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Midterm

Summary of grades
Min: 33

25th: 72

Mean: 82

Median: 81

75th: 94

Max: 108
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EC 421

About our class
1. EC 421 is a hard class.

2. EC 421 requires more math/theory than most other classes.

3. This theory is important—why/when you can trust OLS/regression.

4. With all of this theory, we get fewer traditional examples. Proofs and
simulations are our examples.

5. Midterm will mix theory, intuition, and application.
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Example questions

Theory
In our proof of the consistency of the OLS estimator for  (for simple
linear regression), we got to the point where we had

What does the right-hand side of  need to simplify to for the OLS
estimator  to be consistent?

β1

plim β̂1 = β1 + (1)
Cov(x1, u)

Var(x1)

(1)

β̂
1
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Example questions

Intuition
We've shown that omitted variables can cause OLS to be biased and
inconsistent.

1. What are the two requirements for an omitted variable to cause
bias/inconsistency in OLS?

2. Provide an example of a regression that would suffer from omitted
variable bias. Explain why it could be biased.

3. Does leaving out a variable from a regression always bias OLS? Explain
your answer.
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Example questions

Application
Your friend is concerned about heteroskedasticity in the regression below.

Because you are such a great friend, you estimated regressions  and .

The regression in  has and R2 of 0.20, and the regression in  has and
R2 of 0.30. You have 100 observations.

1. Calculate the Breusch-Pagan test statistic testing heterosk. in .
2. The critical value for the Breusch-Pagan test is 6. Finish the B-P test

(state your hypotheses; determine your conclusion).

yi = β̂
0

+ β̂
1
x1i + β̂

2
x2i + ei

e2
i

= β̂
0

+ β̂
1
x1i + β̂

2
x2i + vi

e2
i

= β̂
0

+ β̂
1
x1i + β̂

2
x2i + β̂

3
x2

1i
+ β̂

4
x2

2i
+ β̂

5
x1ix2i + wi

(2)

(3)

(4)

(3) (4)

(3) (4)

(1)
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Asymptotics and consistency
Review
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Asymptotics and consistency

Review
1. Compare/contrast the concepts expected value and probability limit.

2. What does it mean if the estimator  is consistent for ?

3. What is required for an omitted variable to bias OLS estimates of ?

4. Does omitted-variable bias affect the consistency of OLS for ?

5. What can we know about the direction of omitted-variable bias?

6. How does measurement error in an explanatory variable affect the OLS
estimate for that variable's effect on the outcome variable?

7. How does measurement error in an outcome variable affect OLS?

θ̂ θ

βj

βj
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Time-series data
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Time-series data

Introduction
Up to this point, we focused on cross-sectional data.

Sampled across a population (e.g., people, counties, countries).
Sampled at one moment in time (e.g., Jan. 1, 2015).
We had  individuals, each indexed  in .n i {1, … , n}
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Time-series data

Introduction
Up to this point, we focused on cross-sectional data.

Sampled across a population (e.g., people, counties, countries).
Sampled at one moment in time (e.g., Jan. 1, 2015).
We had  individuals, each indexed  in .

Today, we focus on a different type of data: time-series data.

Sampled within one unit/individual (e.g., Oregon).
Observe multiple times for the same unit (e.g., Oregon: 1990–2020).
We have  time periods, each indexed  in .

n i {1, … , n}

T t {1, … , T}
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US monthly births, 1933–2015: Classic time-series graph  
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US monthly births, 1933–2015: Newfangled time-series graph  
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US monthly births per 30 days, 1933–2015: Newfangled time-series graph  
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Time-series models
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Time-series models

Introduction
Our model now looks something like

Birthst = β0 + β1Incomet + ut
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Time-series models

Introduction
Our model now looks something like

or perhaps

maybe even

where  denotes the time period prior to  (lagged income or births).

Birthst = β0 + β1Incomet + ut

Birthst = β0 + β1Incomet + β3Incomet−1 + ut

Birthst = β0 + β1Incomet + β3Incomet−1 + β4Birthst−1 + ut

t − 1 t

20 / 48



Time-series models

Assumptions
1. New: Weakly persistent outcomes—essentially,  in the distant
period  is weakly correlated with period  (when  is "big").

2.  is a linear function of its parameters and disturbance.

3. There is no perfect collinearity in our data.

4. The  have conditional mean of zero (exogeneity), .

5. The  are homoskedastic with zero correlation between  and , i.e., 
 and .

6. Normality of disturbances, i.e., .

xt+k

t + k xt k

yt

ut E[ut|X] = 0

ut ut us

Var(ut|X) = Var(ut) = σ2 Cor(ut, us|X) = 0

ut

iid
∼ N(0, σ2)
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Time-series models

Model options
Time-series modeling boils down to two classes of models.

1. Static models: Do not allow for persistent effect.

2. Dynamic models: Allow for persistent effects.
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Time-series models

Model options
Time-series modeling boils down to two classes of models.

1. Static models: Do not allow for persistent effect.

2. Dynamic models: Allow for persistent effects.

Models with lagged explanatory variables

Autoregressive, distributed-lag (ADL) models
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Time-series models

Model options
Option 1: Static models

Static models assume the outcome depends upon only the current period.

Birthst = β0 + β1Incomet + ut
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Time-series models

Model options
Option 1: Static models

Static models assume the outcome depends upon only the current period.

Here, we must believe that income immediately affects the number of
births and does not affect on the numbers of births in the future.

We also need to believe current births do not depend upon previous births.

Can be a very restrictive way to consider time-series data.

Birthst = β0 + β1Incomet + ut
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Time-series models

Model options
Option 2: Dynamic models

Dynamic models allow the outcome to depend upon other periods.
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Time-series models

Model options
Option 2a: Dynamic models with lagged explanatory variables

These models allow the outcome to depend upon the explanatory
variable(s) in other periods.

Birthst =β0 + β1Incomet + β2Incomet−1+

β3Incomet−2 + β4Incomet−3 + ut
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Time-series models

Model options
Option 2a: Dynamic models with lagged explanatory variables

These models allow the outcome to depend upon the explanatory
variable(s) in other periods.
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Time-series models

Model options
Option 2a: Dynamic models with lagged explanatory variables

These models allow the outcome to depend upon the explanatory
variable(s) in other periods.

Here, income immediately affects the number of births and affects future
numbers of births. In other words: Births today depend today's income and
lags of income—e.g., last month's income, last year's income, ...

Estimate total effects by summing lags' coefficients, e.g., .

Birthst =β0 + β1Incomet + β2Incomet−1+
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β1 + β2 + β3 + β4
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Time-series models

Model options
Option 2a: Dynamic models with lagged explanatory variables

These models allow the outcome to depend upon the explanatory
variable(s) in other periods.

Here, income immediately affects the number of births and affects future
numbers of births. In other words: Births today depend today's income and
lags of income—e.g., last month's income, last year's income, ...

Estimate total effects by summing lags' coefficients, e.g., .

Note: We still assume current births don't affect future births.

Birthst =β0 + β1Incomet + β2Incomet−1+

β3Incomet−2 + β4Incomet−3 + ut

β1 + β2 + β3 + β4
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Time-series models

Model options
Option 2b: Autoregressive distributed-lag (ADL) models

These models allow the outcome to depend upon the explanatory
variable(s) and/or the outcome variable in prior periods.

Birthst = β0 + β1Incomet + β2Incomet−1 + β3Birthst−1 + ut
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Time-series models

Model options
Option 2b: Autoregressive distributed-lag (ADL) models

These models allow the outcome to depend upon the explanatory
variable(s) and/or the outcome variable in prior periods.

Here, current income affects affects current births and future births.
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Time-series models

Model options
Option 2b: Autoregressive distributed-lag (ADL) models

These models allow the outcome to depend upon the explanatory
variable(s) and/or the outcome variable in prior periods.

Here, current income affects affects current births and future births.

In addition, current births affect future births—we're allowing lags of the
outcome variable.

Birthst = β0 + β1Incomet + β2Incomet−1 + β3Birthst−1 + ut

26 / 48



Autoregressive distributed-lag models

Numbers of lags
ADL models are often specified as , where

 is the (maximum) number of lags for the outcome variable.

 is the (maximum) number of lags for explanatory variables.

ADL(p, q)

p

q
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Autoregressive distributed-lag models

Numbers of lags
ADL models are often specified as , where

 is the (maximum) number of lags for the outcome variable.

 is the (maximum) number of lags for explanatory variables.

Example: 

Example: 

ADL(p, q)

p

q

ADL(1, 0)

Birthst = β0 + β1Incomet + β2Birthst−1 + ut

ADL(2, 2)
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Autoregressive distributed-lag models

Numbers of lags
ADL models are often specified as , where

 is the (maximum) number of lags for the outcome variable.

 is the (maximum) number of lags for explanatory variables.

Example: 

Example: 

ADL(p, q)

p

q

ADL(1, 0)

Birthst = β0 + β1Incomet + β2Birthst−1 + ut

ADL(2, 2)

Birthst =β0 + β1Incomet + β2Incomet−1 + β3Incomet−2

+ β4Birthst−1 + β5Birthst−2 + ut
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Autoregressive distributed-lag models

Complexity
Due to their lags, ADL models actually estimate even more complex
relationships than you might first guess.

28 / 48



Autoregressive distributed-lag models

Complexity
Due to their lags, ADL models actually estimate even more complex
relationships than you might first guess.

Consider ADL(1, 0): Birthst = β0 + β1Incomet + β2Birthst−1 + ut

28 / 48



Autoregressive distributed-lag models

Complexity
Due to their lags, ADL models actually estimate even more complex
relationships than you might first guess.

Consider ADL(1, 0): 

Write out the model for period :
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t − 1
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Autoregressive distributed-lag models

Complexity
Due to their lags, ADL models actually estimate even more complex
relationships than you might first guess.

Consider ADL(1, 0): 

Write out the model for period :

which we can substitute in for  in the first equation, i.e.,

Birthst = β0 + β1Incomet + β2Birthst−1 + ut

t − 1

Birthst−1 = β0 + β1Incomet−1 + β2Birthst−2 + ut−1

Birthst−1

Birthst =β0 + β1Incomet+

β2(β0 + β1Incomet−1 + β2Birthst−2 + ut−1)


Birthst−1

+ ut
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Autoregressive distributed-lag models

Complexity
Continuing...

Birthst =β0 + β1Incomet+

β2(β0 + β1Incomet−1 + β2Birthst−2 + ut−1)


Birthst−1

+ ut

=β0 (1 + β2) + β1Incomet + β1β2Incomet−1+

β2

2
Birthst−2 + ut + β2ut−1
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Autoregressive distributed-lag models

Complexity
Continuing...

We could then substitute in the equation for , , ...

Birthst =β0 + β1Incomet+

β2(β0 + β1Incomet−1 + β2Birthst−2 + ut−1)


Birthst−1

+ ut

=β0 (1 + β2) + β1Incomet + β1β2Incomet−1+

β2

2
Birthst−2 + ut + β2ut−1

Birthst−2 Birthst−3
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Autoregressive distributed-lag models

Complexity
Eventually we arrive at

Birthst =β0 (1 + β2 + β2

2
+ β3

2
+ ⋯) +

β1 (Incomet + β2Incomet−1 + β2

2
Incomet−2 + ⋯) +

ut + β2ut−1 + β2

2
ut−2 + ⋯
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Autoregressive distributed-lag models

Complexity
Eventually we arrive at

The point?

Birthst =β0 (1 + β2 + β2

2
+ β3

2
+ ⋯) +

β1 (Incomet + β2Incomet−1 + β2

2
Incomet−2 + ⋯) +

ut + β2ut−1 + β2

2
ut−2 + ⋯
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Autoregressive distributed-lag models

Complexity
Eventually we arrive at

The point?

By including just one lag of the dependent variable—as in a ADL(1, 0)—we
implicitly include for many lags of the explanatory variables and
disturbances.†

Birthst =β0 (1 + β2 + β2

2
+ β3

2
+ ⋯) +

β1 (Incomet + β2Incomet−1 + β2

2
Incomet−2 + ⋯) +

ut + β2ut−1 + β2

2
ut−2 + ⋯

† These lags enter into the equation in a very specific way—not the most flexible specification.
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Autoregressive distributed-lag models

The partial-adjustment model
There are times that actually want to model an individual's desired
amount, rather than her actual amount
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Autoregressive distributed-lag models

The partial-adjustment model
There are times that actually want to model an individual's desired
amount, rather than her actual amount, but we are unable to observe the
desired level.

Partial-adjustment models help us model this situation.

31 / 48



Autoregressive distributed-lag models

The partial-adjustment model
Example

We want to know how the desired number of cigarettes,  , changes
with the current period's cigarette tax, e.g.,

C̃ig
t

C̃ig
t

= β0 + β1Taxt + ut (A)
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Autoregressive distributed-lag models

The partial-adjustment model
Example

We want to know how the desired number of cigarettes,  , changes
with the current period's cigarette tax, e.g.,

Imagine actual cigarette consumption, , doesn't change immediately
(e.g., habit persistence). Instead, consumption depends upon current
desired level and previous consumption level

C̃ig
t

C̃ig
t

= β0 + β1Taxt + ut (A)

Cig
t

Cig
t

= λC̃ig
t

+ (1 − λ) Cig
t−1

(B)

32 / 48



Autoregressive distributed-lag models

The partial-adjustment model
Example, continued

C̃ig
t

= β0 + β1Taxt + ut

Cig
t

= λC̃ig
t

+ (1 − λ) Cig
t−1

(A)

(B)

33 / 48



Autoregressive distributed-lag models

The partial-adjustment model
Example, continued

Substituting  from  into  yields

C̃ig
t

= β0 + β1Taxt + ut

Cig
t

= λC̃ig
t

+ (1 − λ) Cig
t−1

(A)

(B)

C̃ig
t

(A) (B)

Cig
t

= λ (β0 + β1Taxt + ut) + (1 − λ) Cig
t−1

= λβ0 + λβ1Taxt + (1 − λ) Cig
t−1 + λut (C)
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Autoregressive distributed-lag models

The partial-adjustment model
Example, continued

Substituting  from  into  yields

The equation in  is ADL(1, 0).

C̃ig
t

= β0 + β1Taxt + ut

Cig
t

= λC̃ig
t

+ (1 − λ) Cig
t−1

(A)

(B)

C̃ig
t

(A) (B)

Cig
t

= λ (β0 + β1Taxt + ut) + (1 − λ) Cig
t−1

= λβ0 + λβ1Taxt + (1 − λ) Cig
t−1 + λut (C)

(C)
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Autoregressive distributed-lag models

The partial-adjustment model
Example, continued

Substituting  from  into  yields

The equation in  is ADL(1, 0).

We can also estimate/recover the speed-of-adjustment coefficient .

C̃ig
t

= β0 + β1Taxt + ut

Cig
t

= λC̃ig
t

+ (1 − λ) Cig
t−1

(A)

(B)

C̃ig
t

(A) (B)

Cig
t

= λ (β0 + β1Taxt + ut) + (1 − λ) Cig
t−1

= λβ0 + λβ1Taxt + (1 − λ) Cig
t−1 + λut (C)

(C)

λ
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OLS in time series
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OLS in time series

Unbiased coefficients
As before, the unbiased-ness of OLS is going to depend upon our
exogeneity assumption, i.e., .E[ut|X] = 0
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OLS in time series

Unbiased coefficients
As before, the unbiased-ness of OLS is going to depend upon our
exogeneity assumption, i.e., .

We can split this assumption into two parts.

1. The disturbance  is independent of the explanatory variables in the
same period (i.e., ).

2. The disturbance  is independent of the explanatory variables in the
other periods (i.e.,  for ).

We need both of these parts to be true for OLS to be unbiased.

E[ut|X] = 0

ut

Xt

ut

Xs s ≠ t
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OLS in time series

Unbiased coefficients
We need both parts of our exogeneity assumption for OLS to be unbiased:

I.e., to guarantee the numerator equals zero, we need —for both
 and  .

E[β̂1
∣∣X] = β1 + E

⎡

⎣

∣
∣ 
∣
∣
X
⎤

⎦

∑
t
(xt − ¯̄¯x)ut

∑
t
(xt − ¯̄¯x)2

E[ut|X] = 0

E[ut|Xt] = 0 E[ut|Xs] = 0 (s ≠ t)
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Unbiased coefficients
We need both parts of our exogeneity assumption for OLS to be unbiased:

I.e., to guarantee the numerator equals zero, we need —for both
 and  .

The second part of our exogeneity assumption—requiring that  is
independent of all regressors in other periods—fails with dynamic models
with lagged outcome variables.

E[β̂1
∣∣X] = β1 + E

⎡

⎣

∣
∣ 
∣
∣
X
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∑
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OLS in time series

Unbiased coefficients
We need both parts of our exogeneity assumption for OLS to be unbiased:

I.e., to guarantee the numerator equals zero, we need —for both
 and  .

The second part of our exogeneity assumption—requiring that  is
independent of all regressors in other periods—fails with dynamic models
with lagged outcome variables.

Thus, OLS is biased for dynamic models with lagged outcome variables.

E[β̂1
∣∣X] = β1 + E

⎡

⎣

∣
∣ 
∣
∣
X
⎤

⎦

∑
t
(xt − ¯̄¯x)ut

∑
t
(xt − ¯̄¯x)2

E[ut|X] = 0

E[ut|Xt] = 0 E[ut|Xs] = 0 (s ≠ t)

ut
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OLS in time series

Unbiased coefficients
To see why dynamic models with lagged outcome variables violate our
exogeneity assumption, consider two periods of our simple ADL(1, 0) model.

Birthst = β0 + β1Incomet + β2Birthst−1 + ut

Birthst+1 = β0 + β1Incomet+1 + β2Birthst + ut+1

(1)

(2)
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OLS in time series

Unbiased coefficients
To see why dynamic models with lagged outcome variables violate our
exogeneity assumption, consider two periods of our simple ADL(1, 0) model.

In ,  clearly correlates with .

However,  is a regressor in  (lagged dependent variable).

∴ The disturbance in   correlates with a regressor in  .

This correlation violates the second part of our exogeneity requirement.

Birthst = β0 + β1Incomet + β2Birthst−1 + ut

Birthst+1 = β0 + β1Incomet+1 + β2Birthst + ut+1

(1)

(2)

(1) ut Birthst

Birthst (2)

t (ut) t + 1 (Birthst)
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Consistent coefficients
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Consistent coefficients
All is not lost.

For OLS to be consistent, we only need contemporaneous exogeneity.

Contemporaneous exogeneity: each disturbance is uncorrelated with the
explanatory variables in the same period, i.e.,

With contemporaneous exogeneity, OLS estimates for the coefficients in a
time series model are consistent.

E[ut|Xt] = 0
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OLS in time series

Consistent coefficients
To see why OLS is consistent with contemporaneous exogeneity, consider
the OLS estimate for  in

which we've shown (a few times) can be written

β1

Birthst = β0 + β1Birthst−1 + ut

β̂
1

= β1 +

∑
t
(Birthst−1 −

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯

Births)ut

∑
t
(Birthst−1 −

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
Births)

2
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OLS in time series

Consistent coefficients

plim β̂
1

= plim

⎛
⎜ ⎜
⎝

β1 +

⎞
⎟ ⎟
⎠

= β1 +

= β1 +

∑
t
(Birthst−1 −

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
Births)ut

∑
t
(Birthst−1 −

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
Births)

2

plim[∑
t
(Birthst−1 −

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
Births)ut/T]

plim[∑
t
(Birthst−1 −

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
Births)

2

/T]

Cov(Birthst−1, ut)

Var(Birthst)
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OLS in time series

Consistent coefficients

 if 

Contemporaneous exogeneity gives us .

plim β̂
1

= plim

⎛
⎜ ⎜
⎝

β1 +

⎞
⎟ ⎟
⎠

= β1 +

= β1 +

∑
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∑
t
(Birthst−1 −

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
Births)

2

plim[∑
t
(Birthst−1 −

¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
Births)ut/T]

plim[∑
t
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¯̄¯̄¯̄¯̄¯̄¯̄¯̄¯
Births)

2

/T]

Cov(Birthst−1, ut)

Var(Birthst)

= β1 Cov(Birthst−1, ut) = 0

Cov(Birthst−1, ut) = 0
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OLS in time series

Consistent coefficients
Thus, if we assume contemporaneous exogeneity, OLS is consistent for the
coefficients, even for models with lagged dependent variables.
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The end.
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Autoregressive distributed-lag models

Equilibrium effects
ADL models also offer interesting insights for long-run/equilibrium effects.

In this ADL(1, 0) model,  gives the short-run effect of income on the
number of births.

Birthst = β0 + β1Incomet + β2Birthst−1 + ut

β1
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Autoregressive distributed-lag models

Equilibrium effects
ADL models also offer interesting insights for long-run/equilibrium effects.

In this ADL(1, 0) model,  gives the short-run effect of income on the
number of births. I.e., how income in time  affects births in time .

Birthst = β0 + β1Incomet + β2Birthst−1 + ut

β1

t t
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Equilibrium effects
Starting with

Birthst = β0 + β1Incomet + β2Birthst−1 + ut

45 / 48



Autoregressive distributed-lag models

Equilibrium effects
Starting with

we move into equilibrium, i.e., , i.e.,

Birthst = β0 + β1Incomet + β2Birthst−1 + ut

Birthst = Births
⋆

45 / 48



Autoregressive distributed-lag models

Equilibrium effects
Starting with

we move into equilibrium, i.e., , i.e.,

Birthst = β0 + β1Incomet + β2Birthst−1 + ut
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Autoregressive distributed-lag models

Equilibrium effects
Starting with

we move into equilibrium, i.e., , i.e.,

Now rearrange...

Birthst = β0 + β1Incomet + β2Birthst−1 + ut

Birthst = Births
⋆

Births⋆ = β0 + β1Income⋆ + β2Births⋆

Births⋆ − β2Births⋆ = β0 + β1Income⋆

(1 − β2) Births⋆ = β0 + β1Income⋆

Births⋆ = + Income⋆
β0

(1 − β2)

β1

(1 − β2)
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Autoregressive distributed-lag models

Equilibrium effects
Short-run effect of income on births:

Long-run effect of income on births:

Birthst = β0 + β1Incomet + β2Birthst−1 + ut

Births⋆ = + Income⋆
β0

(1 − β2)

β1

(1 − β2)
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Autoregressive distributed-lag models

Equilibrium effects
Another way to see this result:

We already showed

gives us

Birthst =β0 + β1Incomet + β2Birthst−1

Birthst =β0 (1 + β2 + β2

2
+ β3

2
+ ⋯) +

β1 (Incomet + β2Incomet−1 + β2

2
Incomet−2 + ⋯) +

ut + β2ut−1 + β2

2
ut−2 + ⋯
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Autoregressive distributed-lag models

Equilibrium effects
Another way to see this result:

We already showed

gives us

In equilibrium:  for all .

Birthst =β0 + β1Incomet + β2Birthst−1

Birthst =β0 (1 + β2 + β2

2
+ β3

2
+ ⋯) +

β1 (Incomet + β2Incomet−1 + β2

2
Incomet−2 + ⋯) +

ut + β2ut−1 + β2

2
ut−2 + ⋯

Incomet = Incomet−k = Income
⋆

k
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Autoregressive distributed-lag models

Equilibrium effects
Substituting  for all  
(and assuming no disturbances in equilibrium):

Incomet = Income
⋆

k
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Substituting  for all  
(and assuming no disturbances in equilibrium):

Incomet = Income
⋆

k

Birthst =β0 (1 + β2 + β2

2
+ β3

2
+ ⋯) +

β1 (Income
⋆

+ β2Income
⋆

+ β2

2
Income

⋆
+ ⋯) +
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Autoregressive distributed-lag models

Equilibrium effects
Substituting  for all  
(and assuming no disturbances in equilibrium):

So long as .†

Incomet = Income
⋆ k

Birthst =β0 (1 + β2 + β2

2
+ β3

2
+ ⋯) +

β1 (Income
⋆

+ β2Income
⋆

+ β2

2
Income

⋆
+ ⋯) +

=β0 ( )+

β1 ( ) Income
⋆

1

β2

1

β2

−1 < β2 < 1

† This simplification comes from  for .∑∞

k=0
pk =

1

p
−1 < k < 1
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