# Attach these packages so their functions don't need to be qualified: http://r-pkgs.had.co.nz/namespace.html#search-path
library(magrittr) #Pipes
library(dplyr) # disable when temp lines are removed
library(ggplot2)
library(ggpubr)
library(readxl)
# Call `base::source()` on any repo file that defines functions needed below. Ideally, no real operations are performed.
base::source("./scripts/common-functions.R")
# path_file_input_data <- "./data-unshared/raw/2016-03-25 - AllSentences_small.xlsx"
# path_file_input_data <- "./data-unshared/raw/2017-10-04 AllSentences_updated_small.xlsx"
path_file_input_data <- "./data-unshared/raw/2017-10-04 AllSentences_updated.xlsx"
#Put code in here. It doesn't call a chunk in the codebehind file.
ds <- readxl::read_excel(path_file_input_data,sheet = "AllSentences" )
meta <- readxl::read_excel(path_file_input_data,sheet = "Codebook" )
ds %>% dplyr::glimpse(100)
Observations: 120,381
Variables: 47
$ `ID Number` <dbl> 53731, 44473, 54131, 62706, 47816, 46628, 46628, 46628, 92913...
$ Idnumbercomb <dbl> 44473, 44473, 54131, 62706, 47816, 46628, 46628, 46628, 92913...
$ `Previous ID` <dbl> 44473, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37142, 0, 0, 0, 0, 0, 0,...
$ `Inmate Name` <chr> "AARON BOBBY", "AARON ...
$ `Parole Eligibility Date` <dttm> 2003-05-09, 1994-03-20, 2000-08-18, 2007-04-11, 1996-08-11, ...
$ `Tentative Release Date` <dttm> 2006-02-10, 1994-07-20, 2001-02-15, 2008-04-11, 1997-09-26, ...
$ `Earn Dschrg Dt` <dttm> NA, NA, NA, 2008-03-21, 1997-04-10, NA, NA, NA, NA, NA, 1988...
$ `Actual Dschrg Dt` <dttm> NA, NA, NA, 2008-03-21, NA, NA, NA, NA, NA, NA, 1988-01-30, ...
$ `Good Time Law` <dbl> 6, 4, 6, 6, 4, 4, 4, 4, 1, 1, 1, 4, 7, 6, 7, 7, 7, 6, 1, 6, 6...
$ `Docket Count` <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ County <chr> "BUFFALO", "LANCASTER", "MADISON", "DOUGLAS", "DOUGLAS", "DOU...
$ `County CD` <dbl> 10, 55, 59, 28, 28, 28, 28, 28, 28, 28, 55, 55, 27, 72, 19, 4...
$ `Offense Begin Date` <chr> "36655", "1800-01-01", "36756", "38581", "1800-01-01", "1800-...
$ `Offense Count` <dbl> 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1...
$ `Offense Attmpt CD` <chr> NA, "A", NA, NA, NA, NA, NA, NA, NA, NA, "A", NA, NA, NA, "A"...
$ `Offense Type CD` <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, "A", NA, NA, NA, NA, NA, ...
$ `Offense Run CD` <chr> "CC", "CC", "CC", "CC", "CC", "CC", "CS", "CS", "CC", "CC", "...
$ `Offense Arrest CD` <chr> "C31", "D21", "B26", "C31", "D20", "B12", "K02", "C31", "E62"...
$ `Offense Arrest` <chr> "MANU/DIST/DEL/DISP OR POSS W/I", "THEFT", "SEXUAL ASSAULT ON...
$ `Cnvct Desc` <chr> "POSSESSION CON SUB W/I DELIVER", NA, NA, "POSSESSION W/I DEL...
$ `Felony Msdmnr CD` <chr> "3F", "F", "3AF", "3F", "4F", "4F", "3F", "2F", NA, NA, "4F",...
$ `Min Year` <dbl> 4, 1, 0, 4, 1, 2, 4, 4, 1, 0, 1, 1, 1, 4, 1, 2, 5, 4, 1, 0, 1...
$ `Min Month` <dbl> 0, 8, 0, 0, 6, 0, 0, 0, 4, 0, 0, 3, 8, 0, 6, 0, 0, 0, 8, 0, 0...
$ `Min Day` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ `Max Year` <dbl> 10, 2, 1, 6, 3, 4, 6, 6, 2, 1, 2, 2, 5, 7, 3, 3, 5, 6, 3, 1, ...
$ `Max Month` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ `Max Day` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ `Man Year` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ `Man Month` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ `Man Day` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ `Offense Jail Time Days` <dbl> 91, 0, 2, 125, 0, 0, 0, 0, 0, 0, 1, 86, 145, 134, 51, 3, 385,...
$ `Offense Dead Time Days` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 46, 0, 0, 589, 0, 0...
$ `Habitual Criminal` <chr> "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "...
$ `Precedence IND` <chr> NA, NA, NA, "P", NA, NA, NA, NA, NA, NA, "P", "P", NA, "P", "...
$ `PE Date Chg CD` <dbl> 3, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
$ `Minimum Yr` <dbl> 4, 1, 0, 4, 1, 10, 10, 10, 1, 1, 1, 1, 1, 4, 1, 2, 5, 4, 1, 1...
$ `Minimum Mo` <dbl> 0, 8, 0, 0, 6, 0, 0, 0, 4, 4, 0, 3, 8, 0, 6, 0, 0, 0, 8, 0, 0...
$ `Minimum Day` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ `Maximum Yr` <dbl> 10, 2, 1, 6, 3, 16, 16, 16, 2, 2, 2, 2, 5, 7, 3, 3, 5, 6, 3, ...
$ `Maximum Mo` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ `Maximum Day` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ `Begin Date` <dttm> 2000-05-09, 1993-05-21, 2000-08-18, 2005-08-17, 1996-01-23, ...
$ `Sentence Jail Credit` <dbl> 91, 0, 2, 125, 100, 71, 71, 71, 0, 0, 1, 86, 145, 134, 51, 3,...
$ `Man Min Yr` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ `Man Min Mo` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ `Man Min Day` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
$ `Man Min Term Date` <dttm> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
# adjust column names
colnames(ds) <- gsub(" " ,"_",colnames(ds)) %>% tolower()
colnames(ds) <- gsub("__","_",colnames(ds)) # remove doubles
ds <- ds %>%
dplyr::rename_(
"person_id" = "idnumbercomb"
) %>%
dplyr::mutate(
conviction_id = paste0(person_id,"-",offense_arrest_cd)
,year = lubridate::year(begin_date)
,offense_group = substr(offense_arrest_cd,1,1)
# ,offense_group = gsub("^(\\w{1})(\\d{2}))$","\\1", offense_arrest_cd)
)
ds %>% glimpse(100)
Observations: 120,381
Variables: 50
$ id_number <dbl> 53731, 44473, 54131, 62706, 47816, 46628, 46628, 46628, 92913, ...
$ person_id <dbl> 44473, 44473, 54131, 62706, 47816, 46628, 46628, 46628, 92913, ...
$ previous_id <dbl> 44473, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37142, 0, 0, 0, 0, 0, 0, 1...
$ inmate_name <chr> "AARON BOBBY", "AARON B...
$ parole_eligibility_date <dttm> 2003-05-09, 1994-03-20, 2000-08-18, 2007-04-11, 1996-08-11, 19...
$ tentative_release_date <dttm> 2006-02-10, 1994-07-20, 2001-02-15, 2008-04-11, 1997-09-26, 20...
$ earn_dschrg_dt <dttm> NA, NA, NA, 2008-03-21, 1997-04-10, NA, NA, NA, NA, NA, 1988-0...
$ actual_dschrg_dt <dttm> NA, NA, NA, 2008-03-21, NA, NA, NA, NA, NA, NA, 1988-01-30, NA...
$ good_time_law <dbl> 6, 4, 6, 6, 4, 4, 4, 4, 1, 1, 1, 4, 7, 6, 7, 7, 7, 6, 1, 6, 6, ...
$ docket_count <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
$ county <chr> "BUFFALO", "LANCASTER", "MADISON", "DOUGLAS", "DOUGLAS", "DOUGL...
$ county_cd <dbl> 10, 55, 59, 28, 28, 28, 28, 28, 28, 28, 55, 55, 27, 72, 19, 40,...
$ offense_begin_date <chr> "36655", "1800-01-01", "36756", "38581", "1800-01-01", "1800-01...
$ offense_count <dbl> 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, ...
$ offense_attmpt_cd <chr> NA, "A", NA, NA, NA, NA, NA, NA, NA, NA, "A", NA, NA, NA, "A", ...
$ offense_type_cd <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, "A", NA, NA, NA, NA, NA, NA...
$ offense_run_cd <chr> "CC", "CC", "CC", "CC", "CC", "CC", "CS", "CS", "CC", "CC", "CC...
$ offense_arrest_cd <chr> "C31", "D21", "B26", "C31", "D20", "B12", "K02", "C31", "E62", ...
$ offense_arrest <chr> "MANU/DIST/DEL/DISP OR POSS W/I", "THEFT", "SEXUAL ASSAULT ON A...
$ cnvct_desc <chr> "POSSESSION CON SUB W/I DELIVER", NA, NA, "POSSESSION W/I DELIV...
$ felony_msdmnr_cd <chr> "3F", "F", "3AF", "3F", "4F", "4F", "3F", "2F", NA, NA, "4F", "...
$ min_year <dbl> 4, 1, 0, 4, 1, 2, 4, 4, 1, 0, 1, 1, 1, 4, 1, 2, 5, 4, 1, 0, 1, ...
$ min_month <dbl> 0, 8, 0, 0, 6, 0, 0, 0, 4, 0, 0, 3, 8, 0, 6, 0, 0, 0, 8, 0, 0, ...
$ min_day <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ max_year <dbl> 10, 2, 1, 6, 3, 4, 6, 6, 2, 1, 2, 2, 5, 7, 3, 3, 5, 6, 3, 1, 1,...
$ max_month <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ max_day <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ man_year <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ man_month <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ man_day <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ offense_jail_time_days <dbl> 91, 0, 2, 125, 0, 0, 0, 0, 0, 0, 1, 86, 145, 134, 51, 3, 385, 3...
$ offense_dead_time_days <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 46, 0, 0, 589, 0, 0, ...
$ habitual_criminal <chr> "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "N", "N"...
$ precedence_ind <chr> NA, NA, NA, "P", NA, NA, NA, NA, NA, NA, "P", "P", NA, "P", "P"...
$ pe_date_chg_cd <dbl> 3, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
$ minimum_yr <dbl> 4, 1, 0, 4, 1, 10, 10, 10, 1, 1, 1, 1, 1, 4, 1, 2, 5, 4, 1, 1, ...
$ minimum_mo <dbl> 0, 8, 0, 0, 6, 0, 0, 0, 4, 4, 0, 3, 8, 0, 6, 0, 0, 0, 8, 0, 0, ...
$ minimum_day <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ maximum_yr <dbl> 10, 2, 1, 6, 3, 16, 16, 16, 2, 2, 2, 2, 5, 7, 3, 3, 5, 6, 3, 1,...
$ maximum_mo <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ maximum_day <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ begin_date <dttm> 2000-05-09, 1993-05-21, 2000-08-18, 2005-08-17, 1996-01-23, 19...
$ sentence_jail_credit <dbl> 91, 0, 2, 125, 100, 71, 71, 71, 0, 0, 1, 86, 145, 134, 51, 3, 3...
$ man_min_yr <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ man_min_mo <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ man_min_day <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ man_min_term_date <dttm> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA...
$ conviction_id <chr> "44473-C31", "44473-D21", "54131-B26", "62706-C31", "47816-D20"...
$ year <dbl> 2000, 1993, 2000, 2005, 1996, 1995, 1995, 1995, 1989, 1989, 198...
$ offense_group <chr> "C", "D", "B", "C", "D", "B", "K", "C", "E", "E", "D", "B", "C"...
ds %>% saveRDS("./data-unshared/derived/0-dto.rds")
meta %>% readr::write_csv("./data-public/derived/all-sentences-codebook.csv")
# focus on a few variables
d1 <- ds %>%
dplyr::mutate(
conviction_id = paste0(person_id,"-",offense_arrest_cd)
,year = lubridate::year(begin_date)
,offense_group = substr(offense_arrest_cd,1,1)
# ,offense_group = gsub("^(\\w{1})(\\d{2}))$","\\1", offense_arrest_cd)
) %>%
dplyr::select_(.dots = c(
"person_id"
,"begin_date"
,"offense_arrest_cd"
,"offense_arrest"
,"conviction_id"
,"year"
,"offense_group"
)
)
d1 %>% glimpse(100)
Observations: 120,381
Variables: 7
$ person_id <dbl> 44473, 44473, 54131, 62706, 47816, 46628, 46628, 46628, 92913, 92913,...
$ begin_date <dttm> 2000-05-09, 1993-05-21, 2000-08-18, 2005-08-17, 1996-01-23, 1995-03-...
$ offense_arrest_cd <chr> "C31", "D21", "B26", "C31", "D20", "B12", "K02", "C31", "E62", "E63",...
$ offense_arrest <chr> "MANU/DIST/DEL/DISP OR POSS W/I", "THEFT", "SEXUAL ASSAULT ON A CHILD...
$ conviction_id <chr> "44473-C31", "44473-D21", "54131-B26", "62706-C31", "47816-D20", "466...
$ year <dbl> 2000, 1993, 2000, 2005, 1996, 1995, 1995, 1995, 1989, 1989, 1986, 199...
$ offense_group <chr> "C", "D", "B", "C", "D", "B", "K", "C", "E", "E", "D", "B", "C", "C",...
d2 <- d1 %>%
dplyr::mutate(
conviction_id = paste0(person_id,"-",offense_arrest_cd)
,year = lubridate::year(begin_date)
# ,offense_group = gsub("^(\\w{1})(\\d{2}))$","\\1", offense_arrest_cd)
,offense_group = substr(offense_arrest_cd,1,1)
)
d2 %>% glimpse(100)
Observations: 120,381
Variables: 7
$ person_id <dbl> 44473, 44473, 54131, 62706, 47816, 46628, 46628, 46628, 92913, 92913,...
$ begin_date <dttm> 2000-05-09, 1993-05-21, 2000-08-18, 2005-08-17, 1996-01-23, 1995-03-...
$ offense_arrest_cd <chr> "C31", "D21", "B26", "C31", "D20", "B12", "K02", "C31", "E62", "E63",...
$ offense_arrest <chr> "MANU/DIST/DEL/DISP OR POSS W/I", "THEFT", "SEXUAL ASSAULT ON A CHILD...
$ conviction_id <chr> "44473-C31", "44473-D21", "54131-B26", "62706-C31", "47816-D20", "466...
$ year <dbl> 2000, 1993, 2000, 2005, 1996, 1995, 1995, 1995, 1989, 1989, 1986, 199...
$ offense_group <chr> "C", "D", "B", "C", "D", "B", "K", "C", "E", "E", "D", "B", "C", "C",...
d2 %>% group_by(offense_group) %>% count() %>% neat() # rows
offense_group | n |
---|---|
A | 1180 |
B | 27171 |
C | 21229 |
D | 31779 |
E | 9632 |
F | 2084 |
G | 664 |
H | 8910 |
J | 3 |
K | 6429 |
L | 106 |
M | 8176 |
Z | 2709 |
NA | 309 |
d2 %>% group_by(offense_group) %>% summarize(n=length(unique(person_id))) %>% neat() # persons
offense_group | n |
---|---|
A | 1074 |
B | 17925 |
C | 14865 |
D | 16862 |
E | 5046 |
F | 1562 |
G | 316 |
H | 6581 |
J | 2 |
K | 4986 |
L | 65 |
M | 5119 |
Z | 2467 |
NA | 278 |
# type of offense total
d2 %>%
dplyr::filter(year > 1974) %>%
dplyr::group_by(offense_group) %>%
dplyr::count() %>%
ggplot2::ggplot(aes(x = offense_group, y = n ))+
geom_bar(stat = "identity")+
coord_flip()+
theme_minimal()
# type of offsen by year
d2 %>%
dplyr::filter(year > 1974) %>%
dplyr::group_by(offense_group, year) %>%
dplyr::count() %>%
ggplot2::ggplot(aes(x = year, y = offense_group, fill = n ))+
# geom_raster()+
geom_tile(color = "grey80")+
scale_fill_gradient2( high = "red")+
theme_minimal()
# type of drug offense by year
d2 %>%
dplyr::filter(year > 1974) %>%
dplyr::filter(offense_group == "C") %>%
dplyr::group_by(offense_arrest, year) %>%
dplyr::count() %>%
ggplot2::ggplot(aes(x = year, y = offense_arrest, fill = n ))+
geom_tile(color = "grey80")+
scale_fill_gradient2( high = "blue")+
# scale_fill_gradient2( high = "red")+
theme_minimal()
# see our research jounal https://docs.google.com/document/d/1_EhkXgkBZTJ8nc02rr8Z4wrbzSbvvT6VZoQJi6DAhNQ/edit?usp=sharing
For the sake of documentation and reproducibility, the current report was rendered in the following environment. Click the line below to expand.
Environment
- Session info -------------------------------------------------------------------------------------------------------
setting value
version R version 3.5.2 (2018-12-20)
os Windows >= 8 x64
system x86_64, mingw32
ui RStudio
language (EN)
collate English_United States.1252
ctype English_United States.1252
tz America/New_York
date 2019-04-16
- Packages -----------------------------------------------------------------------------------------------------------
package * version date lib source
assertthat 0.2.0 2017-04-11 [1] CRAN (R 3.5.2)
backports 1.1.3 2018-12-14 [1] CRAN (R 3.5.2)
bindr 0.1.1 2018-03-13 [1] CRAN (R 3.5.2)
bindrcpp * 0.2.2 2018-03-29 [1] CRAN (R 3.5.2)
callr 3.1.1 2018-12-21 [1] CRAN (R 3.5.2)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 3.5.2)
cli 1.0.1 2018-09-25 [1] CRAN (R 3.5.2)
colorspace 1.4-0 2019-01-13 [1] CRAN (R 3.5.2)
crayon 1.3.4 2017-09-16 [1] CRAN (R 3.5.2)
desc 1.2.0 2018-05-01 [1] CRAN (R 3.5.2)
devtools 2.0.1 2018-10-26 [1] CRAN (R 3.5.2)
digest 0.6.18 2018-10-10 [1] CRAN (R 3.5.2)
dplyr * 0.7.8 2018-11-10 [1] CRAN (R 3.5.2)
evaluate 0.13 2019-02-12 [1] CRAN (R 3.5.2)
fansi 0.4.0 2018-10-05 [1] CRAN (R 3.5.2)
fs 1.2.6 2018-08-23 [1] CRAN (R 3.5.2)
ggplot2 * 3.1.0 2018-10-25 [1] CRAN (R 3.5.2)
ggpubr * 0.2 2018-11-15 [1] CRAN (R 3.5.3)
glue 1.3.0 2018-07-17 [1] CRAN (R 3.5.2)
gtable 0.2.0 2016-02-26 [1] CRAN (R 3.5.2)
highr 0.7 2018-06-09 [1] CRAN (R 3.5.2)
hms 0.4.2 2018-03-10 [1] CRAN (R 3.5.2)
htmltools 0.3.6 2017-04-28 [1] CRAN (R 3.5.2)
httr 1.4.0 2018-12-11 [1] CRAN (R 3.5.2)
kableExtra 1.0.1 2019-01-22 [1] CRAN (R 3.5.2)
knitr * 1.21 2018-12-10 [1] CRAN (R 3.5.2)
labeling 0.3 2014-08-23 [1] CRAN (R 3.5.2)
lazyeval 0.2.1 2017-10-29 [1] CRAN (R 3.5.2)
lubridate 1.7.4 2018-04-11 [1] CRAN (R 3.5.2)
magrittr * 1.5 2014-11-22 [1] CRAN (R 3.5.2)
memoise 1.1.0 2017-04-21 [1] CRAN (R 3.5.2)
munsell 0.5.0 2018-06-12 [1] CRAN (R 3.5.2)
pillar 1.3.1 2018-12-15 [1] CRAN (R 3.5.2)
pkgbuild 1.0.2 2018-10-16 [1] CRAN (R 3.5.2)
pkgconfig 2.0.2 2018-08-16 [1] CRAN (R 3.5.2)
pkgload 1.0.2 2018-10-29 [1] CRAN (R 3.5.2)
plyr 1.8.4 2016-06-08 [1] CRAN (R 3.5.2)
prettyunits 1.0.2 2015-07-13 [1] CRAN (R 3.5.2)
processx 3.2.1 2018-12-05 [1] CRAN (R 3.5.2)
ps 1.3.0 2018-12-21 [1] CRAN (R 3.5.2)
purrr 0.2.5 2018-05-29 [1] CRAN (R 3.5.2)
R6 2.4.0 2019-02-14 [1] CRAN (R 3.5.2)
Rcpp 1.0.0 2018-11-07 [1] CRAN (R 3.5.2)
readr 1.3.1 2018-12-21 [1] CRAN (R 3.5.2)
readxl * 1.2.0 2018-12-19 [1] CRAN (R 3.5.2)
remotes 2.0.2 2018-10-30 [1] CRAN (R 3.5.2)
rlang 0.3.1 2019-01-08 [1] CRAN (R 3.5.2)
rmarkdown 1.11 2018-12-08 [1] CRAN (R 3.5.2)
rprojroot 1.3-2 2018-01-03 [1] CRAN (R 3.5.2)
rsconnect 0.8.13 2019-01-10 [1] CRAN (R 3.5.2)
rstudioapi 0.9.0 2019-01-09 [1] CRAN (R 3.5.2)
rvest 0.3.2 2016-06-17 [1] CRAN (R 3.5.2)
scales 1.0.0 2018-08-09 [1] CRAN (R 3.5.2)
sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 3.5.2)
stringi 1.3.1 2019-02-13 [1] CRAN (R 3.5.2)
stringr 1.4.0 2019-02-10 [1] CRAN (R 3.5.2)
testthat 2.0.1 2018-10-13 [1] CRAN (R 3.5.2)
tibble 2.0.1 2019-01-12 [1] CRAN (R 3.5.2)
tidyselect 0.2.5 2018-10-11 [1] CRAN (R 3.5.2)
usethis 1.4.0 2018-08-14 [1] CRAN (R 3.5.2)
utf8 1.1.4 2018-05-24 [1] CRAN (R 3.5.2)
viridisLite 0.3.0 2018-02-01 [1] CRAN (R 3.5.2)
webshot 0.5.1 2018-09-28 [1] CRAN (R 3.5.2)
withr 2.1.2 2018-03-15 [1] CRAN (R 3.5.2)
xfun 0.5 2019-02-20 [1] CRAN (R 3.5.2)
xml2 1.2.0 2018-01-24 [1] CRAN (R 3.5.2)
yaml 2.2.0 2018-07-25 [1] CRAN (R 3.5.2)
[1] C:/Users/an499583/Documents/R/win-library/3.5
[2] C:/Program Files/R/R-3.5.2/library
Report rendered by an499583 at 2019-04-16, 08:23 -0400 in 32 seconds.