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Schedule

Last Time
Autocorrelation

Today
Brief introduction to nonstationarity
Then: Causality

Upcoming
Assignment this afternoon.
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Nonstationarity
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Nonstationarity

Intro
Let's go back to our assumption of weak dependence/persistence

1. Weakly persistent outcomes—essentially,  in the distant
period  weakly correlates with  (when  is "big").
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Nonstationarity

Intro
Let's go back to our assumption of weak dependence/persistence

1. Weakly persistent outcomes—essentially,  in the distant
period  weakly correlates with  (when  is "big").

We're essentially saying we need the time series  to behave.

We'll define this good behavior as stationarity.
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Nonstationarity

Stationarity
Requirements for stationarity (a stationary time-series process):
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Nonstationarity

Stationarity
Requirements for stationarity (a stationary time-series process):

1. The mean of the distribution is independent of time, i.e.,

 for all 

2. The variance of the distribution is independent of time, i.e.,

 for all 

3. The covariance between  and  depends only on —not on , i.e.,

 for all  and 

E[xt] = E[xt−k] k

Var(xt) = Var(xt−k) k

xt xt−k k t

Cov(xt, xt−k) = Cov(xs, xs−k) t s
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Random walks
Random walks are a famous example of a nonstationary process:

Why? , which violates stationary variance.

xt = xt−1 + εt

Var(xt) = tσ
2
ε

Var(xt) = Var(xt−1 + εt)

= Var(xt−2 + εt−1 + εt)

= Var(xt−3 + εt−2 + εt−1 + εt)

⋯

= Var(x0 + ε1 + ⋯ + εt2
+ εt−1 + εt)

= σ
2
ε + ⋯ + σ

2
ε + σ

2
ε + σ

2
ε

= tσ
2
ε
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Q: What's the big deal with this violation?
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One 100-period random walk
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Two 100-period random walks
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Three 100-period random walks
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Four 100-period random walks
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Five 100-period random walks

13 / 23



Fifty 100-period random walks
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1,000 100-period random walks
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Nonstationarity

Problem
One problem is that nonstationary processes can lead to spurious results.
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Nonstationarity

Problem
One problem is that nonstationary processes can lead to spurious results.

Defintion: Spurious

not being what it purports to be; false or fake
apparently but not actually valid

Back in 1974, Granger and Newbold showed that when they generated
random walks and regressed the random walks on each other, 77/100
regressions were statistically significant at the 5% level (should have been
approximately 5/100).
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Granger and Newbold simulation example: t statistic ≈ -10.58
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Granger and Newbold simulation example: t statistic ≈ -8.92
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Granger and Newbold simulation example: t statistic ≈ -7.23
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Nonstationarity

Problem
In our data, 74.6 percent of (independently generated) pairs reject the null
hypothesis at the 5% level.
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Nonstationarity

Problem
In our data, 74.6 percent of (independently generated) pairs reject the null
hypothesis at the 5% level.

The point? If our disturbance is nonstationary, we cannot trust plain OLS.

Random walks are only one example of nonstationary processes...

Random walk: 

Random walk with drift: 

Deterministic trend: 

ut = ut−1 + εt

ut = α0 + ut−1 + εt

ut = α0 + β1t + εt
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Nonstationarity

A potential solution
Some processes are difference stationary, which means we can get back to
our stationarity (good behavior) requirement by taking the difference
between  and .ut ut−1
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Nonstationarity

A potential solution
Some processes are difference stationary, which means we can get back to
our stationarity (good behavior) requirement by taking the difference
between  and .

Nonstationary:  (a random walk) 
Stationary: 

So if we have good reason to believe that our disturbances follow a random
walk, we can use OLS on the differences, i.e.,

ut ut−1

ut = ut−1 + εt

ut − ut−1 = ut−1 + εt − ut−1 = εt

yt = β0 + β1xt + ut

yt−1 = β0 + β1xt−1 + ut−1

yt − yt−1 = β1 (xt − xt−1) + (ut − ut−1)

Δyt = β1Δxt + Δut
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Nonstationarity

Testing
Dickey-Fuller and augmented Dickey-Fuller tests are popular ways to test of
random walks and other forms of nonstationarity.
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Nonstationarity

Testing
Dickey-Fuller and augmented Dickey-Fuller tests are popular ways to test of
random walks and other forms of nonstationarity.

Dickey-Fuller tests compare

Ho:  with  (stationarity)  
Ha:  (random walk)

using a t test that .†

yt = β0 + β1yt−1 + ut |β1| < 1

yt = yt−1 + εt

|β1| < 1

† People often just test .β1 < 1
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