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1. Prediction: Accurately and dependably predict/forecast  using on
some set of explanatory variables—doesn't need to be  through .
Focuses on .  doesn't really matter.

2. Causal estimation:† Estimate the actual data-generating process—
learning about the true, population model that explains how  changes
when we change —focuses on . Accuracy of  is not important.

For the rest of the term, we will focus on causally estimating .
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Econometric challenges

Omitted-variable bias
Reverse causality
Measurement error
How precise can/must we be?

Causality

The challenges
As you saw in the data-analysis exercise, determining and estimating the
true model can be pretty difficult—both practically and econometrically.

Many of these challenges relate to exogeneity, i.e., . 
Causality requires us to hold all else constant (ceterus paribus).

E[ui|X] = 0
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Causality

It's complicated
Occasionally, causal relationships are simply/easily understood, e.g.,

What caused the forest fire?
How did this baby get here?

Generally, causal relationships are complex and challenging to answer, e.g.,

What causes some countries to grow and others to decline?
What caused President Trump's 2016 election?
How does the number of police officers affect crime?
What is the effect of better air quality on test scores?
Do longer prison sentences decrease crime?
How did cannabis legalization affect mental health/opioid addiction?
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Causality

Correlation ≠ Causation
You've likely heard the saying

Correlation is not causation.

The saying is just pointing out that there are violations of exogeneity.

Although correlation is not causation, causation requires correlation.

New saying:

Correlation plus exogeneity is causation.
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Example: The causal effect of fertilizer
Randomized experiments help us maintain all else equal (exogeneity).

We often call these experiments randomized control trials (RCTs).†

Imagine an RCT where we have two groups:

Treatment: We apply fertilizer.
Control: We do not apply fertilizer.

By randomizing plots of land into treatment or control, we will, on average,
include all kinds of land (soild, slope, water, etc.) in both groups.

All else equal!

† Econometrics (and statistics) borrows this language from biostatistics and pharmaceutical trials.
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We can estimate the causal effect of fertilizer on crop yield by comparing
the average yield in the treatment group (�) with the control group (no �).

Alternatively, we can use the regression

where  is a binary variable (=1 if plot  received the fertilizer treatment).

Q: Should we expect  to satisfy exogeneity? Why? 
A: On average, randomly assigning treatment should balance trt. and
control across the other dimensions that affect yield (soil, slope, water).

¯̄¯̄¯̄¯̄¯̄¯̄¯
YieldTreatment −

¯̄¯̄¯̄¯̄¯̄¯̄¯
YieldControl
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Labor economists, policy makers, parents, and students are all interested in
the (monetary) return to education.

Thought experiment:

Randomly select an individual.
Give her an additional year of education.
How much do her earnings increase?

This change in earnings gives the causal effect of education on earnings.
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Q: Could we simply regress earnings on education? 
A: Again, probably not if we want the true, causal effect.

1. People choose education based upon many factors, e.g., ability.
2. Education likely reduces experience (time out of the workforce).
3. Education is endogenous (violates exogeneity).

The point (2) above also illustrates the difficulty in learning about
educations while holding all else constant.

Many important variables have the same challenge—gender, race, income.
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Example: Returns to education
Q: So how can we estimate the returns to education?

Option 1: Run an experiment.

Randomly assign education (might be difficult).
Randomly encourage education (might work).
Randomly assign programs that affect education (e.g., mentoring).

Option 2: Look for a natural experiment—a policy or accident in society
that arbitrarily increased education for one subset of people.

Admissions cutoffs
Lottery enrollment and/or capacity constraints
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Real-world experiments
Both examples consider real experiments that isolate causal effects.

Characteristics

Feasible—we can actually (potentially) run the experiment.
Compare individuals randomized into treatment against individuals
randomized into control.
Require "good" randomization to get all else equal (exogeneity).
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Real-world experiments
Both examples consider real experiments that isolate causal effects.

Characteristics

Feasible—we can actually (potentially) run the experiment.
Compare individuals randomized into treatment against individuals
randomized into control.
Require "good" randomization to get all else equal (exogeneity).

Note: Your experiment's results are only as good as your randomization.
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Causality

The ideal experiment
The ideal experiment would be subtly different.

Rather than comparing units randomized as treatment vs. control, the ideal
experiment would compare treatment and control for the same, exact unit.

which we will write (for simplicity) as

This ideal experiment is clearly infeasible†, but it creates nice notation for
causality (the Rubin causal model/Neyman potential outcomes framework).

yTreatment,i − yControl,i

y1,i − y0,i

† Without (1) God-like abilities and multiple universes or (2) a time machine.
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The ideal data for 10 people

#>     i trt  y1i  y0i
#> 1   1   1 5.01 2.56
#> 2   2   1 8.85 2.53
#> 3   3   1 6.31 2.67
#> 4   4   1 5.97 2.79
#> 5   5   1 7.61 4.34
#> 6   6   0 7.63 4.15
#> 7   7   0 4.75 0.56
#> 8   8   0 5.77 3.52
#> 9   9   0 7.47 4.49
#> 10 10   0 7.79 1.40

Causality

The ideal experiment

19 / 27



The ideal data for 10 people

#>     i trt  y1i  y0i
#> 1   1   1 5.01 2.56
#> 2   2   1 8.85 2.53
#> 3   3   1 6.31 2.67
#> 4   4   1 5.97 2.79
#> 5   5   1 7.61 4.34
#> 6   6   0 7.63 4.15
#> 7   7   0 4.75 0.56
#> 8   8   0 5.77 3.52
#> 9   9   0 7.47 4.49
#> 10 10   0 7.79 1.40

Calculate the causal effect of trt.

for each individual .

Causality

The ideal experiment

τi = y1,i − y0,i

i

19 / 27



The ideal data for 10 people

#>     i trt  y1i  y0i effect_i
#> 1   1   1 5.01 2.56     2.45
#> 2   2   1 8.85 2.53     6.32
#> 3   3   1 6.31 2.67     3.64
#> 4   4   1 5.97 2.79     3.18
#> 5   5   1 7.61 4.34     3.27
#> 6   6   0 7.63 4.15     3.48
#> 7   7   0 4.75 0.56     4.19
#> 8   8   0 5.77 3.52     2.25
#> 9   9   0 7.47 4.49     2.98
#> 10 10   0 7.79 1.40     6.39

Calculate the causal effect of trt.

for each individual .

Causality

The ideal experiment

τi = y1,i − y0,i

i

19 / 27



The ideal data for 10 people

#>     i trt  y1i  y0i effect_i
#> 1   1   1 5.01 2.56     2.45
#> 2   2   1 8.85 2.53     6.32
#> 3   3   1 6.31 2.67     3.64
#> 4   4   1 5.97 2.79     3.18
#> 5   5   1 7.61 4.34     3.27
#> 6   6   0 7.63 4.15     3.48
#> 7   7   0 4.75 0.56     4.19
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#> 9   9   0 7.47 4.49     2.98
#> 10 10   0 7.79 1.40     6.39

Calculate the causal effect of trt.

for each individual .

The mean of  is the 
average treatment effect (ATE).

Thus, 

Causality

The ideal experiment

τi = y1,i − y0,i

i

τi

¯̄̄τ = 3.82
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Causality

The ideal experiment
This model highlights the fundamental problem of causal inference.

The challenge:

If we observe , then we cannot observe .  
If we observe , then we cannot observe .

τi = y1,i − y0,i

y1,i y0,i

y0,i y1,i
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#>     i trt  y1i  y0i
#> 1   1   1 5.01   NA
#> 2   2   1 8.85   NA
#> 3   3   1 6.31   NA
#> 4   4   1 5.97   NA
#> 5   5   1 7.61   NA
#> 6   6   0   NA 4.15
#> 7   7   0   NA 0.56
#> 8   8   0   NA 3.52
#> 9   9   0   NA 4.49
#> 10 10   0   NA 1.40
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So a dataset that we actually observe for 6 people will look something like
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#> 9   9   0   NA 4.49
#> 10 10   0   NA 1.40

We can't observe  and .

But, we do observe

 for  in 1, 2, 3, 4, 5
 for  in 6, 7, 8, 9, 10

Causality

The ideal experiment
So a dataset that we actually observe for 6 people will look something like

Q: How do we "fill in" the NA s and estimate ?

y1,i y0,i

y1,i i

y0,j j

¯̄̄τ
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Causally estimating the treatment effect
Notation: Let  be a binary indicator variable such that
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Q: How can we estimate  using only  and ?

Idea: What if we compare the groups' means? I.e.,

Q: When does this simple difference in groups' means provide information
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Q2.0: Is  a good estimator for ?
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Causally estimating the treatment effect
Q: How can we estimate  using only  and ?

Idea: What if we compare the groups' means? I.e.,

Q: When does this simple difference in groups' means provide information
on the causal effect of the treatment?

Q2.0: Is  a good estimator for ?

Time for math! �

¯̄̄τ (y1,i|Di = 1) (y0,i|Di = 0)

Avg(yi ∣ Di = 1) − Avg(yi ∣ Di = 0)
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This assumption says that the treatment effect is equal (constant) across
all individuals .

τi = τ i

i
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Causality

Causally estimating the treatment effect
Assumption: Let  for all .

This assumption says that the treatment effect is equal (constant) across
all individuals .

Note: We defined

which implies

τi = τ i

i

τi = τ = y1,i − y0,i

y1,i = y0,i + τ

24 / 27



Q3.0: Is  a good estimator for ?Avg(yi ∣ Di = 1) − Avg(yi ∣ Di = 0) τ
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Difference in groups' means 

 

 

 

 

So our proposed group-difference estimator give us the sum of

1. , the causal, average treatment effect that we want
2. Selection bias: How much trt. and control groups differ (on average).

Avg(yi ∣ Di = 1) − Avg(yi ∣ Di = 0) τ

∣
∣
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Next time: Solving selection bias.
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