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R showcase

New this week
Because part of this course is about learning and implementing R, I'm
going to share some interesting/amazing/fun applications of R.

Culture of Insight website

R-based web application
Maps your location data (as tracked by Google)
Great example of R's ability to extend beyond statistical programming
(Visualization matters.)

The rayshader package

Creates really cool shaded maps (easily!)
What else does one need?
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https://cultureofinsight.shinyapps.io/location_mapper/
https://github.com/tylermorganwall/rayshader




 The rayshader package.

https://github.com/tylermorganwall/rayshader


Last Time

Follow Up
R is available at all academic workstations at UO.
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Last Time

Follow Up
R is available at all academic workstations at UO.

Motivation
In our last set of slides, we

1. discussed the motivation for studying econometrics (metrics)

2. introduced R—why we use it, what it can do

3. started reviewing material from your previous classes

These notes continue the review, building the foundation for some new
topics (soon).
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Review
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Population vs. sample

Models and notation
We write our (simple) population model

and our sample-based estimated regression model as

An estimated regession model produces estimates for each observation:

which gives us the best-fit line through our dataset.

yi = β0 + β1xi + ui

yi = β̂0 + β̂1xi + ei

ŷ
i

= β̂
0

+ β̂
1
xi
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Population vs. sample
Question: Why do we care about population vs. sample?
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Population

Population vs. sample
Question: Why do we care about population vs. sample?
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Population Population relationship

Population vs. sample
Question: Why do we care about population vs. sample?

yi = 2.53 + 0.57xi + ui

yi = β0 + β1xi + ui
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Sample 1: 30 random individuals

Population vs. sample
Question: Why do we care about population vs. sample?
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Sample 1: 30 random individuals Population relationship  

Sample relationship  

Population vs. sample
Question: Why do we care about population vs. sample?

yi = 2.53 + 0.57xi + ui

ŷ
i

= 1.36 + 0.76xi
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Sample 2: 30 random individuals Population relationship  

Sample relationship  

Population vs. sample
Question: Why do we care about population vs. sample?

yi = 2.53 + 0.57xi + ui

ŷ
i

= 3.53 + 0.34xi
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Sample 3: 30 random individuals Population relationship  

Sample relationship  

Population vs. sample
Question: Why do we care about population vs. sample?

yi = 2.53 + 0.57xi + ui

ŷ
i

= 1.44 + 0.86xi
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Let's repeat this 10,000 times.

(This exercise is called a (Monte Carlo) simulation.)
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Population vs. sample
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On average, our regression
lines match the population line
very nicely.

However, individual lines
(samples) can really miss the
mark.

Differences between individual
samples and the population
lead to uncertainty for the
econometrician.

Population vs. sample
Question: Why do we care about population vs. sample?
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Population vs. sample
Question: Why do we care about population vs. sample?

Question: Why do we care about population vs. sample?
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Population vs. sample
Question: Why do we care about population vs. sample?

Question: Why do we care about population vs. sample?

Answer: Uncertainty matters.

 itself is a random variable—dependent upon the random sample. When
we take a sample and run a regression, we don't know if it's a 'good' sample
(  is close to ) or a 'bad sample' (our sample differs greatly from the
population).

β̂

β̂ β
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Population vs. sample

Uncertainty
Keeping track of this uncertainty will be a key concept throughout our class.

Estimating standard errors for our estimates.

Testing hypotheses.

Correcting for heteroskedasticity and autocorrelation.
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Population vs. sample

Uncertainty
Keeping track of this uncertainty will be a key concept throughout our class.

Estimating standard errors for our estimates.

Testing hypotheses.

Correcting for heteroskedasticity and autocorrelation.

First, let's refresh on how we get these (uncertain) regression estimates.
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Linear regression

The estimator
We can estimate a regression line in R ( lm(y ~ x, my_data) ) and Stata
( reg y x ). But where do these estimates come from?

A few slides back:

which gives us the best-fit line through our dataset.

But what do we mean by "best-fit line"?

ŷ
i

= β̂0 + β̂1xi
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Being the "best"
Question: What do we mean by best-fit line?

Answers:

In general (econometrics), best-fit line means the line that minimizes
the sum of squared errors (SSE):

 where 

Ordinary least squares (OLS) minimizes the sum of the squared errors.
Based upon a set of (mostly palatable) assumptions, OLS

Is unbiased (and consistent)
Is the best (minimum variance) linear unbiased estimator (BLUE)

SSE = ∑n

i=1
e2

i
ei = yi − ŷ

i
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OLS vs. other lines/estimators
Let's consider the dataset we previously generated.
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OLS vs. other lines/estimators

For any line (ŷ = β̂0 + β̂1x)
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OLS vs. other lines/estimators

For any line , we can calculate errors: (ŷ = β̂0 + β̂1x) ei = yi − ŷ
i
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OLS vs. other lines/estimators

For any line , we can calculate errors: (ŷ = β̂0 + β̂1x) ei = yi − ŷ
i
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OLS vs. other lines/estimators
SSE squares the errors : bigger errors get bigger penalties.(∑ e

2

i
)
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OLS vs. other lines/estimators
The OLS estimate is the combination of  and  that minimize SSE.β̂0 β̂1
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OLS

Formally
In simple linear regression, the OLS estimator comes from choosing the 
and  that minimize the sum of squared errors (SSE), i.e.,

β̂0

β̂1

min
β̂0, β̂1

SSE
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OLS

Formally
In simple linear regression, the OLS estimator comes from choosing the 
and  that minimize the sum of squared errors (SSE), i.e.,

but we already know . Now use the definitions of  and .

β̂0

β̂1

min
β̂0, β̂1

SSE

SSE = ∑
i
e2

i
ei ŷ

e2
i = (yi − ŷ i)

2 = (yi − β̂0 − β̂1xi)
2

= y2
i − 2yiβ̂0 − 2yiβ̂1xi + β̂

2

0 + 2β̂0β̂1xi + β̂
2

1x2
i
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OLS

Formally
In simple linear regression, the OLS estimator comes from choosing the 
and  that minimize the sum of squared errors (SSE), i.e.,

but we already know . Now use the definitions of  and .

Recall: Minimizing a multivariate function requires (1) first derivatives equal
zero (the 1st-order conditions) and (2) second-order conditions (concavity).

β̂0

β̂1

min
β̂0, β̂1

SSE

SSE = ∑
i
e2

i
ei ŷ

e2
i = (yi − ŷ i)

2 = (yi − β̂0 − β̂1xi)
2

= y2
i − 2yiβ̂0 − 2yiβ̂1xi + β̂

2

0 + 2β̂0β̂1xi + β̂
2

1x2
i
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OLS

Formally
We're getting close. We need to minimize SSE. We've showed how SSE
relates to our sample (our data:  and ) and our estimates (i.e.,  and ).

For the first-order conditions of minimization, we now take the first
derivates of SSE with respect to  and .

where  and  are sample means of  and  (size ).

x y β̂0 β̂1

SSE = ∑
i

e2

i
= ∑

i

(y2

i
− 2yiβ̂0

− 2yiβ̂1
xi + β̂

2

0
+ 2β̂

0
β̂

1
xi + β̂

2

1
x2

i
)

β̂0 β̂1

= ∑
i

(2β̂
0

+ 2β̂
1
xi − 2yi) = 2nβ̂

0
+ 2β̂

1
∑

i

xi − 2∑
i

yi

= 2nβ̂
0

+ 2nβ̂
1

¯̄¯x − 2n¯̄̄y

∂SSE

∂β̂0

¯̄¯x =
∑xi

n
¯̄̄y =

∑ yi

n
x y n
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OLS

Formally
The first-order conditions state that the derivatives are equal to zero, so:

which implies

Now for .

= 2nβ̂0 + 2nβ̂1
¯̄¯x − 2n¯̄̄y = 0

∂SSE

∂β̂0

β̂0 = ¯̄̄y − β̂1
¯̄¯x

β̂
1
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OLS

Formally
Take the derivative of SSE with respect to 

set it equal to zero (first-order conditions, again)

and substitute in our relationship for , i.e., . Thus,

β̂1

= ∑
i

(2β̂
0
xi + 2β̂

1
x2

i
− 2yixi) = 2β̂

0
∑

i

xi + 2β̂
1
∑

i

x2

i
− 2∑

i

yixi

= 2nβ̂
0

¯̄¯x + 2β̂
1
∑

i

x2

i
− 2∑

i

yixi

∂SSE

∂β̂1

= 2nβ̂
0

¯̄¯x + 2β̂
1
∑

i

x2

i
− 2∑

i

yixi = 0
∂SSE

∂β̂1

β̂0 β̂0 = ¯̄̄y − β̂1
¯̄¯x

2n(¯̄̄y − β̂1
¯̄¯x) ¯̄¯x + 2β̂1∑

i

x2

i
− 2∑

i

yixi = 0
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OLS

Formally
Continuing from the last slide

we multiply out

2n(¯̄̄y − β̂
1

¯̄¯x) ¯̄¯x + 2β̂
1
∑

i

x2

i
− 2∑

i

yixi = 0

2n¯̄̄y ¯̄¯x − 2nβ̂1
¯̄¯x

2
+ 2β̂1∑

i

x2

i
− 2∑

i

yixi = 0

⟹ 2β̂1 (∑
i

x2

i
− n¯̄¯x

2) = 2∑
i

yixi − 2n¯̄̄y ¯̄¯x

⟹ β̂
1

= =
∑

i
yixi − 2n¯̄̄y ¯̄¯x

∑
i
x2

i
− n¯̄¯x

2

∑
i
(xi − ¯̄¯x)(yi − ¯̄̄y)

∑
i
(xi − ¯̄¯x)2
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OLS

Formally
Done!

We now have (lovely) OLS estimators for the slope

and the intercept

And now you know where the least squares part of ordinary least squares
comes from. �

β̂1 =
∑

i
(xi − ¯̄¯x)(yi − ¯̄̄y)

∑
i
(xi − ¯̄¯x)2

β̂
0

= ¯̄̄y − β̂
1

¯̄¯x
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OLS

Formally
Done!

We now have (lovely) OLS estimators for the slope

and the intercept

And now you know where the least squares part of ordinary least squares
comes from. �

We now turn to the assumptions and (implied) properties of OLS.

β̂1 =
∑

i
(xi − ¯̄¯x)(yi − ¯̄̄y)

∑
i
(xi − ¯̄¯x)2

β̂
0

= ¯̄̄y − β̂
1

¯̄¯x
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OLS: Assumptions and properties

25 / 70



OLS: Assumptions and properties

Properties
Question: What properties might we care about for an estimator?
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OLS: Assumptions and properties

Properties
Question: What properties might we care about for an estimator?

Tangent: Let's review statistical properies first.
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OLS: Assumptions and properties

Properties
Refresher: Density functions

Recall that we use probability density functions (PDFs) to describe the
probability a continuous random variable takes on a range of values. (The
total area = 1.)

These PDFs characterize probability distributions, and the most
common/famous/popular distributions get names (e.g., normal, t, Gamma).
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OLS: Assumptions and properties

Properties
Refresher: Density functions

The probability a standard normal random variable takes on a value
between -2 and 0: P(−2 ≤ X ≤ 0) = 0.48
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OLS: Assumptions and properties

Properties
Refresher: Density functions

The probability a standard normal random variable takes on a value
between -1.96 and 1.96: P(−1.96 ≤ X ≤ 1.96) = 0.95
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OLS: Assumptions and properties

Properties
Refresher: Density functions

The probability a standard normal random variable takes on a value
beyond 2: P(X > 2) = 0.023
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OLS: Assumptions and properties

Properties
Imagine we are trying to estimate an unknown parameter , and we know
the distributions of three competing estimators. Which one would we want?
How would we decide?

β

31 / 70



OLS: Assumptions and properties

Properties
Question: What properties might we care about for an estimator?
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OLS: Assumptions and properties

Properties
Question: What properties might we care about for an estimator?

Answer one: Bias.

On average (after many samples), does the estimator tend toward the
correct value?

More formally: Does the mean of estimator's distribution equal the
parameter it estimates?

Bias
β

(β̂) = E[β̂] − β
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Unbiased estimator: 

OLS: Assumptions and properties

Properties
Answer one: Bias.

E[β̂] = β
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Unbiased estimator: Biased estimator: 

OLS: Assumptions and properties

Properties
Answer one: Bias.

E[β̂] = β E[β̂] ≠ β
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OLS: Assumptions and properties

Properties
Answer two: Variance.

The central tendencies (means) of competing distributions are not the only
things that matter. We also care about the variance of an estimator.

Lower variance estimators mean we get estimates closer to the mean in
each sample.

Var(β̂) = E[(β̂ − E[β̂])
2

]
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OLS: Assumptions and properties

Properties
Answer two: Variance.
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OLS: Assumptions and properties

Properties
Answer one: Bias.

Answer two: Variance.

Subtlety: The bias-variance tradeoff.

Should we be willing to take a bit of bias to reduce the variance?

In econometrics, we generally stick with unbiased (or consistent)
estimators. But other disciplines (especially computer science) think a bit
more about this tradeoff.
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The bias-variance tradeoff.
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OLS: Assumptions and properties

Properties
As you might have guessed by now,

OLS is unbiased.
OLS has the minimum variance of all unbiased linear estimators.
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OLS: Assumptions and properties

Properties
But... these (very nice) properties depend upon a set of assumptions:

1. The population relationship is linear in parameters with an additive
disturbance.

2. Our  variable is exogenous, i.e., .

3. The  variable has variation. And if there are multiple explanatory
variables, they are not perfectly collinear.

4. The population disturbances  are independently and identically
distributed as normal random variables with mean zero  and
variance  (i.e., ). Independently distributed and mean zero
jointly imply  for any .

X E[u ∣ X] = 0

X

ui

(E[u] = 0)

σ2
E[u2] = σ2

E[uiuj] = 0 i ≠ j
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OLS: Assumptions and properties

Assumptions
Different assumptions guarantee different properties:

Assumptions (1), (2), and (3) make OLS unbiased.
Assumption (4) gives us an unbiased estimator for the variance of our
OLS estimator.

During our course, we will discuss the many ways real life may violate
these assumptions. For instance:

Non-linear relationships in our parameters/disturbances (or
misspecification).
Disturbances that are not identically distributed and/or not
independent.
Violations of exogeneity (especially omitted-variable bias).
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OLS: Assumptions and properties

Conditional expectation
For many applications, our most important assumption is exogeneity, i.e.,

but what does it actually mean?

E[u ∣ X] = 0
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OLS: Assumptions and properties

Conditional expectation
For many applications, our most important assumption is exogeneity, i.e.,

but what does it actually mean?

One way to think about this definition:

For any value of , the mean of the residuals must be zero.

E.g.,  and 

E.g.,  and 

Notice:  is more restrictive than 

E[u ∣ X] = 0

X

E[u ∣ X = 1] = 0 E[u ∣ X = 100] = 0

E[u ∣ X2 = Female] = 0 E[u ∣ X2 = Male] = 0

E[u ∣ X] = 0 E[u] = 0
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Graphically...
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Valid exogeneity, i.e., E[u ∣ X] = 0
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Invalid exogeneity, i.e., E[u ∣ X] ≠ 0
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Uncertainty and inference
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Uncertainty and inference

Is there more?
Up to this point, we know OLS has some nice properties, and we know how
to estimate an intercept and slope coefficient via OLS.

Our current workflow:

Get data (points with  and  values)
Regress  on 
Plot the OLS line (i.e., )
Done?

But how do we actually learn something from this exercise?

x y

y x

ŷ = β̂0 + β̂1
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Uncertainty and inference

There is more
But how do we actually learn something from this exercise?

Based upon our value of , can we rule out previously hypothesized
values?
How confident should we be in the precision of our estimates?
How well does our model explain the variation we observe in ?

We need to be able to deal with uncertainty. Enter: Inference.

β̂
1

y
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Uncertainty and inference

Learning from our errors
As our previous simulation pointed out, our problem with uncertainty is
that we don't know whether our sample estimate is close or far from the
unknown population parameter.†

However, all is not lost. We can use the errors  to get a sense
of how well our model explains the observed variation in .

When our model appears to be doing a "nice" job, we might be a little more
confident in using it to learn about the relationship between  and .

Now we just need to formalize what a "nice job" actually means.

(ei = yi − ŷ
i
)

y

y x

†: Except when we run the simulation ourselves—which is why we like simulations.
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Uncertainty and inference

Learning from our errors
First off, we will estimate the variance of  (recall: ) using our
squared errors, i.e.,

where  gives the number of slope terms and intercepts that we estimate
(e.g.,  and  would give ).

 is an unbiased estimator of .

ui Var(ui) = σ2

s
2

=

∑
i
e2

i

n − k

k

β0 β1 k = 2

s2 σ2
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Uncertainty and inference

Learning from our errors
You then showed that the variance of  (for simple linear regression) is

which shows that the variance of our slope estimator

1. increases as our disturbances become noisier
2. decreases as the variance of  increases

β̂
1

Var(β̂1) =
s2

∑
i
(xi − ¯̄¯x)2

x
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Uncertainty and inference

Learning from our errors
More common: The standard error of 

Recall: The standard error of an estimator is the standard deviation of the
estimator's distribution.

β̂
1

ŜE(β̂
1
) =

 
⎷

s2

∑
i
(xi − ¯̄¯x)2
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Uncertainty and inference

Learning from our errors
Standard error output is standard in R's lm :

tidy(lm(y ~ x, pop_df))

#> # A tibble: 2 x 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e� 8
#> 2 x              0.567    0.0793      7.15 1.59e-10
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Uncertainty and inference

Learning from our errors
We use the standard error of , along with  itself, to learn about the
parameter .

After deriving the distribution of ,† we have two (related) options for
formal statistical inference (learning) about our unknown parameter :

Confidence intervals: Use the estimate and its standard error to create
an interval that, when repeated, will generally†† contain the true
parameter.

Hypothesis tests: Determine whether there is statistically significant
evidence to reject a hypothesized value or range of values.

β̂
1

β̂
1

β1

β̂
1

β1

†: Hint: it's normal with the mean and variance we've derived/discussed above)  
††: E.g., Similarly constructed 95% confidence intervals will contain the true parameter 95% of the time.
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Uncertainty and inference

Confidence intervals
We construct -level confidence intervals for 

 denotes the  quantile of a  dist. with  degrees of freedom.

(1 − α) β1

β̂1 ± t
α/2,df ŜE(β̂1)

t
α/2,df α/2 t n − k
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Uncertainty and inference

Confidence intervals
We construct -level confidence intervals for 

For example, 100 obs., two coefficients (i.e.,  and ), and 
 (for a 95% confidence interval) gives us 

(1 − α) β1

β̂1 ± t
α/2,df ŜE(β̂1)

β̂0 β̂1 ⟹ k = 2

α = 0.05 t0.025, 98 = −1.98
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Uncertainty and inference

Confidence intervals
We construct -level confidence intervals for 

Example:

lm(y ~ x, data = pop_df) %>% tidy()

#> # A tibble: 2 x 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e� 8
#> 2 x              0.567    0.0793      7.15 1.59e-10

(1 − α) β1

β̂1 ± t
α/2,df ŜE(β̂1)
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Uncertainty and inference

Confidence intervals
We construct -level confidence intervals for 

Example:

lm(y ~ x, data = pop_df) %>% tidy()

#> # A tibble: 2 x 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e� 8
#> 2 x              0.567    0.0793      7.15 1.59e-10

Our 95% confidence interval is thus 

(1 − α) β1

β̂1 ± t
α/2,df ŜE(β̂1)

0.567 ± 1.98 × 0.0793 = [0.410, 0.724]
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Uncertainty and inference

Confidence intervals
So we have a confidence interval for , i.e., .

What does it mean?

β1 [0.410, 0.724]
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Uncertainty and inference

Confidence intervals
So we have a confidence interval for , i.e., .

What does it mean?

Informally: The confidence interval gives us a region (interval) in which we
can place some trust (confidence) for containing the parameter.

β1 [0.410, 0.724]
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Uncertainty and inference

Confidence intervals
So we have a confidence interval for , i.e., .

What does it mean?

Informally: The confidence interval gives us a region (interval) in which we
can place some trust (confidence) for containing the parameter.

More formally: If repeatedly sample from our population and construct
confidence intervals for each of these samples,  percent of our
intervals (e.g., 95%) will contain the population parameter somewhere in
the interval.

β1 [0.410, 0.724]

(1 − α)

56 / 70



Uncertainty and inference

Confidence intervals
So we have a confidence interval for , i.e., .

What does it mean?

Informally: The confidence interval gives us a region (interval) in which we
can place some trust (confidence) for containing the parameter.

More formally: If repeatedly sample from our population and construct
confidence intervals for each of these samples,  percent of our
intervals (e.g., 95%) will contain the population parameter somewhere in
the interval.

Now back to our simulation...

β1 [0.410, 0.724]

(1 − α)
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Uncertainty and inference

Confidence intervals
We drew 10,000 samples (each of size ) from our population and
estimated our regression model for each of these simulations:

(repeated 10,000 times)

Now, let's estimate 95% confidence intervals for each of these intervals...

n = 30

yi = β̂0 + β̂1xi + ei
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Uncertainty and inference

Confidence intervals
From our previous simulation: 97.7% of 95% confidences intervals contain
the true parameter value of .β1
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Uncertainty and inference

Hypothesis testing
In many applications, we want to know more than a point estimate or a
range of values. We want to know what our statistical evidence says about
existing theories.

We want to test hypotheses posed by officials, politicians, economists,
scientists, friends, weird neighbors, etc.

Examples

Does increasing police presence reduce crime?
Does building a giant wall reduce crime?
Does shutting down a government adversely affect the economy?
Does legal cannabis reduce drunk driving or reduce opiod use?
Do air quality standards increase health and/or reduce jobs?
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Uncertainty and inference

Hypothesis testing
Hypothesis testing relies upon very similar results and intuition.

While uncertainty certainly exists, we can still build reliable statistical tests
(rejecting or failing to reject a posited hypothesis).
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Uncertainty and inference

Hypothesis testing
Hypothesis testing relies upon very similar results and intuition.

While uncertainty certainly exists, we can still build reliable statistical tests
(rejecting or failing to reject a posited hypothesis).

OLS t test Our (null) hypothesis states that  equals a value , i.e., 

From OLS's properties, we can show that the test statistic

follows the  distribution with  degrees of freedom.

β1 c

Ho : β1 = c

tstat =
β̂1 − c

ŜE(β̂1)

t n − k
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Uncertainty and inference

Hypothesis testing
For an -level, two-sided test, we reject the null hypothesis (and conclude
with the alternative hypothesis) when

meaning that our test statistic is more extreme than the critical value.

Alternatively, we can calculate the p-value that accompanies our test
statistic, which effectively gives us the probability of seeing our test
statistic or a more extreme test statistic if the null hypothesis were true.

Very small p-values (generally < 0.05) mean that it would be unlikely to see
our results if the null hyopthesis were really true—we tend to reject the null
for p-values below 0.05.

α

|tstat| > ∣∣t1−α/2, df ∣∣
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Uncertainty and inference

Hypothesis testing
R and Stata output default to testing hypotheses against the value zero.

lm(y ~ x, data = pop_df) %>% tidy()

#> # A tibble: 2 x 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e� 8
#> 2 x              0.567    0.0793      7.15 1.59e-10
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Uncertainty and inference

Hypothesis testing
R and Stata output default to testing hypotheses against the value zero.

lm(y ~ x, data = pop_df) %>% tidy()

#> # A tibble: 2 x 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)    2.53     0.422       6.00 3.38e� 8
#> 2 x              0.567    0.0793      7.15 1.59e-10

Ho:  vs. Ha: 

 and  which implies p-value 

Therefore, we reject Ho.

β1 = 0 β1 ≠ 0

tstat = 7.15 t0.975, 28 = 2.05 < 0.05
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Uncertainty and inference

Hypothesis testing
Back to our simulation! Let's see what our  statistic is actually doing.

In this situation, we can actually know (and enforce) the null hypothesis,
since we generated the data.

For each of the 10,000 samples, we will calculate the  statistic, and then we
can see how many  statistics exceed our critical value (2.05, as above).

The answer should be approximately 5 percent—our  level.

t

t

t

α
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Uncertainty and inference
In our simulation, 2.3 percent of our  statistics reject the null hypothesis.

The distribution of our  statistics (shading the rejection regions).

t

t
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Uncertainty and inference
Correspondingly, 2.3 percent of our p-values reject the null hypothesis.

The distribution of our p-values (shading the p-values below 0.05).
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Uncertainty and inference

F tests
You will sometimes see  tests in econometrics.

We use  tests to test hypotheses that involve multiple parameters  
 (e.g.,  or ),

rather than a single simple hypothesis  
 (e.g., , for which we would just use a  test).

F

F

β1 = β2 β3 + β4 = 1

β1 = 0 t

66 / 70



Uncertainty and inference

F tests
Example

Economists love to say "Money is fungible."

Imagine that we might want to test whether money received as income
actually has the same effect on consumption as money received from tax
rebates/returns.

Consumptioni = β0 + β1Incomei + β2Rebatei + ui
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Uncertainty and inference

F tests
Example, continued

We can write our null hypothesis as

Imposing this null hypothesis gives us the restricted model

Ho : β1 = β2 ⟺ Ho : β1 − β2 = 0

Consumption
i

= β0 + β1Incomei + β1Rebatei + ui

Consumptioni = β0 + β1 (Incomei + Rebatei) + ui
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Uncertainty and inference

F tests
Example, continued

To this the null hypothesis  against ,  
we use the  statistic

which (as its name suggests) follows the  distribution with  numerator
degrees of freedom and  denominator degrees of freedom.

Here,  is the number of restrictions we impose via .

Ho : β1 = β2 Ha : β1 ≠ β2

F

Fq, n−k =
(SSEr − SSEu) /q

SSEu/(n − k − 1)

F q

n − k

q Ho
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Uncertainty and inference

F tests
Example, continued

The term  is the sum of squared errors (SSE) from our restricted
model

and  is the sum of squared errors (SSE) from our unrestricted model

SSEr

Consumptioni = β0 + β1 (Incomei + Rebatei) + ui

SSEu

Consumptioni = β0 + β1Incomei + β2Rebatei + ui
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