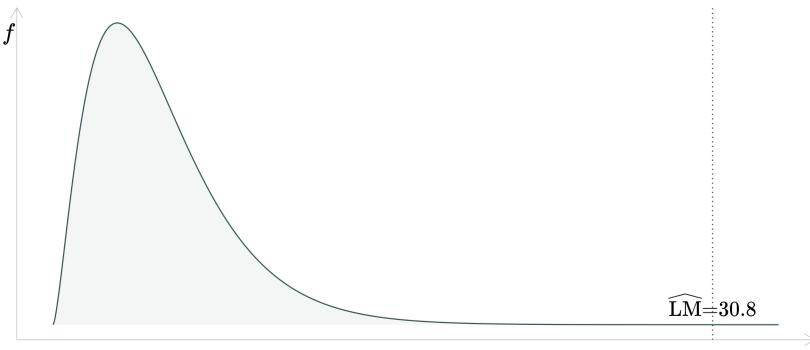
Our White test statistic: ${
m LM}=n imes R_e^2pprox 420 imes 0.073pprox 30.8$

Under the χ^2_5 distribution, this $\widehat{\mathrm{LM}}$ has a *p*-value less than 0.001.

∴ We **reject H**⁰ and conclude there is **statistically significant evidence of heteroskedasticity** (at the 5-percent level).

Example: White

The White test statistic and its null distribution



- **Q:** What is the definition of heteroskedasticity?
- **Q:** Why are we concerned about heteroskedasticity?
- **Q:** Does plotting *y* against *x*, tell us anything about heteroskedasticity?
- **Q:** Does plotting *e* against *x*, tell us anything about heteroskedasticity?
- **Q:** Since we cannot observe the u_i 's, what do we use to *learn about* heteroskedasticity?
- **Q:** Which test do you recommend to test for heteroskedasticity? Why?

Review questions

• **Q:** What is the definition of heteroskedasticity?

Review questions

- **Q:** What is the definition of heteroskedasticity?
- A:

Math: $\operatorname{Var}(u_i|X) \neq \operatorname{Var}(u_j|X)$ for some $i \neq j$.

Words: There is a systematic relationship between the variance of u_i and our explanatory variables.

- **Q:** What is the definition of heteroskedasticity?
- **Q:** Why are we concerned about heteroskedasticity?

- **Q:** What is the definition of heteroskedasticity?
- **Q:** Why are we concerned about heteroskedasticity?
- A: It biases our standard errors—wrecking our statistical tests and confidence intervals. Also: OLS is no longer the most efficient (best) linear unbiased estimator.

- **Q:** What is the definition of heteroskedasticity?
- **Q:** Why are we concerned about heteroskedasticity?
- **Q:** Does plotting *y* against *x*, tell us anything about heteroskedasticity?

- **Q:** What is the definition of heteroskedasticity?
- **Q:** Why are we concerned about heteroskedasticity?
- **Q:** Does plotting y against x, tell us anything about heteroskedasticity?
- A: It's not exactly what we want, but since y is a function of x and u, it can still be informative. If y becomes more/less disperse as x changes, we likely have heteroskedasticity.

- **Q:** What is the definition of heteroskedasticity?
- **Q:** Why are we concerned about heteroskedasticity?
- **Q:** Does plotting y against x, tell us anything about heteroskedasticity?
- **Q:** Does plotting *e* against *x*, tell us anything about heteroskedasticity?

- **Q:** What is the definition of heteroskedasticity?
- **Q:** Why are we concerned about heteroskedasticity?
- **Q:** Does plotting y against x, tell us anything about heteroskedasticity?
- **Q:** Does plotting e against x, tell us anything about heteroskedasticity?
- **A:** Yes. The spread of *e* depicts its variance—and tells us something about the variance of *u*. Trends in this variance, along *x*, suggest heteroskedasticity.

- **Q:** What is the definition of heteroskedasticity?
- **Q:** Why are we concerned about heteroskedasticity?
- **Q:** Does plotting y against x, tell us anything about heteroskedasticity?
- **Q:** Does plotting e against x, tell us anything about heteroskedasticity?
- **Q:** Since we cannot observe the u_i 's, what do we use to *learn about* heteroskedasticity?

- **Q:** What is the definition of heteroskedasticity?
- **Q:** Why are we concerned about heteroskedasticity?
- **Q:** Does plotting y against x, tell us anything about heteroskedasticity?
- **Q:** Does plotting *e* against *x*, tell us anything about heteroskedasticity?
- **Q:** Since we cannot observe the u_i 's, what do we use to *learn about* heteroskedasticity?
- A: We use the e_i 's to predict/learn about the u_i 's. This trick is key for almost everything we do with heteroskedasticity testing/correction.

- **Q:** What is the definition of heteroskedasticity?
- **Q:** Why are we concerned about heteroskedasticity?
- **Q:** Does plotting y against x, tell us anything about heteroskedasticity?
- **Q:** Does plotting e against x, tell us anything about heteroskedasticity?
- **Q:** Since we cannot observe the u_i 's, what do we use to *learn about* heteroskedasticity?
- **Q:** Which test do you recommend to test for heteroskedasticity? Why?

- **Q:** What is the definition of heteroskedasticity?
- **Q:** Why are we concerned about heteroskedasticity?
- **Q:** Does plotting y against x, tell us anything about heteroskedasticity?
- **Q:** Does plotting e against x, tell us anything about heteroskedasticity?
- **Q:** Since we cannot observe the u_i 's, what do we use to *learn about* heteroskedasticity?
- **Q:** Which test do you recommend to test for heteroskedasticity? Why?
- A: I like White. Fewer assumptions. Fewer issues.