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R showcase
ggplot2

Incredibly powerful graphing and mapping package for R.
Written in a way that helps you build your figures layer by layer.
Exportable to many applications.
Party of the tidyverse .

shiny

Export your figures and code to interactive web apps.
Enormous range of applications

Distribution calculator
Tabsets
Traveling salesman
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https://ggplot2.tidyverse.org/reference/index.html
https://shiny.rstudio.com/
https://gallery.shinyapps.io/dist_calc/
https://shiny.rstudio.com/gallery/tabsets.html
https://gallery.shinyapps.io/shiny-salesman/


Schedule

Last Time

We reviewed the fundamentals of statistics and econometrics.

Today

We review more of the main/basic results in metrics.

This week

We will post the first assignment Saturday (4/13). Due 4/21.
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Multiple regression
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Multiple regression

More explanatory variables
We're moving from simple linear regression (one outcome variable and one
explanatory variable)

to the land of multiple linear regression (one outcome variable and
multiple explanatory variables)

Why? We can better explain the variation in , improve predictions, avoid
omitted-variable bias, ...

yi = β0 + β1xi + ui

yi = β0 + β1x1i + β2x2i + ⋯ + βkxki + ui

y
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Multiple regression
  is continuous  is categoricalyi = β0 + β1x1i + β2x2i + ui x1 x2
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Multiple regression
The intercept and categorical variable  control for the groups' means.x2
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Multiple regression
With groups' means removed:
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Multiple regression
 estimates the relationship between  and  after controlling for .β̂

1
y x1 x2

7 / 57



Multiple regression
Another way to think about it:
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Multiple regression
Looking at our estimator can also help.

For the simple linear regression yi = β0 + β1xi + ui

β̂
1

=

=

=

=

∑
i
(xi − ¯̄¯x) (yi − ¯̄̄y)

∑
i
(xi − ¯̄¯x)

∑
i
(xi − ¯̄¯x) (yi − ¯̄̄y) /(n − 1)

∑
i
(xi − ¯̄¯x) /(n − 1)

^Cov(x, y)

V̂ar(x)
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Multiple regression
Simple linear regression estimator:

moving to multiple linear regression, the estimator changes slightly:

where  is the residualized  variable—the variation remaining in  after
controlling for the other explanatory variables.

β̂1 =
^Cov(x, y)

V̂ar(x)

β̂1 =
^Cov(~x1, y)

V̂ar(~x1)

~
x1 x1 x
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Multiple regression
More formally, consider the multiple-regression model

Our residualized  (which we named ) comes from regressing  on an
intercept and all of the other explanatory variables and collecting the
residuals, i.e.,

allowing us to better understand our OLS multiple-regression estimator

yi = β0 + β1x1 + β2x2 + β3x3 + ui

x1
~
x1 x1

x̂1i = γ̂
0

+ γ̂
2

x2i + γ̂
3

x3i

~x1i = x1i − x̂1i

β̂1 =
^Cov(~x1, y)

V̂ar(~x1)
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Multiple regression

Model fit
Measures of goodness of fit try to analyze how well our model describes
(fits) the data.

Common measure:  [R-squared] (a.k.a. coefficient of determination)

Notice our old friend SSE: .

 literally tells us the share of the variance in  our current models
accounts for. Thus .

R2

R2 = = 1 −
∑

i
(ŷ

i
− ¯̄̄y)2

∑
i
(yi − ¯̄̄y)2

∑
i
(yi − ŷ

i
)2

∑
i
(yi − ¯̄̄y)2

∑
i
(yi − ŷ

i
)2 = ∑

i
e2

i

R2 y

0 ≤ R2 ≤ 1
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Multiple regression
The problem: As we add variables to our model,  mechanically increases.

To see this problem, we can simulate a dataset of 10,000 observations on 
and 1,000 random  variables. No relations between  and the !

Pseudo-code outline of the simulation:

Generate 10,000 observations on 

Generate 10,000 observations on variables   through 

Regressions

LM1: Regress   on  ; record R2

LM2: Regress   on   and  ; record R2

LM3: Regress   on  ,  , and  ; record R2

...

LM1000: Regress   on  ,  , ...,  ; record R2

R2

y

xk y xk

y

x1 x1000

y x1

y x1 x2

y x1 x2 x3

y x1 x2 x1000
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Multiple regression
The problem: As we add variables to our model,  mechanically increases.

R code for the simulation:

set.seed(1234)
y �� rnorm(1e4)
x �� matrix(data = rnorm(1e7), nrow = 1e4)
x %��% cbind(matrix(data = 1, nrow = 1e4, ncol = 1), x)
r_df �� mclapply(X = 1:(1e3-1), mc.cores = 2, FUN = function(i) {
  tmp_reg �� lm(y ~ x[,1:(i�1)]) %>% summary()
  data.frame(
    k = i + 1,
    r2 = tmp_reg %$% r.squared,
    r2_adj = tmp_reg %$% adj.r.squared
  )
}) %>% bind_rows()

R
2
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Multiple regression
The problem: As we add variables to our model,  mechanically increases.R

2
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Multiple regression
One solution: Adjusted R2
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Multiple regression
The problem: As we add variables to our model,  mechanically increases.

One solution: Penalize for the number of variables, e.g., adjusted :

Note: Adjusted  need not be between 0 and 1.

R
2

R
2

¯̄¯̄
R

2

= 1 −
∑

i
(yi − ŷ

i
)2/(n − k − 1)

∑
i
(yi − ¯̄̄y)2

/(n − 1)

R
2
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Multiple regression

Tradeoffs
There are tradeoffs to remember as we add/remove variables:

Fewer variables

Generally explain less variation in 
Provide simple interpretations and visualizations (parsimonious)
May need to worry about omitted-variable bias

More variables

More likely to find spurious relationships (statistically significant due to
chance—does not reflect a true, population-level relationship)
More difficult to interpret the model
You may still miss important variabless—still omitted-variable bias

y
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Omitted-variable bias
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Omitted-variable bias
We'll go deeper into this issue in a few weeks, but as a refresher:

Omitted-variable bias (OVB) arises when we omit a variable that

1. affects our outcome variable 

2. correlates with an explanatory variable 

As it's name suggests, this situation leads to bias in our estimate of .

Note: OVB Is not exclusive to multiple linear regression, but it does require
multiple variables affect .

y

xj

βj

y
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Omitted-variable bias
Example

Let's imagine a simple model for the amount individual  gets paid

where

 gives 's years of schooling
 denotes an indicator variable for whether individual  is male.

thus

: the returns to an additional year of schooling (ceteris paribus)
: the premium for being male (ceteris paribus)  

If , then there is discrimination against women—receiving less
pay based upon gender.

i

Payi = β0 + β1Schooli + β2Malei + ui

Schooli i

Malei i

β1

β2

β2 > 0
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Omitted-variable bias
Example, continued

From our population model

If a study focuses on the relationship between pay and schooling, i.e.,

where .

We used our exogeneity assumption to derive OLS' unbiasedness. But even
if , it is not true that  so long as .

Specifically, . Now OLS is biased.

Payi = β0 + β1Schooli + β2Malei + ui

Payi = β0 + β1Schooli + (β2Malei + ui)

Pay
i

= β0 + β1Schooli + εi

εi = β2Malei + ui

E[u|X] = 0 E[ε|X] = 0 β2 ≠ 0

E[ε|Male = 1] = β2 + E[u|Male = 1] ≠ 0
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Omitted-variable bias
Example, continued

Let's try to see this result graphically.

The population model:

Our regression model that suffers from omitted-variable bias:

Finally, imagine that women, on average, receive more schooling than men.

Payi = 20 + 0.5 × Schooli + 10 × Malei + ui

Payi = β̂0 + β̂1 × Schooli + ei
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Omitted-variable bias
Example, continued: 

The relationship between pay and schooling.

Pay
i

= 20 + 0.5 × Schooli + 10 × Malei + ui
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Omitted-variable bias
Example, continued: 

Biased regression estimate: 

Pay
i

= 20 + 0.5 × Schooli + 10 × Malei + ui

P̂ay
i

= 32.2 + −1.1 × Schooli
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Omitted-variable bias
Example, continued: 

Recalling the omitted variable: Gender (female and male)

Pay
i

= 20 + 0.5 × Schooli + 10 × Malei + ui
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Omitted-variable bias
Example, continued: 

Recalling the omitted variable: Gender (female and male)

Pay
i

= 20 + 0.5 × Schooli + 10 × Malei + ui
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Omitted-variable bias
Example, continued: 

Unbiased regression estimate: 

Pay
i

= 20 + 0.5 × Schooli + 10 × Malei + ui

P̂ay
i

= 20.3 + 0.4 × Schooli + 10.2 × Malei
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Omitted-variable bias

Solutions
1. Don't omit variables

2. Instrumental variables and two-stage least squares†

Warning: There are situations in which neither solution is possible.

1. Proceed with caution (sometimes you can sign the bias).

2. Maybe just stop.

[†]: Coming soon to our lectures.
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Interpreting coefficients
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Interpreting coefficients

Continuous variables
Consider the relationship

where

 is a continuous variable measuring an individual's pay
 is a continuous variable that measures years of education

Interpretations

: the -intercept, i.e.,  when 
: the expected increase in  for a one-unit increase in 

Payi = β0 + β1 Schooli + ui

Pay
i

Schooli

β0 y Pay School = 0

β1 Pay School
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Interpreting coefficients

Continuous variables
Deriving the slope's interpretation:

I.e., the slope gives the expected increase in our outcome variable for a
one-unit increase in the explanatory variable.

E[Pay|School = ℓ + 1] − E[Pay|School = ℓ] =

E[β0 + β1(ℓ + 1) + u] − E[β0 + β1ℓ + u] =

[β0 + β1(ℓ + 1)] − [β0 + β1ℓ] =

β0 − β0 + β1ℓ − β1ℓ + β1 = β1
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Interpreting coefficients

Continuous variables
If we have multiple explanatory variables, e.g.,

then the interpretation changes slightly.

I.e., the slope gives the expected increase in our outcome variable for a
one-unit increase in the explanatory variable, holding all other variables
constant (ceteris paribus).

Payi = β0 + β1 Schooli + β2 Abilityi + ui

E[Pay|School = ℓ + 1 ∧ Ability = α]−

E[Pay|School = ℓ ∧ Ability = α] =

E[β0 + β1(ℓ + 1) + β2α + u] − E[β0 + β1ℓ + β2α + u] =

[β0 + β1(ℓ + 1) + β2α] − [β0 + β1ℓ + β2α] =

β0 − β0 + β1ℓ − β1ℓ + β1 + β2α − β2α = β1
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Interpreting coefficients

Continuous variables
Alternative derivation

Consider the model

Differentiate the model:

y = β0 + β1 x+ u

= β1

dy

dx
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Interpreting coefficients

Categorical variables
Consider the relationship

where

 is a continuous variable measuring an individual's pay
 is a binary/indicator variable taking  when  is female

Interpretations

: the expected  for males (i.e., when )
: the expected difference in  between females and males

: the expected  for females

Payi = β0 + β1 Femalei + ui

Pay
i

Femalei 1 i

β0 Pay Female = 0

β1 Pay

β0 + β1 Pay
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Interpreting coefficients

Categorical variables
Derivations

Note: If there are no other variables to condition on, then  equals the
difference in group means, e.g., .

Note2: The holding all other variables constant interpretation also applies
for categorical variables in multiple regression settings.

E[Pay|Male] = E[β0 + β1 × 0 + ui]

= E[β0 + 0 + ui]

= β0

E[Pay|Female] = E[β0 + β1 × 1 + ui]

= E[β0 + β1 + ui]

= β0 + β1

β̂
1

¯̄¯xFemale − ¯̄¯xMale
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Interpreting coefficients

Categorical variables
 for binary variable yi = β0 + β1xi + ui xi = {0, 1}
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Interpreting coefficients

Categorical variables
 for binary variable yi = β0 + β1xi + ui xi = {0, 1}
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Interpreting coefficients

Interactions
Interactions allow the effect of one variable to change based upon the level
of another variable.

Examples

1. Does the effect of schooling on pay change by gender?

2. Does the effect of gender on pay change by race?

3. Does the effect of schooling on pay change by experience?
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Interpreting coefficients

Interactions
Previously, we considered a model that allowed women and men to have
different wages, but the model assumed the effect of school on pay was the
same for everyone:

but we can also allow the effect of school to vary by gender:

Payi = β0 + β1 Schooli + β2 Femalei + ui

Pay
i

= β0 + β1 Schooli + β2 Femalei + β3 Schooli × Femalei + ui
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Interpreting coefficients

Interactions
The model where schooling has the same effect for everyone (F and M):
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Interpreting coefficients

Interactions
The model where schooling's effect can differ by gender (F and M):
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Interpreting coefficients

Interactions
Interpreting coefficients can be a little tricky with interactions, but the key†

is to carefully work through the math.

Expected returns for an additional year of schooling for women:

Similarly,  gives the expected return to an additional year of schooling for
men. Thus,  gives the difference in the returns to schooling for women
and men.
† As is often the case with econometrics.

Payi = β0 + β1 Schooli + β2 Femalei + β3 Schooli × Femalei + ui

E[Pay
i
|Female ∧ School = ℓ + 1] − E[Pay

i
|Female ∧ School = ℓ] =

E[β0 + β1(ℓ + 1) + β2 + β3(ℓ + 1) + ui] − E[β0 + β1ℓ + β2 + β3ℓ + ui] =

β1 + β3

β1

β3
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Interpreting coefficients

Log-linear specification
In economics, you will frequently see logged outcome variables with linear
(non-logged) explanatory variables, e.g.,

This specification changes our interpretation of the slope coefficients.

Interpretation

A one-unit increase in our explanatory variable increases the outcome
variable by approximately  percent.

Example: An additional year of schooling increases pay by
approximately 3 percent (for ).

log(Pay
i
) = β0 + β1 Schooli + ui

β1 × 100

β1 = 0.03
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Interpreting coefficients

Log-linear specification
Derivation

Consider the log-linear model

and differentiate

So a marginal change in  (i.e., ) leads to a  percentage change in .

log(y) = β0 + β1 x + u

= β1dx
dy

y

x dx β1dx y
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Interpreting coefficients

Log-linear specification
Because the log-linear specification comes with a different interpretation,
you need to make sure it fits your data-generating process/model.

Does  change  in levels (e.g., a 3-unit increase) or percentages (e.g., a 10-
percent increase)?

I.e., you need to be sure an exponential relationship makes sense:

x y

log(yi) = β0 + β1 xi + ui ⟺ yi = eβ0+β1xi+ui
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Interpreting coefficients

Log-linear specification
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Interpreting coefficients

Log-log specification
Similarly, econometricians frequently employ log-log models, in which the
outcome variable is logged and at least one explanatory variable is logged

Interpretation:

A one-percent increase in  will lead to a  percent change in .
Often interpreted as an elasticity.

log(Pay
i
) = β0 + β1 log(Schooli) + ui

x β1 y
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Interpreting coefficients

Log-log specification
Derivation

Consider the log-log model

and differentiate

which says that for a one-percent increase in , we will see a  percent
increase in . As an elasticity:

log(y) = β0 + β1 log(x) + u

= β1

dy

y

dx

x

x β1

y

= β1

dy

dx

x

y
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Interpreting coefficients

Log-linear with a binary variable
Note: If you have a log-linear model with a binary indicator variable, the
interpretation for the coefficient on that variable changes.

Consider

for binary variable .

The interpretation of  is now

When  changes from 0 to 1,  will change by  percent.
When  changes from 1 to 0,  will change by  percent.

log(yi) = β0 + β1x1 + ui

x1

β1

x1 y 100 × (eβ1 − 1)
x1 y 100 × (e−β1 − 1)
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Interpreting coefficients

Log-log specification
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Additional topics
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Additional topics

Inference vs. prediction
So far, we've focused mainly statistical inference—using estimators and
their distributions properties to try to learn about underlying, unknown
population parameters.

Prediction includes a fairly different set of topics/tools within
econometrics (and data science/machine learning)—creating models that
accurately estimate individual observations.

yi = β̂0 + β̂1 x1i + β̂2 x2i + ⋯ + β̂k xki + ei

ŷ i = f̂ (x1, x2, … xk)
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Additional topics

Inference vs. prediction
Succinctly

Inference: causality,  (consistent and efficient), standard
errors/hypothesis tests for , generally OLS

Prediction:† correlation,  (low error), model selection, nonlinear
models are much more common

β̂k

β̂k

ŷ
i

† Includes forecasting.
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Additional topics

Treatment effects and causality
Much of modern (micro)econometrics focuses on causally estimating
(identifying) the effect of programs/policies, e.g.,

Government shutdowns
The minimum wage
Recreational-cannabis legalization
Salary-history bans
Preschool
The Clean Water Act

In this literature, the program is often a binary variable, and we place high
importance on finding an unbiased estimate for the program's effect, .τ̂

Outcomei = β0 + τ Programi + ui
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https://www.sciencedirect.com/science/article/pii/S004727271830118X
https://www.jstor.org/stable/2118030
https://pages.uoregon.edu/bchansen/working.html
http://www.drewmcnichols.com/research
https://amstat.tandfonline.com/doi/abs/10.1198/016214508000000841#.XD4PVy2ZNO4
https://academic.oup.com/qje/article-abstract/134/1/349/5092609


Additional topics

Transformations
Our linearity assumption requires

1. parameters enter linearly (i.e., the  multiplied by variables)
2. the  disturbances enter additively

We allow nonlinear relationships between  and the explanatory variables.

Examples

Polynomials and interactions: 

Exponentials and logs: 

Indicators and thresholds: 

βk

ui

y

yi = β0 + β1x1 + β2x2

1
+ β3x2 + β4x2

2
+ β5 (x1x2) + ui

log(yi) = β0 + β1x1 + β2ex2 + ui

yi = β0 + β1x1 + β2 I(x1 ≥ 100) + ui
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Additional topics
Transformation challenge: (literally) infinite possibilities. What do we pick?
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Additional topics
yi = β0 + ui
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Additional topics
yi = β0 + β1x + ui
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Additional topics
yi = β0 + β1x + β2x2

+ ui
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Additional topics
yi = β0 + β1x + β2x2

+ β3x3
+ ui
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Additional topics
yi = β0 + β1x + β2x2

+ β3x3
+ β4x4

+ ui
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Additional topics
yi = β0 + β1x + β2x2

+ β3x3
+ β4x4

+ β5x5
+ ui
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Additional topics
Truth: yi = 2ex + ui
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Additional topics

Outliers
Because OLS minimizes the sum of the squared errors, outliers can play a
large role in our estimates.

Common responses

Remove the outliers from the dataset

Replace outliers with the 99th percentile of their variable (Windsorize)

Take the log of the variable to "take care of" outliers

Do nothing. Outliers are not always bad. Some people are "far" from the
average. It may not make sense to try to change this variation.
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Additional topics

Missing data
Similarly, missing data can affect your results.

R doesn't know how to deal with a missing observation.

1 + 2 + 3 + NA + 5

#> [1] NA

If you run a regression† with missing values, R drops the observations
missing those values.

If the observations are missing in a nonrandom way, a random sample may
end up nonrandom.

[†]: Or perform almost any operation/function
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