RegularElement_HM class

This class defines a single-phase hydromechanical finite element. It extends the RegularElement class and incorporates additional attributes and methods specific to hydromechanical analysis.

Contents

Methods

Author

Danilo Cavalcanti

Version History

Version 1.00.

Class definition

classdef RegularElement_HM < RegularElement_M

Public attributes

    properties (SetAccess = public, GetAccess = public)
        glp        = [];            % Liquid phase pressure dofs
        nglp       = 0;             % Number of regular p-dof
    end

Constructor method

    methods
        %------------------------------------------------------------------
        function this = RegularElement_HM(node, elem, t, ...
                mat, intOrder, glu, glp, massLumping, lumpStrategy, ...
                isAxisSymmetric,isPlaneStress)
            this = this@RegularElement_M(node, elem, t, ...
                mat, intOrder, glu, massLumping, lumpStrategy, ...
                isAxisSymmetric,isPlaneStress);
            this.glp  = glp;
            this.gle  = [glu, glp];
            this.nglp = length(this.glp);
            this.ngle = length(this.gle);
        end
    end

Public methods

    methods

        %------------------------------------------------------------------
        % Initialize the elements integration points
        function initializeIntPoints(this)

            % Get integration points coordinates and weights
            [X,w,this.nIntPoints] = this.shape.getIntegrationPoints(this.intOrder);

            % Initialize the integration points objects
            intPts(this.nIntPoints,1) = IntPoint();
            for i = 1:this.nIntPoints
                constModel = Material_HM(this.mat);
                intPts(i) = IntPoint(X(:,i),w(i), constModel);
                intPts(i).initializeMechanicalAnalysisModel(this.anm);
            end
            this.intPoint = intPts;

        end

        %------------------------------------------------------------------
        % This function assembles the element matrices and vectors
        %
        % Output:
        %    Ke : element "stiffness" matrix
        %    Ce : element "damping" matrix
        %    fe : element "external force" vector
        %    fi : element "internal force" vector
        % dfidu : element matrix of derivative of the internal force with
        %         respect to displacement
        %
        function [Ke, Ce, fi, fe, dfidu] = elementData(this)

            % Initialize the sub-matrices
            K   = zeros(this.nglu, this.nglu);
            H   = zeros(this.nglp, this.nglp);
            Q   = zeros(this.nglp, this.nglu);
            S   = zeros(this.nglp, this.nglp);

            % Auxiliar zero-matrices and vectors
            Opu = zeros(this.nglp, this.nglu);
            Ouu = zeros(this.nglu, this.nglu);
            Opp = zeros(this.nglp, this.nglp);

            % Initialize external force vector
            feu = zeros(this.nglu, 1);
            fep = zeros(this.nglp, 1);

            % Initialize the internal force vector
            fiu = zeros(this.nglu, 1);
            fip = zeros(this.nglp, 1);

            % Vector of the nodal dofs
            u  = this.getNodalDisplacement();
            pl = this.getNodalPressure();

            % Initialize 2D identity vector
            m = [1.0 ; 1.0 ; 1.0 ; 0.0];

            % Initialize the volume of the element
            vol = 0.0;

            % Numerical integration of the sub-matrices
            for i = 1:this.nIntPoints

                % Shape function matrix
                Np = this.shape.shapeFncMtrx(this.intPoint(i).X);

                % Compute the B matrix at the int. point and the detJ
                [Bp, detJ] = this.shape.dNdxMatrix(this.node,this.intPoint(i).X);

                % Assemble the B-matrix for the mechanical part
                Bu = this.shape.BMatrix(Bp);

                % Pressure values at the integration point
                pIP = Np * pl;

                % Compute the strain vector
                this.intPoint(i).strain = Bu * u;

                % Compute the stress vector and the constitutive matrix
                [stress,Duu] = this.intPoint(i).mechanicalLaw();

                % Compute the permeability matrix
                kh = this.intPoint(i).constitutiveMdl.permeabilityTensor();

                % Get compressibility coefficient
                comp = this.intPoint(i).constitutiveMdl.compressibilityCoeff();

                % Get Biot's coefficient
                biot = this.intPoint(i).constitutiveMdl.biotCoeff();

                % Numerical integration coefficient
                c = this.intPoint(i).w * detJ * this.t;
                if this.isAxisSymmetric
                    c = c * this.shape.axisSymmetricFactor(Np,this.node);
                end

                % Compute the stiffness sub-matrix
                K = K + Bu' * Duu * Bu * c;

                % Internal force vector
                fiu = fiu + Bu' * (stress - biot * pIP * m) * c;

                % Compute the hydromechanical coupling matrices
                Q = Q + Np' * biot * m' * Bu * c;

                % Compute permeability sub-matrices
                H = H + Bp' * kh * Bp * c;

                % Compute compressibility matrices
                if ((this.massLumping) && (this.lumpStrategy == 1))
                    S = S + diag(comp*Np*c);
                elseif (this.massLumping == false)
                    S = S + Np' * comp * Np * c;
                end

                % Compute the gravity forces
                if (this.gravityOn)
                    [feu,fep] = this.addGravityForces(feu,fep,Np,Bp,kh,pIP,c);
                end

                % Compute the element volume
                vol = vol + c;
            end

            % Compute the lumped mass matrix
            if ((this.massLumping) && (this.lumpStrategy == 2))
                S = lumpedCompressibilityMatrix(this, vol);
            end

            % Assemble the element permeability
            Ke = [ Ouu , Opu';
                   Opu,  H ];

            dfidu = [ K , -Q';
                     Opu, Opp ];

            % Assemble the element compressibility matrix
            Ce = [ Ouu , Opu';
                    Q ,   S ];

            % Assemble element internal force vector
            fi = [fiu; fip];

            % Assemble element external force vector
            fe = [feu; fep];

        end

        %------------------------------------------------------------------
        % Compute the lumped mass matrices
        function S = lumpedCompressibilityMatrix(this, vol)

            % Get compressibility coefficients
            comp = this.intPoint(1).constitutiveMdl.compressibilityCoeff();

            % Mass distribution factor
            factor = vol / this.nnd_el;

            % Compressibility matrices
            S = comp * factor * eye(this.nglp,this.nglp);

        end

        %------------------------------------------------------------------
        % Add contribution of the gravity forces to the external force vct
        function [feu,fep] = addGravityForces(this,feu,fep,Np,Bp,kh,pl,c)

            % Get gravity vector
            grav = this.g * this.mat.porousMedia.b;

            % Shape function matrix
            Nu = this.shape.NuMtrx(Np);

            % Get the porous matrix density
            rhos = this.mat.porousMedia.getDensity();

            % Get fluid densities
            rhol = this.mat.liquidFluid.getDensity(pl);

            % Compute the contribution of the gravitational forces
            feu = feu + Nu' * rhos * grav * c;
            fep = fep + Bp' * kh * rhol * grav * c;

        end

        %------------------------------------------------------------------
        % Function to get the nodal values of the displacement
        function u = getNodalDisplacement(this)
            u = this.ue(1:this.nglu);
        end

        %------------------------------------------------------------------
        % Function to get the nodal values of the liquid pressure
        function pl = getNodalPressure(this)
            a = this.nglu + 1;
            b = this.nglu + this.nglp;
            pl = this.ue(a:b);
        end

        %------------------------------------------------------------------
        % Function to compute the pressure field inside a given element
        function p = pressureField(this,X,ue)
        %
        % Input:
        %   X   : position vector in the global cartesian coordinate system
        %
        % Output:
        %   p   : pressure evaluated in "X"
            if nargin > 2, this.ue = ue; end

            % Natural coordinate system
            Xn = this.shape.coordCartesianToNatural(this.node,X);

            % Vector with the shape functions
            Nm = this.shape.shapeFncMtrx(Xn);

            % Get nodal pressures
            pl = this.getNodalPressure();

            % capillary field
            p = Nm*pl;

        end
    end
end