EC 421 Midterm Topics

Spring 2020

Note: In general, you do not need to memorize proofs. Just understand the steps. I might ask how you get from one step to the next. I won't ask you to write down a full proof.

Slide Set 1: Intro

- The goal of econometrics
- Regression notation
- Basic concept of causality

Slide Set 2: Review I

- Population vs. sample
 - Parameters vs. sample estimates
 - Estimators and uncertainty
- Uncertainty
 - Standard errors
 - Hypothesis testing
 - t tests
 - F tests
 - Forming hypotheses
 - critical value
 - p-value
 - Confidence intervals
- Linear regression and OLS
 - "Best-fit" line
 - Residuals
 - SSE
 - Estimators: bias and variance
 - Statistical inference
 - Variance (and standard error) of the OLS estimator
 - Regressions with R's lm function

Slide Set 3: Review II

- Simple and multiple linear regression
- Model fit
 - R squared
 - Overfitting
 - Adjusted R squared
- Omitted-variable bias
- Interpreting coefficients
 - Simple linear regression
 - Multiple linear regression (ceterus paribus)
 - Continuous explanatory variables
 - Categorical explanatory variables
 - Interactions
 - Specifications
 - Linear-linear
 - Log-linear
 - Log-log
- Inference vs. prediction

Slide Set 4: Heteroskedasticity

- The meaning of each of our assumptions/requirements
- Heteroskedasticity
 - What it is
 - What it looks like
 - Consequences for OLS
- Tests for heteroskedasticity
 - Goldfeld-Quandt test
 - Breusch-Pagan test
 - White test
 - Chi-squared distribution
 - Null and alternative hypotheses of each test
 - Interpretations/conclusions for each
 - Strengths and weaknesses of each test

Slide Set 5: Living with Heteroskedasticity

- Misspecification
- Weighted least squares
- Heteroskedasticity-robust standard errors

Slide Set 6: Asymptotics and Consistency

- Asymptotics
 - Compared to 'finite-sample' attributes (probability limits vs. expected values)
 - Probability limits
- Consistency
- Signing the bias from omitted variables.
- Measurement error and attenuation bias.
- Examples of measurement error