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Schedule

Last Time
Living with heteroskedasticity

Today
Asymptotics and consistency

This week
Our second assignment (4/27–5/3)

Near-ish future
Midterm on 5/6
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R showcase
Need speed? R allows essentially infinite parallelization.

Three popular packages:

future  and furrr

parallel

foreach

And here's a nice tutorial.
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https://github.com/HenrikBengtsson/future
https://github.com/DavisVaughan/furrr
https://nceas.github.io/oss-lessons/parallel-computing-in-r/parallel-computing-in-r.html
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Consistency

Welcome to asymptopia
Previously: We examined estimators (e.g., ) and their properties using

1. The mean of the estimator's distribution: 

1. The variance of the estimator's distribution: 

which tell us about the tendency of the estimator if we took ∞ samples,
each with sample size .

This approach misses something.

β̂j

E[β̂j] =?

Var(β̂j) =?

n
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Consistency

Welcome to asymptopia
New question: 
How does our estimator behave as our sample gets larger (as )?

This new question forms a new way to think about the properties of
estimators: asymptotic properties (or large-sample properties).

A "good" estimator will become indistinguishable from the parameter it
estimates when  is very large (close to ).

n → ∞

n ∞
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Consistency

Probability limits
Just as the expected value helped us characterize the finite-sample
distribution of an estimator with sample size ,

the probability limit helps us analyze the asymptotic distribution of an
estimator (the distribution of the estimator as  gets "big"†).

n

n

† Here, "big"  means . That's really big data.n n → ∞
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Consistency

Probability limits
Let  be our estimator with sample size .

Then the probability limit of  is  if

for any .

The definition in  essentially says that as the sample size approaches
infinity, the probability that  differs from  by more than a very small
number  is zero.

Practically: 's distribution collapses to a spike at  as  approaches .

Bn n

B α

lim
n→∞

P(|Bn − α|> ϵ) = 0 (1)

ε > 0

(1)

Bn α

(ϵ)

B α n ∞
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Consistency

Probability limits
Equivalent statements:

The probability limit of  is .

 converges in probability to .

Bn α

plim B = α

B α
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Consistency

Probability limits
Probability limits have some nice/important properties:

, where  is a constant

plim(X × Y ) = plim(X) × plim(Y )

plim(X + Y ) = plim(X) + plim(Y )

plim(c) = c c

plim( ) =
X

Y

plim(X)

plim(Y )

plim(f(X)) = f( plim(X))
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Consistency

Consistent estimators
We say that an estimator is consistent if

1. The estimator has a prob. limit (its distribution collapses to a spike).

2. This spike is located at the parameter the estimator predicts.

In other words...

An estimator is consistent if its asymptotic distribution collapses to a spike
located at the estimated parameter.

In math: The estimator  is consistent for  if .

The estimator is inconsistent if .

B α plim B = α

plim B ≠ α
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Consistency

Consistent estimators
Example: We want to estimate the population mean  (where ∼Normal).

Let's compare the asymptotic distributions of two competing estimators:

1. The first observation: 

2. The sample mean: 

3. Some other estimator: 

Note that (1) and (2) are unbiased, but (3) is biased.

μx X

X1

¯̄̄ ¯̄
X = ∑n

i=1
xi

1

n

X̃ = ∑n

i=1
xi

1

n + 1

13 / 54



Consistency

Consistent estimators
To see which are unbiased/biased:

E[X1] = μx

E[¯̄̄ ¯̄
X]
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Consistency
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Consistency
Distributions of , , and   X1

¯̄̄ ¯̄
X X̃

n = 2
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Consistency
Distributions of , , and   X1

¯̄̄ ¯̄
X X̃

n = 5
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Consistency
Distributions of , , and   X1

¯̄̄ ¯̄
X X̃

n = 10
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Consistency
Distributions of , , and   X1

¯̄̄ ¯̄
X X̃

n = 30
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Consistency
Distributions of , , and   X1

¯̄̄ ¯̄
X X̃

n = 50
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Consistency
Distributions of , , and   X1

¯̄̄ ¯̄
X X̃

n = 100
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Consistency
Distributions of , , and   X1

¯̄̄ ¯̄
X X̃

n = 500
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Consistency
Distributions of , , and   X1

¯̄̄ ¯̄
X X̃

n = 1000

22 / 54



Consistency
The distributions of   
For  in 

X̃

n {2, 5, 10, 50, 100, 500, 1000}
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Consistency

The takeaway?
An estimator can be unbiased without being consistent (e.g., ).

An estimator can be unbiased and consistent (e.g., ).

An estimator can be biased but consistent (e.g., ).

An estimator can be biased and inconsistent (e.g., ).

Best-case scenario: The estimator is unbiased and consistent.

X1

¯̄̄ ¯̄
X

X̃

¯̄̄ ¯̄
X − 50
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Consistency

Why consistency (asymptotics)?
1. We cannot always find an unbiased estimator. In these situations, we
generally (at least) want consistency.

2. Expected values can be hard/undefined. Probability limits are less
constrained, e.g.,

3. Asymptotics help us move away from assuming the distribution of .

 

Caution: As we saw, consistent estimators can be biased in small samples.

E[g(X)h(Y )] vs.  plim(g(X)h(Y ))

ui
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OLS in asymptopia
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OLS in asymptopia
OLS has two very nice asymptotic properties:

1. Consistency

2. Asymptotic Normality

Let's prove #1 for OLS with simple, linear regression, i.e.,

yi = β0 + β1xi + ui
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OLS in asymptopia

Proof of consistency
First, recall our previous derivation of of ,

Now divide the numerator and denominator by 

β̂
1

β̂1 = β1 +
∑

i
(xi − ¯̄¯x)ui

∑
i
(xi − ¯̄¯x)2

1/n

β̂1 = β1 +
∑

i
(xi − ¯̄¯x)ui

1

n

∑
i
(xi − ¯̄¯x)21

n
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OLS in asymptopia

Proof of consistency
We actually want to know the probability limit of , so

which, by the properties of probability limits, gives us

The numerator and denominator are, in fact, population quantities

β̂
1

plim β̂
1

= plim
⎛

⎝
β1 +

⎞

⎠

∑
i
(xi − ¯̄¯x)ui

1

n

∑
i
(xi − ¯̄¯x)

21

n

= β1 +
plim( ∑

i
(xi − ¯̄¯x)ui)

1

n

plim( ∑
i
(xi − ¯̄¯x)

2

)1

n

= β1 +
Cov(x, u)

Var(x)
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OLS in asymptopia

Proof of consistency
So we have

By our assumption of exogeneity (plus the law of total expectation)

Combining these two equations yields

so long as  (which we've assumed).

plim β̂1 = β1 +
Cov(x, u)

Var(x)

Cov(x, u) = 0

plim β̂
1

= β1 + = β1 �
0

Var(x)

Var(x) ≠ 0
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OLS in asymptopia

Asymptotic normality
Up to this point, we made a very specific assumption about the distribution
of —the  came from a normal distribution.

We can relax this assumption—allowing the  to come from any
distribution (still assume exogeneity, independence, and homoskedasticity).

We will focus on the asymptotic distribution of our estimators (how they
are distributed as  gets large), rather than their finite-sample distribution.

As  approaches , the distribution of the OLS estimator converges to a
normal distribution.

ui ui

ui

n

n ∞
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OLS in asymptopia

Recap
With a more limited set of assumptions, OLS is consistent and is
asymptotically normally distributed.

Current assumptions

1. Our data were randomly sampled from the population.
2.  is a linear function of its parameters and disturbance.
3. There is no perfect collinearity in our data.
4. The  have conditional mean of zero (exogeneity), .
5. The  are homoskedastic with zero correlation between  and .

yi

ui E[ui|Xi] = 0

ui ui uj
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Omitted-variable bias, redux
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Omitted-variable bias, redux

Inconsistency?
Imagine we have a population whose true model is

Recall1: Omitted-variable bias occurs when we omit a variable in our linear
regression model (e.g., leavining out ) such that

1.  affects , i.e., .

1. Correlates with an included explanatory variable, i.e., .

yi = β0 + β1x1i + β2x2i + ui (2)

x2

x2 y β2 ≠ 0

Cov(x1, x2) ≠ 0
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Omitted-variable bias, redux

Inconsistency?
Imagine we have a population whose true model is

Recall2: We defined the bias of an estimator  for parameter 

yi = β0 + β1x1i + β2x2i + ui (2)

W θ

Bias
θ

(W) = E[W ] − θ
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Omitted-variable bias, redux

Inconsistency?
Imagine we have a population whose true model is

We know that omitted-variable bias causes biased estimates.

Question: Do omitted variables also cause inconsistent estimates?

Answer: Find  in a regression that omits .

yi = β0 + β1x1i + β2x2i + ui (2)

plim β̂
1

x2
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Omitted-variable bias, redux

Inconsistency?
Imagine we have a population whose true model is

but we instead specify the model as

where . We estimate  via OLS

Our question: Is  consistent for  when we omit ?

yi = β0 + β1x1i + β2x2i + ui (2)

yi = β0 + β1x1i + wi (3)

wi = β2x2i + ui (3)

yi = β̂
0

+ β̂
1
x1i + ŵi (4)

β̂
1

β1 x2

plim(β̂
1
) ?

= β1
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Truth: Specified: 

Omitted-variable bias, redux

Inconsistency?

We already showed 

where  is the disturbance. Here, we know . Thus,

Now, we make use of 

yi = β0 + β1x1i + β2x2i + ui yi = β0 + β1x1i + wi

plim β̂1 = β1 +
Cov(x1, w)

Var(x1)

w w = β2x2 + u

plim β̂1 = β1 +
Cov(x1, β2x2 + u)

Var(x1)

Cov(X, Y + Z) = Cov(X, Y ) + Cov(X, Z)

plim β̂
1

= β1 +
Cov(x1, β2x2) + Cov(x1, u)

Var(x1)
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Omitted-variable bias, redux

Inconsistency?

Now we use the fact that  for a constant .

As before, our exogeneity (conditional mean zero) assumption implies 
, which gives us

plim β̂1 = β1 +
Cov(x1, β2x2) + Cov(x1, u)

Var(x1)

Cov(X, cY ) = c Cov(X, Y ) c

plim β̂
1

= β1 +
β2 Cov(x1, x2) + Cov(x1, u)

Var(x1)

Cov(x1, u) = 0

plim β̂
1

= β1 +
β2 Cov(x1, x2)

Var(x1)
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Omitted-variable bias, redux

Inconsistency?
Thus, we find that

In other words, an omitted variable will cause OLS to be inconsistent if
both of the following statements are true:

1. The omitted variable affects our outcome, i.e., .

2. The omitted variable correlates with included explanatory variables, i.e.,
.

If both of these statements are true, then the OLS estimate  will not
converge to , even as  approaches .

plim β̂1 = β1 + β2

Cov(x1, x2)

Var(x1)

β2 ≠ 0

Cov(x1, x2) ≠ 0

β̂
1

β1 n ∞
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Omitted-variable bias, redux

Signing the bias
Sometimes we're stuck with omitted variable bias.†

When this happens, we can often at least know the direction of the
inconsistency.

plim β̂1 = β1 + β2

Cov(x1, x2)

Var(x1)

† You will often hear the term "omitted-variable bias" when we're actually talking about inconsistency
(rather than bias).
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Omitted-variable bias, redux

Signing the bias
Begin with

We know . Suppose  and . Then

∴ In this case, OLS is biased upward (estimates are too large).

plim β̂1 = β1 + β2

Cov(x1, x2)

Var(x1)

Var(x1) > 0 β2 > 0 Cov(x1, x2) > 0

plim β̂
1

= β1 + (+) ⟹ plim β̂
1

> β1

(+)

(+)

Cov(x1, x2) > 0 Cov(x1, x2) < 0

β2 > 0 Upward

β2 < 0
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Omitted-variable bias, redux

Signing the bias
Begin with

We know . Suppose  and . Then

∴ In this case, OLS is biased downward (estimates are too small).

plim β̂1 = β1 + β2

Cov(x1, x2)

Var(x1)

Var(x1) > 0 β2 < 0 Cov(x1, x2) > 0

plim β̂
1

= β1 + (−) ⟹ plim β̂
1

< β1

(+)

(+)

Cov(x1, x2) > 0 Cov(x1, x2) < 0

β2 > 0 Upward

β2 < 0 Downward
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Omitted-variable bias, redux

Signing the bias
Begin with

We know . Suppose  and . Then

∴ In this case, OLS is biased downward (estimates are too small).

plim β̂1 = β1 + β2

Cov(x1, x2)

Var(x1)

Var(x1) > 0 β2 > 0 Cov(x1, x2) < 0

plim β̂
1

= β1 + (+) ⟹ plim β̂
1

< β1

(−)

(+)

Cov(x1, x2) > 0 Cov(x1, x2) < 0

β2 > 0 Upward Downward

β2 < 0 Downward
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Omitted-variable bias, redux

Signing the bias
Begin with

We know . Suppose  and . Then

∴ In this case, OLS is biased upward (estimates are too large).

plim β̂1 = β1 + β2

Cov(x1, x2)

Var(x1)
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plim β̂
1

= β1 + (−) ⟹ plim β̂
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Omitted-variable bias, redux

Signing the bias
Thus, in cases where we have a sense of

1. the sign of 

2. the sign of 

we know in which direction inconsistency pushes our estimates.

Direction of bias

Cov(x1, x2)

β2

Cov(x1, x2) > 0 Cov(x1, x2) < 0

β2 > 0 Upward Downward

β2 < 0 Downward Upward
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Measurement error
Measurement error in our explanatory variables presents another case in
which OLS is inconsistent.

Consider the population model: 

We want to observe  but cannot.

Instead, we measure the variable , which is  plus some error (noise):

Assume , , and  is independent of  and .

 
OLS regression of  and  will produce inconsistent estimates for .

yi = β0 + β1zi + ui

zi

xi zi

xi = zi + ωi

E[ωi] = 0 Var(ωi) = σ2
ω ω z u

y x β1
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Measurement error

Proof
  

  
  

where 

What happens when we estimate ?

We will derive the numerator and denominator separately...

yi = β0 + β1zi + ui

= β0 + β1 (xi − ωi) + ui

= β0 + β1xi + (ui − β1ωi)

= β0 + β1xi + εi

εi = ui − β1ωi

yi = β̂0 + β̂1xi + ei

plim β̂1 = β1 +
Cov(x, ε)

Var(x)
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Measurement error

Proof
The covariance of our noisy variable  and the disturbance .

   
  

  

x ε

Cov(x, ε) = Cov([z + ω] , [u − β1ω])

= Cov(z, u) − β1 Cov(z, ω) + Cov(ω, u) − β1 Var(ω)

= 0 + 0 + 0 − β1σ2
ω

= −β1σ2
ω
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Measurement error

Proof
Now for the denominator, .

   
  

Var(x)

Var(x) = Var(z + ω)

= Var(z) + Var(ω) + 2 Cov(z, ω)

= σ
2
z + σ

2
ω
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Measurement error

Proof
Putting the numerator and denominator back together,

plim β̂1 = β1 +

= β1 +

= β1 − β1

= β1 − β1

= β1

Cov(x, ε)

Var(x)

−β1σ2
ω

σ2
z + σ2

ω

σ2
ω

σ2
z + σ2

ω

σ2
z + σ2

ω

σ2
z + σ2

ω

σ2
ω

σ2
z + σ2

ω

σ2
z

σ2
z + σ2

ω
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Measurement error

Summary

∴ .

What does this equation tell us?

Measurement error in our explanatory variables biases the coefficient
estimates toward zero.

This type of bias/inconsistency is often called attenuation bias.

If the measurement error correlates with the explanatory variables, we
have bigger problems with inconsistency/bias.

plim β̂
1

= β1

σ2
z

σ2
z + σ2

ω
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Measurement error

Summary
What about measurement in the outcome variable?

It doesn't really matter—it just increases our standard errors.
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Measurement error

It's everywhere
General cases

1. We cannot perfectly observe a variable.
2. We use one variable as a proxy for another.

Specific examples

GDP
Population
Crime/police statistics
Air quality
Health data
Proxy ability with test scores
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