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Schedule

Last Time

Living with heteroskedasticity

Today

Asymptotics and consistency

This week

Our second assignment (4/27-5/3)

Near-ish future

Midterm on 5/6
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R showcase

Need speed? R allows essentially infinite parallelization.
Three popular packages:

e future and furrr

e parallel

e foreach

And here's a nice tutorial.
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https://github.com/HenrikBengtsson/future
https://github.com/DavisVaughan/furrr
https://nceas.github.io/oss-lessons/parallel-computing-in-r/parallel-computing-in-r.html

Consistency
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Previously: We examined estimators (e.g., Bj) and their properties using
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Welcome to asymptopia

Previously: We examined estimators (e.g., Bj) and their properties using

1. The mean of the estimator's distribution: E[ﬂj} =7

2. The variance of the estimator's distribution: Var (5]) =7

which tell us about the tendency of the estimator if we took co samples,
each with sample size n.

This approach misses something.
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Welcome to asymptopia

New question:
How does our estimator behave as our sample gets larger (as n — 00)?
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Welcome to asymptopia

New question:
How does our estimator behave as our sample gets larger (as n — 00)?

This new guestion forms a new way to think about the properties of
estimators: asymptotic properties (or large-sample properties).

A "good" estimator will become indistinguishable from the parameter it
estimates when n is very large (close to oo).
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Probability limits

Just as the expected value helped us characterize the finite-sample
distribution of an estimator with sample size n,

8 | 54



Probability limits

Just as the expected value helped us characterize the finite-sample
distribution of an estimator with sample size n,

the probability limit helps us analyze the asymptotic distribution of an

estimator (the distribution of the estimator as n gets "big"").

T Here, "big" n means n — oo. That's really big data.
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Probability limits

Let B,, be our estimator with sample size n.

Then the probability limit of B is « if

lim P(|B, —a|>¢) =0 (1)

n—,oo

forany e > 0.
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Probability limits
Let B,, be our estimator with sample size n.
Then the probability limit of B is « if

lim P(|B, —a|>¢) =0 (1)

n—,oo

forany e > 0.

The definition in (1) essentially says that as the sample size approaches
infinity, the probability that B,, differs from « by more than a very small
number (e) is zero.

Practically: B's distribution collapses to a spike at a as n approaches oco.
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Probability limits

Equivalent statements:
e The probability limit of B, Is a.
e plim B =«

e B converges in probability to a.
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Probability limits

Probability limits have some nice/important properties:

e plim(X xY) = plim(X) x plim(Y)

plim(X 4+ Y) = plim(X) + plim(Y)
e plim(c) = ¢, where cis a constant

i (5 ) = 2

+ plim(f(X)) = f(plim(X))
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Consistent estimators

We say that an estimator is consistent if
1. The estimator has a prob. limit (its distribution collapses to a spike).

2. This spike is located at the parameter the estimator predicts.
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Consistent estimators

We say that an estimator is consistent if

1. The estimator has a prob. limit (its distribution collapses to a spike).
2. This spike is located at the parameter the estimator predicts.

In other words...

An estimator Is consistent if its asymptotic distribution collapses to a spike
located at the estimated parameter.

In math: The estimator B is consistent for a If plim B = a.

The estimator is inconsistent if plim B # a.
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Consistent estimators

Example: We want to estimate the population mean u, (where X~Normal).
Let's compare the asymptotic distributions of two competing estimators:

1. The first observation: X;

- 1 n
2. The sample mean: X = — > " | x;
n

3. Some other estimator: X = ST

n+1

Note that (1) and (2) are unbiased, but (3) is biased.
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Consistent estimators

To see which are unbiased/biased:
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Consistent estimators

To see which are unbiased/biased:

E[Xl — My

~~ | 1 n 1 n n
E[X = E[_ Zizl wz] = E Zizl E[mz] = ; Zizl My = Uz
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Consistent estimators

To see which are unbiased/biased:

E[Xl — My
E[X| =B~ =S Blo) = — Y]
| n 1=1 n 1=1 n 1,_]_/1’ /’L
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Consistent estimators

To see which are unbiased/biased:
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Consistent estimators

To see which are unbiased/biased:

lﬂﬂKi = Uy
{ — ! E:n ! E:n [ ]-— ! E:n —
E\X| =E|—-S" il=—=> " FElx,|=— ) . |y = U,
n i=1% n =1 n i=1 H
E[X] E ! Zn ! Zn E[ ]
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Consistent estimators

To see which are unbiased/biased:

E[Xl — My
B[X| = B|~ 5" LS Blr) = — X
| n =1 n 1=1 n 1=1 H H
— 1 1 n
E[X] E[n+1 Zz—lxz] n+1 2 i Blzi] n—l—l'u
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Distributions of ¥, )—(, and X

n=2

15 | 54



Distributions of .\, )_(, and X

n=>5

16 | 54



Distributions of .\, )_(, and X
n = 10
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Distributions of .\, )_(, and X
n =30
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Distributions of .\, )_(, and X
n = 50
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Distributions of .\, )_(, and X
n = 100
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Distributions of .\, )_(, and X
n = 500
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Distributions of .\, )_(, and X
n = 1000
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The distributions of X
Fornin {, 5, 10, 50, 100, 500,1000}
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The takeaway?

24 | 54



The takeaway?

e An estimator can be unbiased without being consistent

24 | 54



The takeaway?

« An estimator can be unbiased without being consistent (e.g.,, ).

24 | 54



The takeaway?

« An estimator can be unbiased without being consistent (e.g.,, ).

e An estimator can be unbiased and consistent

24 | 54



The takeaway?

« An estimator can be unbiased without being consistent (e.g.,, ).

e An estimator can be unbiased and consistent (e.g., X).

24 | 54



The takeaway?

« An estimator can be unbiased without being consistent (e.g.,, ).

e An estimator can be unbiased and consistent (e.g., X).

e An estimator can be biased but consistent

24 | 54



The takeaway?

« An estimator can be unbiased without being consistent (e.g.,, ).

e An estimator can be unbiased and consistent (e.g., X).

—~

« An estimator can be biased but consistent (e.g., X).

24 | 54



The takeaway?

« An estimator can be unbiased without being consistent (e.g.,, ).

e An estimator can be unbiased and consistent (e.g., X).

« An estimator can be biased but consistent (e.g., X).

e An estimator can be biased and inconsistent

24 | 54



The takeaway?

« An estimator can be unbiased without being consistent (e.g.,, ).

e An estimator can be unbiased and consistent (e.g., X).

—~

« An estimator can be biased but consistent (e.g., X).

« An estimator can be biased and inconsistent (e.g., X — 50).

24 | 54



The takeaway?

« An estimator can be unbiased without being consistent (e.g.,, ).

e An estimator can be unbiased and consistent (e.g., X).
« An estimator can be biased but consistent (e.g.,, X ).

« An estimator can be biased and inconsistent (e.g., X — 50).

Best-case scenario: The estimator is unbiased and consistent.
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Why consistency (asymptotics)?

1. We cannot always find an unbiased estimator. In these situations, we
generally (at least) want consistency:.

2. Expected values can be hard/undefined. Probability limits are less
constrained, e.qg.,

E[g(X)h(Y)] vs. plim(g(X)h(Y))

3. Asymptotics help us move away from assuming the distribution of w;.

25/ 54



Why consistency (asymptotics)?

1. We cannot always find an unbiased estimator. In these situations, we
generally (at least) want consistency:.

2. Expected values can be hard/undefined. Probability limits are less
constrained, e.qg.,

E[g(X)h(Y)] vs. plim(g(X)h(Y))

3. Asymptotics help us move away from assuming the distribution of w;.

Caution: As we saw, consistent estimators can be biased in small samples.
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OLS In asymptopia
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OLS In asymptopia

OLS has two very nice asymptotic properties:
1. Consistency

2. Asymptotic Normality
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OLS In asymptopia

OLS has two very nice asymptotic properties:
1. Consistency
2. Asymptotic Normality

Let's prove #1 for OLS with simple, linear regression, I.e,,

y; = Bo + Biz;i + u;
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OLS In asymptopia

Proof of consistency

First, recall our previous derivation of ofBl,

31251+Zi(wi—gi)zi
(zi — @)

l
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Proof of consistency
First, recall our previous derivation of ofBl,

D (wz - 5)2

Now divide the numerator and denominator by 1/n

31:514‘
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OLS In asymptopia
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OLS In asymptopia

Proof of consistency

We actually want to know the probability limit ofBl, SO
% > (:1:7, - 5)2

which, by the properties of probability limits, gives us

plim 5'1 = plim (ﬁl -+
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We actually want to know the probability limit ofBl, SO
%Zz (i — 5)2 )
which, by the properties of probability limits, gives us
plim (L 5, (a: — ) )
plim (% 3, (2 - 2)°)

plim 5'1 = plim (ﬁl -+

= B +

29 [ 54



OLS in asymptopia

Proof of consistency

We actually want to know the probability limit ofBl, SO
%Zz (i — 5)2 )
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OLS in asymptopia

Proof of consistency

We actually want to know the probability limit ofBl, SO
%Zz (i — 5)2 )
which, by the properties of probability limits, gives us
plim (L 5, (a: — ) )
plim (% 3, (2 - 2)°)

plim Bl = plim (ﬁl +

= B +

The numerator and denominator are, in fact, population quantities

Cov(z, u)
Var(x)

29 | 54



OLS In asymptopia

Proof of consistency

So we have

Cov(z, u)
Var(x)

Plimél = B1 +
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OLS In asymptopia
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OLS In asymptopia

Proof of consistency
So we have

Cov(z, u)
Var(x)

Plimél = B1 +

By our assumption of exogeneity (plus the law of total expectation)
Cov(z, u) =0

Combining these two equations yields

A 0
li = B + = @
plim 8, = Var(z) B

so long as Var(z) # 0 (which we've assumed).
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OLS In asymptopia

Asymptotic normality

Up to this point, we made a very specific assumption about the distribution
of u;,—the u; came from a normal distribution.

We can relax this assumption—allowing the u; to come from any
distribution (still assume exogeneity, independence, and homoskedasticity).

We will focus on the asymptotic distribution of our estimators (how they
are distributed as n gets large), rather than their finite-sample distribution.
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OLS in asymptopia

Asymptotic normality

Up to this point, we made a very specific assumption about the distribution
of u;,—the u; came from a normal distribution.

We can relax this assumption—allowing the u; to come from any
distribution (still assume exogeneity, independence, and homoskedasticity).

We will focus on the asymptotic distribution of our estimators (how they
are distributed as n gets large), rather than their finite-sample distribution.

As n approaches oo, the distribution of the OLS estimator converges to a
normal distribution.
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OLS In asymptopia

Recap

With a more limited set of assumptions, OLS is consistent and is
asymptotically normally distributed.

Current assumptions

1. Our data were randomly sampled from the population.

2. y; is a linear function of its parameters and disturbance.

3. There is no perfect collinearity in our data.

4. The u; have conditional mean of zero (exogeneity), E[u;|X;] = 0.

5. The u; are homoskedastic with zero correlation between u; and u;.
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Omitted-variable bias, redux
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Omitted-variable bias, redux

Inconsistency?

Imagine we have a population whose true model is

y; = Bo + Biz1i + Baxoi + u; (2)
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Omitted-variable bias, redux

Inconsistency?

Imagine we have a population whose true model is
Y; = Bo + P1x1; + Baxa; + u; (2)

Recall,: Omitted-variable bias occurs when we omit a variable in our linear
regression model (e.g., leavining out z2) such that

1. xo affects y, i.e., By # 0.

2. Correlates with an included explanatory variable, i.e., Cov(z1, x2) # 0.
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Omitted-variable bias, redux

Inconsistency?

Imagine we have a population whose true model is
Y; = Bo + P1x1; + Baxa; + u; (2)

Recall,: We defined the bias of an estimator W for parameter 0
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Omitted-variable bias, redux

Inconsistency?

Imagine we have a population whose true model is
Y; = Bo + P1x1; + Baxa; + u; (2)
Recall,: We defined the bias of an estimator W for parameter 0

Bieas(W) = EW]—-0
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Omitted-variable bias, redux

Inconsistency?

Imagine we have a population whose true model is
Y; = Bo + B1x1i + Boxe; + u; (2)
We know that omitted-variable bias causes biased estimates.

Question: Do omitted variables also cause inconsistent estimates?
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Omitted-variable bias, redux

Inconsistency?

Imagine we have a population whose true model is
Y; = Bo + B1x1i + Boxe; + u; (2)
We know that omitted-variable bias causes biased estimates.

Question: Do omitted variables also cause inconsistent estimates?

Answer: Find plimB1 In a regression that omits xs.
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Omitted-variable bias, redux

Inconsistency?

Imagine we have a population whose true model is
yi = Bo + P11 + Baa; + u;
but we instead specify the model as
y; = Bo + frz1i + w;

where w; = 523’327; + Uu;.
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Omitted-variable bias, redux

Inconsistency?

Imagine we have a population whose true model is
yi = Bo + P11 + Baa; + u; (2)
but we instead specify the model as
yi = Bo + Brz1i + wi (3)
where w; = Boxws; + u;. We estimate (3) via OLS
yi = By + Brz1i + s (4)

Our question: Is B, consistent for 8; when we omit z57?
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Omitted-variable bias, redux

Inconsistency?

Imagine we have a population whose true model is
yi = Bo + P11 + Baa; + u; (2)
but we instead specify the model as
yi = Bo + Brz1i + wi (3)
where w; = Boxws; + u;. We estimate (3) via OLS
yi = By + Bz + W (4)
Our guestion: Is Bl consistent for 87 when we omit 57

plim (81) - B1
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Omitted-variable bias, redux

Inconsistency?
Truth: y; = By + Biz1; + Poza; + u; Specified: y; = By + frx1; + w;

Cov(zy, w)

Var(z;)

We already showed plim 8, = ; +

where w Is the disturbance.
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where w Is the disturbance. Here, we know w = Byxs + u. Thus,

Cov(z1, faa + u)
Var(z;)

PlimﬁAl = 1 +

Now, we make use of Cov(X, Y + Z) = Cov(X, Y) 4+ Cov(X, Z)
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Omitted-variable bias, redux

Inconsistency?
Truth: y; = By + Biz1; + Poza; + u; Specified: y; = By + frx1; + w;

Cov(zy, w)

Var(z;)

We already showed plim 8, = ; +

where w Is the disturbance. Here, we know w = Byxs + u. Thus,

Cov(z1, faa + u)
Var(z;)

PlimﬁAl = 1 +

Now, we make use of Cov(X, Y + Z) = Cov(X, Y) 4+ Cov(X, Z)

Cov(z1, B222) + Cov(zy, u)
Var(z)

plim 3, = B; +
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Omitted-variable bias, redux

Inconsistency?

Cov(z1, B222) + Cov(zy, u)
Var(z)

PlimﬂA1 = B1 +

Now we use the fact that Cov(X, ¢Y) = ¢Cov(X, Y) for a constant c.
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Inconsistency?

Cov(z1, B222) + Cov(zy, u)
Var(z;)

PlimﬂA1 = B1 +

Now we use the fact that Cov(X, ¢Y) = ¢Cov(X, Y) for a constant c.
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Plim61 =B +

As before, our exogeneity (conditional mean zero) assumption implies
Cov(zy, u) = 0, which gives us
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Omitted-variable bias, redux

Inconsistency?

Cov(z1, B222) + Cov(zy, u)
Var(z;)

PlimﬂA1 = B1 +

Now we use the fact that Cov(X, ¢Y) = ¢Cov(X, Y) for a constant c.

B2 Cov(zxy, x3) + Cov(xy, u)
Var(z;)

plim 61 = B+
As before, our exogeneity (conditional mean zero) assumption implies
Cov(zy, u) = 0, which gives us

52 COV(CI)l, 332)
Var(z1)

PlimB1 =B +
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Omitted-variable bias, redux

Inconsistency?

Thus, we find that

Cov(zy, x2)

plim 8, = B1 + B Var(zy)

In other words, an omitted variable will cause OLS to be inconsistent If
both of the following statements are true:

1. The omitted variable affects our outcome, i.e., B2 # 0.

2. The omitted variable correlates with included explanatory variables, i.e.,
Cov(a:l, :Uz) 75 0.

If both of these statements are true, then the OLS estimate Bl will not

converge to ﬁ1, even as n approaches 0.
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Omitted-variable bias, redux

Signing the bias
Sometimes we're stuck with omitted variable bias.’

Cov(x1, T2)
Var(z;)

plim 8, = B + B

When this happens, we can often at least know the direction of the
Inconsistency.

T You will often hear the term "omitted-variable bias" when we're actually talking about inconsistency

(rather than bias).
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Omitted-variable bias, redux

Signing the bias
Begin with

Cov(zy, x2)
Var(z;)

plim 3, = B1 + B2

We know Var(z;) > 0. Suppose 2 > 0 and . Then
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Omitted-variable bias, redux

Signing the bias

Begin with
A Cov(zy, x2)
li = B +
plim 3, = f1 + f» Var(z,)
We know Var(z;) > 0. Suppose 2 > 0 and . Then
plim B, = B, + (+)— = plimpB, >

(+)

. In this case, OLS is biased upward (estimates are too large).
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Cov(zy, x2)
Var(z;)

plim 3, = B1 + B2
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Omitted-variable bias, redux

Signing the bias

Begin with
A Cov(zy, x2)
li = B +
plim 3, = f1 + f» Var(z,)
We know Var(z;) > 0. Suppose 2 < 0 and . Then
plim B, = 1 + (—)— = plimpB, < B

(+)

. In this case, OLS is biased downward (estimates are too small).

Ba >0 Upward

By <0 Downward
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Omitted-variable bias, redux

Signing the bias

Begin with
A Cov(zy, x2)
li = B +
plim 3, = f1 + f» Var(z,)
We know Var(z;) > 0. Suppose 2 > 0 and . Then
plim B, = B + (+)— = plimpB, < B

(+)

. In this case, OLS is biased downward (estimates are too small).

By >0 Upward Downward

By <0 Downward
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Omitted-variable bias, redux

Signing the bias

Begin with
A Cov(zy, x2)
li = B +
plim 3, = f1 + f» Var(z,)
We know Var(z;) > 0. Suppose 2 < 0 and . Then
plim B, = B, + (—)— = plimpB, >

(+)

. In this case, OLS is biased upward (estimates are too large).

By >0 Upward Downward

By <0 Downward Upward
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Omitted-variable bias, redux

Signing the bias
Thus, in cases where we have a sense of

1. the sign of Cov(zy, x2)

2. the sign of B,

we know in which direction inconsistency pushes our estimates.

Direction of bias

By >0 Upward Downward
By <0 Downward Upward
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Measurement error

Measurement error in our explanatory variables presents another case in
which OLS is inconsistent.

Consider the population model: y; = By + B1z; + u;
e We want to observe z; but cannot.

e Instead, we measure the variable z;, which is z; plus some error (noise):
Tr; = 2; + W;

e Assume E[w;] =0, Var(w;) = 02, and w is independent of z and w.
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Measurement error

Measurement error in our explanatory variables presents another case in
which OLS is inconsistent.

Consider the population model: y; = By + B1z; + u;
e We want to observe z; but cannot.

e Instead, we measure the variable z;, which is z; plus some error (noise):
Tr; = 2; + W;

e Assume E[w;] =0, Var(w;) = 02, and w is independent of z and w.

OLS regression of y and = will produce inconsistent estimates for ;.
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Measurement error

Proof

y; = Bo + Bz + u;
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Measurement error

Proof

y; = Bo + Bz + u;
= Bo + B (z; — w;) + u;
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Measurement error

Proof

y; = Bo + Bz + u;
= Bo+ b1 (zi —w;) + 1
= Bo + Brx; + (u; — Prw;)
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Measurement error

Proof

Yi = Bo + Brzi + u;
= Bo + B1 (z; — w;) + u;
= Bo + Brz; + (u; — Brw;)
= Bo + Biz; + &

where € = U; — 51(4}2'
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Measurement error

Proof

Yi = Bo + Brzi + u;
= Bo + B1 (z; — w;) + u;
= Bo + Brz; + (u; — Brw;)
= Bo + Biz; + &

where € = U; — 51&)2'

What happens when we estimate y; = BO + Blwi + e;?

Cov(z, €)
Var(x)

PlimB1 =B +

We will derive the numerator and denominator separately...
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Measurement error

Proof

The covariance of our noisy variable  and the disturbance e.

Cov(z, €)
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Measurement error

Proof

The covariance of our noisy variable  and the disturbance e.

Cov(z, €) = Cov([z + w], [u — f1w])
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Measurement error

Proof

The covariance of our noisy variable  and the disturbance e.

Cov(z, €) = Cov([z + w], [u — f1w])
= Cov(z, u) — B1 Cov(z, w) + Cov(w, u) — B1 Var(w)
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Measurement error

Proof

The covariance of our noisy variable  and the disturbance e.

Cov(z, €) = Cov([z + w], [u — f1w])
= Cov(z, u) — B1 Cov(z, w) + Cov(w, u) — B1 Var(w)
=0+0+0—p02
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Measurement error

Proof

The covariance of our noisy variable  and the disturbance e.

Cov(z, €) = Cov([z + w], [u — f1w])
= Cov(z, u) — B1 Cov(z, w) + Cov(w, u) — B1 Var(w)
=0+0+0—p02

= —p10
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Measurement error

Proof

Now for the denominator, Var(x).

Var(x)
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Measurement error

Proof

Now for the denominator, Var(x).

Var(z)= Var(z + w)
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Measurement error

Proof

Now for the denominator, Var(x).

Var(z)= Var(z + w)
= Var(z) + Var(w) + 2 Cov(z, w)
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Measurement error

Proof

Now for the denominator, Var(x).

Var(z)= Var(z + w)
= Var(z) + Var(w) + 2 Cov(z, w)

2 2
:Jz+0w
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Measurement error

Proof

Putting the numerator and denominator back together,

Cov(z, ¢)
Var(z)
—pras;

2 2
Oy + Oy

&z

= B — 152

O-Z +Jw

PlimﬁAl = B1 +

= B +

03 -+ Jf, 3 Jf,

2 2 L 2

o5 + 04 o5 + 0
o3

o+ o2

= p1

= p1

51/ 54



Measurement error

Summary

o2

oy + 04

What does this equation tell us?
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Measurement error

Summary

o2

oy + 04

What does this equation tell us?

Measurement error in our explanatory variables biases the coefficient
estimates toward zero.

o This type of bias/inconsistency is often called attenuation bias.

« |f the measurement error correlates with the explanatory variables, we
have bigger problems with inconsistency/bias.
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Measurement error

Summary

What about measurement in the outcome variable?

It doesn't really matter—it just increases our standard errors.
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Measurement error

It's everywhere

General cases

1. We cannot perfectly observe a variable.
2. We use one variable as a proxy for another.

Specific examples

e GDP

Population

Crime/police statistics

Air quality

Health data

Proxy ability with test scores
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